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Abstract—OFDM ranging is becoming important for position-
ing using terrestrial wireless networks. Conventional ranging
methods rely on a two-step approach: range related parameters,
such as the time of arrival (TOA), the bias induced by non-
line-of-sight (NLOS) propagations etc., are first estimated, based
on which the range is then inferred. In multi-path conditions,
two-step range estimators which employ the correlator-based
estimator or the energy detector lead to poor ranging accuracy
when applied in non-ultra-wideband scenarios due to a bias.
More advanced ranging schemes that estimate all multi-path
components using a multidimensional search procedure provide
higher ranging accuracy but have a prohibitive complexity. In
this work, we propose a novel direct ranging technique that
uses a point process formulated channel model. Based on this
model, we derive an approximate maximum likelihood estimator
of the range. In contrast to the estimator which requires a
multidimensional search procedure, the proposed estimator does
not demand the knowledge of the exact number of multi-path
components and these components are separable. If the power
delay spectrum of the multi-path channel and the signal-to-noise-
ratio (SNR) are known, the complexity of the proposed estimator
is tractable. We show by means of Monte Carlo simulations that
this estimator outperforms the correlator-based estimator.

Index Terms—OFDM, point processes, Gaussian approxima-
tions, direct ranging technique.

I. INTRODUCTION

Accurate localization is becoming important for terrestrial

wireless systems, in particular for OFDM systems such as

WLAN, LTE and its extension LTE-A [1] [2]. One approach to

improve the localization accuracy is to design high precision

ranging techniques [3] [4]. State-of-the-art ranging techniques

follow a two-step approach. First, parameters, such as the

received signal strength, the TOA, the bias induced by NLOS

propagations etc., are estimated from the received signal.

Then, these estimates are used for ranging [3]. Since some

of these information bearing parameters are readily available

in communication systems, two-step ranging methods are very

popular.

Two-step approaches employing OFDM signals have been

considered in [4] [5] [6]. Wang et al. [6] proposed a maximum-

likelihood ranging method based on OFDM signals for a

scenario with separable multi-path components. Due to the

assumed separability (in the delay domain) of these compo-

nents, the obtained estimator converges to the correlator-based

estimator [3]. However, for the separability condition to hold,

a large system bandwidth is needed and even in this case

it is not guaranteed that all paths are separable. In addition,

because this method relies on the detection and estimation of

the line-of-sight (LOS) path, it is sensitive to fading of early

non-separable components [3]. MUltiple SIgnal Classification

(MUSIC) algorithm was applied by Zhao et al. in [5] to

estimate the delays of all multi-path components assuming

their exact number is known. In [4], Wang et al. derived the

Cramér-Rao bound (CRB) on the mean square error (MSE) of

the range estimator and investigated how the OFDM signal pa-

rameters and the spacing between the multi-path components

affect the bound. The CRB is a lower bound for the MSE

of the estimator proposed in [7], which requires estimation

of the delays of all separable multi-path components. The

bound in [4] and the methods in [5] [6] [7] require the

separability of the multi-path components and the knowledge

of their exact number, which is generally difficult to estimate

reliably. Furthermore, the required multidimensional search is

impractical for a realistic number of multi-path components.

As an alternative to the two-step approach, ranging can be

performed in one step—referred to as ”direct” ranging—avoids

the need for the detection of the first-path and the estimation

of its parameters. Despite the ability to bypass both the first-

path detection problem and the path separability requirement,

direct ranging has attracted little attention in the literature.

In this contribution, we address the problem of direct

ranging using OFDM pilot signals in multi-path channels.

The objective is to obtain a ranging estimator with low

complexity, which does not rely on first-path detection, any

separability condition, and the knowledge of the number of

multi-path components. To that end, we formulate a multi-path

channel model using a point process approach [8] [9] [10].

The channel transfer function is reformulated such that the

range parameter is factored out to make it accessible for direct

estimation. We then propose a direct ranging method using a

Gaussian approximation of the channel transfer function. The

method avoids the requirement of knowing the exact number

of multi-path components and relaxes the constraint on their

separability. Given the SNR and the RMS delay spread of the

channel, the proposed estimator is computationally tractable.

Simulation results demonstrate that the proposed estimator

outperforms the correlator-based estimator.

II. SYSTEM MODEL

We consider a single-input single-output OFDM setup with

N active sub-carriers. An OFDM symbol with time duration

T is generated by multiplexing a sequence of data symbols

and known pilot symbols onto N orthogonal sub-carriers. The



adjacent sub-carrier spacing is defined as ∆f = 1
T

. A cyclic

prefix with duration Tcp is appended to prevent inter-symbol

and inter-carrier interference. We index the N active sub-

carriers with the set I = {1, 2, . . . , N}. Of these sub-carriers,

Np = |Ip| are pilots indexed by Ip ⊆ I.

We address estimation of the range parameter d based on

the pilot signals. The multi-path channel is assumed to be

time-invariant during the transmission of each OFDM symbol.

Removing the cyclic prefix and concatenating the received

pilot signals in the observation vector y, we obtain the signal

model in the frequency domain:

y = Ah(d) +w, (1)

where A = diag{an : n ∈ Ip} is a diagonal matrix

with an denoting the nth pilot symbol, the vector h(d) =
[h(d;n∆f) : n ∈ Ip], contains the samples of the channel

frequency response, and w is a white circular-symmetric

complex Gaussian noise vector with component variance σ2.

We define the SNR as Es

σ2 with Es = E[|an|
2].

The channel frequency response is modeled as a sum of

delayed and attenuated multi-path components [10]:

h(d; f) = qα0e
−j2πf(τ0+

d

c )
︸ ︷︷ ︸

LOS term

+
L∑

l=1

αle
−j2πf(τl+

d

c
)

︸ ︷︷ ︸

Tail

, (2)

where path l has complex gain αl and excess delay τl and c is

the speed of light. The indicator q specifies the settings of the

LOS path component. For LOS channels i.e. q 6= 0, q adjusts

the power of the LOS component. When q = 0, the system

operates in NLOS conditions. The delay of the LOS path is d
c

and thus we set the LOS excess delay equal to zero: τ0 = 0.

The excess delays of the NLOS paths form a point process

T = {τ1, τ2, . . .} with intensity function ρ(τ). Note that the

number of multi-path components L, i.e. the cardinality of T ,

is not necessarily deterministic or finite under such channel

formulation. We also assume that

E[αl|τl] = 0, E[αlα
∗
l′ |τl, τl′ ] =

{

σ2
α(τl), l = l′

0, otherwise.
(3)

For convenience, we reformulate (2) as the product of a

range-dependent factor r(d; f) and a factor ε(f) independent

of d:

h(d; f) = e
−j2πf

d

c
︸ ︷︷ ︸

r(d;f)

(

qα0 +
∑

τl∈T

αle
−j2πfτl

)

︸ ︷︷ ︸

ε(f)

. (4)

The assumption that ε(f) is independent of d is a simplifica-

tion which may or may not be realistic. Here, we employ it

to simplify the forthcoming derivations. We leave investigation

of more sophisticated distance dependent channel models such

as presented in [11] to future works. Defining the diagonal

matrix R(d) = diag{r(d;n∆f) : n ∈ Ip} and the vector

ε = [ε(n∆f) : n ∈ Ip]
T , the channel vector reads

h(d) = R(d)ε. (5)

Following the assumptions (3), E[ε] = 0 and thus E(y) = 0.

With these results, the covariance matrix of the observation

vector y is given by

Cy(d) = AR(d)CεR
H(d)AH + σ2

I, (6)

where Cε = E[εεH ] with (·)H denoting conjugate transpose

and I being the identity matrix. Inspired by [9], Cε can be

computed from an underlying channel model. Entry (m,n) of

Cε reads

[Cε]mn = q2σ2
α(0) + E




∑

τl,τl′∈T

αlα
∗
l′e

−j2π∆f(mτl−nτ
l′
)



 .

By the law of total expectation, conditioning on the point

process T , and utilizing (3), we obtain

[Cε]mn = q2σ2
α(0) + E

[
∑

τl∈T

σ2
α(τl)e

−j2π∆f(m−n)τl

]

.

Applying Campbell’s theorem [12] yields

[Cε]mn =

∫ ∞

0

σ2
α(τ)(ρ(τ) + q2δ(τ))
︸ ︷︷ ︸

P (τ)

e−j2π(m−n)∆fτdτ

= F{P (τ)}((m− n)∆f), (7)

where δ(·) denotes the Dirac delta function, P (τ) is the delay

power spectrum (the average delay power profile) and F
denoting the Fourier transform [9]. In practice, the delay power

spectrum can be evaluated empirically or approximated using

an appropriated channel model [13] [14]. We further assume

that ρ(τ) = ρ with ρ being a constant. Thus, we assume a

constant arrival rate for the delays induced in the ”Tail”. With

this assumption, (7) reads

[Cε]mn = q2σ2
α(0) + ρ

∫ ∞

0

σ2
α(τ)e

−j2π(m−n)∆fτdτ

︸ ︷︷ ︸

gmn=F{σ2
α
(τ)}((m−n)∆f)

. (8)

To gain some insight into the impact of the properties of

the channel model on Cε, we consider the following three

example models.

Example 1. The number L is fixed and σ2
α(τ) = 1

L
. The

delays in the ”Tail” are drawn independently and uniformly

on [0, Tcp]. In this case, T is a Binomial point process. Hence,

ρ = L
Tcp

. Consequently, (8) reads

[Cε]mn = q2
1

L
+ sinc((m− n)∆fTcp)e

−jπ(m−n)∆fTcp (9)

with sinc(x) = sin(πx)/(πx). In the LOS scenario, the

covariance matrix depends on the exact number of paths L,

which is generally unknown in practice. In the NLOS scenario,

i.e. q = 0, the covariance matrix looses the dependency on

L since the first term in (9) vanishes due to the somewhat

artificial assumption σ2
α(τ) = 1

L
. Note that the involved

assumptions are similar to those used to derive the robust

Wiener filter [15].

Example 2. The number L is fixed and motivated by experi-

mental observations [11], we assume that



σ2
α(τ) = C exp(−

τ

λ
), (10)

where C is a positive constant and λ denotes the RMS delay

spread of the ”Tail” of the multi-path channel. We reuse the

assumptions invoked in Example 1 except the assumption on

σ2
α(τ). Assuming that

∫∞

Tcp
σ2
α(τ)dτ is negligible, (8) reads

[Cε]mn = q2C +
L

Tcp
gmn, (11)

where
gmn = C

1− e−(j2π(m−n)∆f+ 1
λ
)Tcp

j2π(m− n)∆f + 1
λ

. (12)

Notice that the covariance matrix depends on L.

Example 3. T is modeled as a homogeneous Poisson point

process on [0, Tcp] with rate ρ and exponential power decay

for σ2
α(τ). This is a special case of Turin’s model [8].

Then L is a Poisson random variable with mean µL =
E[L] = ρTcp. Assuming that

∫∞

Tcp
σ2
α(τ)dτ is negligible and

utilizing (10), (8) reads

[Cε]mn = q2C + ρgmn (13)

with gmn defined as in (12). We observe that the covariance

matrix Cε does not depend on the exact number of paths of a

specific channel realization but depends on the intensity ρ and

λ. The intensity ρ and λ may be provided by an appropriate

channel model.

III. DIRECT MAXIMUM LIKELIHOOD RANGING VIA

GAUSSIAN APPROXIMATIONS

The direct maximum likelihood estimator of d based on the

observation y reads

d̂ML = arg max
d

p(y|d), (14)

where p(y|d) denotes the likelihood function of d given y.

Estimator (14) is a ”direct” range estimator since no inter-

mediate parameters such as delays, complex gains, etc. are

estimated. To implement (14), the likelihood function p(y|d)
needs to be computed. In the considered case, however, p(y|d)
is unknown. Instead, estimator (14) may be approximated as

in [4] and [7] via a two-step approach. These methods, how-

ever, require the knowledge of the number of path components,

which is generally unknown and hard to estimate.

Here, we follow the alternative approach of approximating

p(y|d) with a Gaussian pdf p̃(y|d) with the same first- and

second-order moments. This approximation is exact if ε is

a Gaussian random vector. It is a reasonable approximation

in a multi-path channel where L is large and σ2
α(τ) is a

constant. In more realistic channels with an exponential power

decay, the Gaussian approximation can be inaccurate. Since

the first- and second-order moments of y are known by (6),

this approximation leads to an estimator that can be derived

analytically. Using p̃(y|d) instead of p(y|d) in (14) yields

d̂AML = arg max
d

ln p̃(y|d), (15)

where the log-likelihood ln p̃(y|d) is of the form [16]

ln p̃(y|d) ∝ − ln det(Cy(d))− yHC−1
y

(d)y (16)

Table I
SIMULATION SETTINGS

OFDM system:
N = 512, Np = 103, ∆f = 15 kHz,
Tp = T + Tcp = 66.7 + 5.4 = 72.1 µs

Estimation range dobs ∈ [0, 7 km]; True range: d = 1 km.
Results obtained from 10000 Monte Carlo trials are displayed.

with x ∝ z denoting x = z + constant and det(·) denoting

the determinant. Using the eigenvalue decomposition Cε =
UΛUH , we can recast (6) as

Cy(d) = R(d)GRH(d),

with G = AU(Λ + Iσ2/Es)U
HAH . Since R(d) is unitary,

the determinant det (Cy(d)) = det(G) does not depend on d
and can be dropped. Thus,

ln p̃(y|d) ∝ −yHR(d)G−1RH(d)y, (17)

where
G−1 = AU(Λ +

σ2

Es

I)−1UHAH . (18)

Since the matrices AU and Λ can be pre-computed and

stored, the inversion of G amounts to compute the diagonal

matrix (Λ+ σ2

Es
I)−1. This circumvents the brute force inver-

sion of Cy(d) in (16) and thereby reduces the complexity of

the estimator. We remark that Cε and thus U and Λ depend on

the parameters of P (τ). It can be shown that the non-coherent

correlator-based estimator [2] [3] [6] is a limiting case of the

proposed estimator (15) when q → ∞, which implies a single

path channel.

IV. NUMERICAL PERFORMANCE EVALUATION

We first evaluate the performance of estimator (15) in

a multi-path channel with different parameter settings and

contrast it with the performance of the non-coherent correlator-

based estimator [2] [6]. We omit the comparison with the

energy detector, which is sensitive to the selected threshold

value and provides inaccurate TOA estimates [3] [13]. We also

omit the comparison with multidimensional search approach,

because these estimators require access to L, which is assumed

to be unknown in this work [4] [7]. We then report the per-

formance of estimator (15) when there is a mismatch between

the channel assumptions made for its derivation and the real

channel conditions in which it is used. Specifically, we say

that there is a mismatch if a LOS (NLOS) condition prevails

in the channel, while the used estimator is the one derived

under the assumption of NLOS (LOS). Otherwise there is a

match. Remember that the factor q controls which of the LOS

(q = 1) or NLOS (q = 0) condition holds. Table I summarizes

the settings used for the simulations of the considered OFDM

system. Pilots with equal power are placed either with equal

spacing (Uniform pilot pattern) or randomly (Random pilot

pattern) in an OFDM symbol. A random pilot pattern is

generated by sampling Np pilots uniformly at random without

replacement from I. In the Monte Carlo simulation, we use

the channel model in Section II Example 3.
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Figure 1. LOS scenario: RMSEE obtained by using different estimators and
pilot patterns for a multi-path channel with RMS delay spread λ = 50 ns and
average number of paths µL = 480.
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Figure 2. LOS scenario: RMSEE versus average number of paths µL for
different values of the RMS delay spread λ at SNR = 40 dB.

A. LOS scenario: Performance Evaluation Using Different

Pilot Patterns and Estimators

Fig. 1 shows the simulated root mean square estimation

error (RMSEE) of d using estimator (15) and the correlator-

based estimator. We observe that for both estimators, the

uniform pilot pattern leads to outliers due to high side-lobes in

the respective objective functions. This effect does not occur

when the random pilot pattern is used. We observe in this case

that the proposed estimator outperforms the correlator-based

estimator. We then compare the results with the CRB [16],

which is computed under the assumption that ε and y are

jointly Gaussian. Since such assumption is not fulfilled here,

the simulated RMSEE does not meet the CRB.

B. Performance Evaluation Under Different Channel Settings

From this point on, we only report the results obtained by

employing a random pilot pattern. Fig. 2 reports the simulated

RMSEE in the LOS scenario. We observe that estimator (15)

outperforms significantly the correlator-based estimator. As

the average number of paths increases, the performance of

the correlator-based estimator deteriorates. When µL is small,

i.e. the Gaussian assumption is significantly violated, the

RMSEE of estimator (15) noticeably deviates from the CRB.

Such deviation becomes smaller as µL increases. Moreover,

the accuracy of estimator (15) increases as the RMS delay
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Figure 3. LOS scenario: Empirical CDF of the range errors obtained
using (15) when RMS delay spread λ = 360 ns and SNR = 40 dB.
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Figure 4. NLOS scenario: RMSEE versus the average number of paths µL

for different values of RMS delay spread λ at SNR = 40 dB.

spread decreases. Fig. 3 depicts the cumulative distribution

function (CDF) of the range errors in the LOS scenario. We

observe that the medians are positive which indicates that

positive errors are more frequent than negative errors. As

µL decreases, the corresponding CDF shows a sharper slope

and the median decreases accordingly. We remark that rare

large outliers appear when µL is small, which lifts the overall

RMSEE up as shown in Fig. 2.

Fig. 4 reports the simulated RMSEE in the NLOS scenario.

Contrary to the LOS scenario, the RMSEE decreases as µL

increases and the proposed estimator’s performance becomes

insensitive to the RMS delay spread when this parameter is

large enough. When µL and the RMS delay spread of the

channel are small, in which case the Gaussian assumption

is significantly violated, both estimators yield large errors.

However, compared to the correlator-based estimator, estima-

tor (15) exhibits a promising performance gain when µL and

the RMS delay spread of the channel are large. Fig. 5 depicts

the CDF of the range errors in NLOS scenarios. We notice

that µL affects the proposed estimator’s performance. Contrary

to what was observed in Fig. 3, the median increases as µL

decreases. When µL = 9, the median is at around 80m, which

explains the high RMSEE in Fig. 4.



 

 

µ = 480
µ = 60
µ = 9

P
(d̂

−
d
<

d
e)

de [m]
−100 0 100 200 300 400
0

0.25

0.5

0.75

1

Figure 5. NLOS scenario: Empirical CDF of the range errors obtained
using (15) when λ = 360 ns and SNR = 40 dB.
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Figure 6. RMSEE versus average number of paths µL for RMS delay
spread λ = 360 ns and SNR = 40 dB. Green and red curves indicate the real
channel conditions. ”Est: LOS Assump.” shows the RMMSE of estimator (15)
assuming that the real propagation channel is in LOS conditions while ”Est:
NLOS settings” denotes the RMMSE of estimator (15) assuming that the real
channel is in NLOS conditions.

C. Performance Comparison in Conditions with Model Match

and Mismatch

Fig. 6 reports the simulated RMSEE when the assumptions

used to derive estimator (15) match or mismatch the real

channel propagation conditions. Clearly, estimator (15) still

outperforms the correlator-based estimator and both estimators

benefit from the LOS propagation channel, which leads to

lower RMSEEs. In case of a mismatch, estimator (15) per-

forms worse than when there is a match. This is particularly

noticeable in LOS conditions with small µL. Except for the

matched case when the real channel is in LOS conditions,

the RMSEE decreases as µL increases due to the Gaussian

assumption becomes more realistic.

V. CONCLUSION

Using a channel model formulated as a point process, we

demonstrate that the proposed approximate maximum like-

lihood estimator outperforms the correlator-based estimator.

In the single-path scenario, the correlator-based estimator

coincides with the proposed estimator. The proposed esti-

mator does not require first-path detection, path separability,

nor estimation of the number of path components. Though

the invoked Gaussian assumptions is not fulfilled in typical

channel conditions, the proposed estimator achieves promising

range accuracy. An additional finding is that both proposed and

correlator-based estimators achieve higher estimation accuracy

when a random pilot pattern is employed rather than the

uniform pilot pattern, as currently used in LTE.

Given the SNR and the covariance matrix of the channel,

the complexity of the proposed estimator is tractable. The

estimator accuracy depends on the RMS delay spread and the

average number of path components. The proposed estimator

achieves promising results in the LOS scenario even if there

is a mismatch between the assumptions used to derive the

proposed estimator and the real channel conditions. In the

NLOS scenario, the average number of path components limits

the estimator’s performance in both matched and mismatched

cases.
ACKNOWLEDGMENT

This work was supported by the EU FP7 Network of Excel-

lence in Wireless COMmunications NEWCOM# (Grant agree-

ment no. 318306) and in part by the VIRTUOSO cooperative

research project, funded by Intel Mobile Communications,

Anite, Telenor, Aalborg University, and the Danish National

Advanced Technology Foundation.

REFERENCES

[1] A. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 24–40, 2005.

[2] C. Mensing, “Location Determination in OFDM Based Mobile Radio
Systems,” Ph.D. dissertation, Technische Universität München, 2013.

[3] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win, “Ranging
With Ultrawide Bandwidth Signals in Multi-path Environments,” Proc.

IEEE, vol. 97, no. 2, pp. 404–426, 2009.
[4] T. Wang, Y. Shen, S. Mazuelas, H. Shin and M. Z. Win, “On OFDM

Ranging Accuracy in Multipath Channels,” IEEE Systems Journal,
vol. PP, no. 99, pp. 1–11, 2013.

[5] F. Zhao, W. Yao, C. C. Logothetis, and Y. Song, “Super-resolution
TOA Estimation in OFDM Systems for Indoor Environments,” in IEEE
International Conf. on Networking, Sensing and Control, 2007.

[6] D. Wang, M. Fattouche, and F. Ghannouchi, “Fundamental Limit of
OFDM Range Estimation in a Separable Multipath Environment,” Cir-

cuits, Systems, and Signal Processing, vol. 31, no. 3, 2012.
[7] R. Adam and P. A. Hoeher, “Semi-blind channel estimation for joint

communication and positioning,” 10th Workshop on Positioning Navi-

gation and Commun., pp. 1–5, 2013.
[8] G. L. Turin, F. D. Clapp, T. L. Johnston, and S. B. Fine, and D. Lavry,

“A statistical model of urban multipath propagation,” IEEE Trans. Veh.

Technol., vol. 21, no. 1, pp. 1–9, 1972.
[9] M. L. Jakobsen, “Modeling and Analysis of Stochastic Radio Channels,”

Ph.D. dissertation, Aalborg University, 2014.
[10] M. L. Jakobsen, T. Pedersen, B. H. Fleury, “Analysis of Stochastic Radio

Channels with Temporal Birth-Death Dynamics: A Marked Spatial Point
Process Perspective,” IEEE Trans. Antennas Propag., april 2014.

[11] G. Steinbock, T. Pedersen, B. H. Fleury, W. Wang and R. Raulefs,
“Distance Dependent Model for the Delay Power Spectrum of In-room
Radio Channels,” IEEE Trans. Antennas Propag., vol. 61, no. 8, pp.
4327–4340, Aug. 2013.

[12] J. Kingman, Poisson Processes, ser. Oxford studies in probability, 1992.
[13] O. Bialer, D. Raphaeli, and A. J. Weiss, “Maximum-Likelihood Direct

Position Estimation in Dense Multipath,” IEEE Trans. Veh. Technol.,
vol. 62, no. 5, pp. 2069–2079, 2013.

[14] M. Triki and D. Slock, “Mobile Localization for NLOS Propagation,” in
Proc. IEEE 18th Int. Symposium on Personal, Indoor and Mobile Radio
Commun., PIMRC, 2007, pp. 1–4.

[15] Y. Li, L. Cimini, and N. Sollenberger, “Robust channel estimation for
OFDM systems with rapid dispersive fading channels,” IEEE Trans.

Wireless Commun., vol. 46, no. 7, pp. 902–915, 1998.
[16] S. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Prentice-Hall PTR, 1998.


