75 research outputs found

    Analysis of Passive Magnetic Inspection Signals Using the Haar Wavelet and Asymmetric Gaussian Chirplet Model (AGCM)

    Get PDF
    Nowadays, Non-Destructive Testing (NDT) techniques are an essential foundation of infrastructure retrofit and rehabilitation plans, mainly due to the huge amount of construction, as well as the high cost of demolition and reconstruction. Modern NDT methods are moving toward automated detection methods to increase the speed and probability of detection, which enlarges the size of inspection data and raises the demand for new data analysis methods. NDT methods are divided into two main groups; active and passive. The external potentials are discharged into an object in an active method, and then the reflection wave is recorded. However, the passive methods use the self-created magnetic field of the object. Therefore, the magnetic value of ferromagnetic material in a passive method is less than the magnetic value of an active method, and defects and anomalies detection needs more variety of functional signal processing methods. The Passive Magnetic Inspection (PMI) method, as an NDT-passive technology, is used in this thesis for ferromagnetic materials quantitative assessment. The success of the PMI depends on the detection of anomalies of the passive magnetic signals, which is different for every single test. This research aims to develop appropriate signal processing methods to enhance the PMI quality of defect detection in ferromagnetic materials. This thesis has two main parts and presents two computer-based inspection data analysis methods based on the Haar wavelet and the Asymmetric Gaussian Chriplet Model (AGCM). The Passive Magnetic Inspection method (PMI) is used to scan ferromagnetic materials and produce the raw magnetic data analyzed by the Haar wavelet and AGCM. The first part of this study describes the Haar wavelet method for rebar defect detection. The Haar wavelet is used to analyze the PMI magnetic data of the embedded reinforcement steel rebar. The corrugated surface of reinforcing steel makes the detection of defects harder than in flat plates. The up and down shape of the Haar wavelet function can filter the repeating corrugations effect of steel rebars on the PMI signal and thereby better identify the defects. Toogood Pond Dam piers’ rebar defects, as a case study, were detected using the Haar wavelet analysis and verified by the Absolute Gradient (AG) method using visual comparison of the resultant signals and the correlation coefficient. The predicted number of points with a rebar area loss higher than 4% is generally the same with the AG and the Haar wavelet methods. The mean correlation coefficient between the signals analyzed using the AG and the Haar wavelet for all rebars is 0.8. In the second part of this study the use of the AGCM to simulate PMI signals is investigated. Three rail samples were scanned to extract a three-dimensional magnetic field along specific PMI transit lines of each sample for the AGCM simulations. Errors, defined as the absolute value of the difference between signal and simulation, were considered as a measure of simulation accuracy in each direction. The samples’ lengths differed, therefore error values were normalized with respect to the length to scale data for the three samples. The Simulation Error Factor (SEF) was used to measure the error and sample 3 showed the lower value. Finally, statistical properties of the samples' SEF, such as standard deviation and covariance, were evaluated, and the best distribution was fitted to each of the data sets based on the Probability Paper Plot (PPP) method. The Log-Normal probability distribution demonstrated the best compatibility with SEF values. These distributions and statistical properties help to detect outlier data for future data sets and to identify defects

    Advanced signal processing methods for plane-wave color Doppler ultrasound imaging

    Get PDF
    Conventional medical ultrasound imaging uses focused beams to scan the imaging scene line-by-line, but recently however, plane-wave imaging, in which plane-waves are used to illuminate the entire imaging scene, has been gaining popularity due its ability to achieve high frame rates, thus allowing the capture of fast dynamic events and producing continuous Doppler data. In most implementations, multiple low-resolution images from different plane wave tilt angles are coherently averaged (compounded) to form a single high-resolution image, albeit with the undesirable side effect of reducing the frame rate, and attenuating signals with high Doppler shifts. This thesis introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of frame compounding, thereby eliminating the tradeoff between beam quality, frame rate and the unaliased Doppler frequency limit. The method uses a Doppler ensemble formed of a long random sequence of transmit tilt angles that randomize the phase of out-of-cell (clutter) echoes, thereby spreading the clutter power in the Doppler spectrum without compounding, while keeping the spectrum of in-cell echoes intact. The spread-spectrum method adequately suppresses out-of-cell blood echoes to achieve high spatial resolution, but spread-spectrum suppression is not adequate for wall clutter which may be 60 dB above blood echoes. We thus implemented a clutter filter that re-arranges the ensemble samples such that they follow a linear tilt angle order, thereby compacting the clutter spectrum and spreading that of the blood Doppler signal, and allowing clutter suppression with frequency domain filters. We later improved this filter with a redesign of the random sweep plan such that each tilt angle is repeated multiple times, allowing, after ensemble re-arrangement, the use of comb filters for improved clutter suppression. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. To improve velocity estimation in pulsatile flow, we developed a method that uses the chirped Fourier transform to reduce stationarity broadening during the high acceleration phase of pulsatile flow waveforms. Experimental results showed lower standard deviations compared to conventional intensity-weighted-moving-average methods. The methods in this thesis are expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates, with high spatial resolution

    Drude conductivity of a granular metal

    Get PDF
    We present a complete derivation of the granular analogue to Drude conductivity using diagrammatic methods. The convergence issues arising when changing the order of momentum and frequency summation are more severe than in the homogeneous case. This is because there are now two momentum sums rather than one, due to the intragrain momentum scrambling in tunnelling events. By careful analytic continuation of the frequency sum, and use of integration by parts, we prove that the system is in the normal (non-superconducting) state, and derive the formula for the granular Drude conductivity expected from Einstein's relation and Fermi's golden rule. We also show that naively performing the momentum sums first gives the correct result, provided that we interpret a divergent frequency sum by analytic continuation using the Hurwitz zeta function.Comment: 18 pages, 5 figure

    Characterization, Classification, and Genesis of Seismocardiographic Signals

    Get PDF
    Seismocardiographic (SCG) signals are the acoustic and vibration induced by cardiac activity measured non-invasively at the chest surface. These signals may offer a method for diagnosing and monitoring heart function. Successful classification of SCG signals in health and disease depends on accurate signal characterization and feature extraction. In this study, SCG signal features were extracted in the time, frequency, and time-frequency domains. Different methods for estimating time-frequency features of SCG were investigated. Results suggested that the polynomial chirplet transform outperformed wavelet and short time Fourier transforms. Many factors may contribute to increasing intrasubject SCG variability including subject posture and respiratory phase. In this study, the effect of respiration on SCG signal variability was investigated. Results suggested that SCG waveforms can vary with lung volume, respiratory flow direction, or a combination of these criteria. SCG events were classified into groups belonging to these different respiration phases using classifiers, including artificial neural networks, support vector machines, and random forest. Categorizing SCG events into different groups containing similar events allows more accurate estimation of SCG features. SCG feature points were also identified from simultaneous measurements of SCG and other well-known physiologic signals including electrocardiography, phonocardiography, and echocardiography. Future work may use this information to get more insights into the genesis of SCG

    Identification of detailed time-frequency components in somatosensory evoked potentials

    Get PDF
    Somatosensory evoked potential (SEP) usually contains a set of detailed temporal components measured and identified in time domain, providing meaningful information on physiological mechanisms of the nervous system. The purpose of this study is to reveal complex and fine time-frequency features of SEP in time-frequency domain using advanced time-frequency analysis (TFA) and pattern classification methods. A high-resolution TFA algorithm, matching pursuit (MP), was proposed to decompose a SEP signal into a string of elementary waves and to provide a time-frequency feature description of the waves. After a dimension reduction by principle component analysis (PCA), a density-guided K-means clustering was followed to identify typical waves existed in SEP. Experimental results on posterior tibial nerve SEP signals of 50 normal adults showed that a series of typical waves were discovered in SEP using the proposed MP decomposition and clustering methods. The statistical properties of these SEP waves were examined and their representative waveforms were synthesized. The identified SEP waves provided a comprehensive and detailed description of time-frequency features of SEP. © 2006 IEEE.published_or_final_versio

    A Survey of Signal Processing Problems and Tools in Holographic Three-Dimensional Television

    Get PDF
    Cataloged from PDF version of article.Diffraction and holography are fertile areas for application of signal theory and processing. Recent work on 3DTV displays has posed particularly challenging signal processing problems. Various procedures to compute Rayleigh-Sommerfeld, Fresnel and Fraunhofer diffraction exist in the literature. Diffraction between parallel planes and tilted planes can be efficiently computed. Discretization and quantization of diffraction fields yield interesting theoretical and practical results, and allow efficient schemes compared to commonly used Nyquist sampling. The literature on computer-generated holography provides a good resource for holographic 3DTV related issues. Fast algorithms to compute Fourier, Walsh-Hadamard, fractional Fourier, linear canonical, Fresnel, and wavelet transforms, as well as optimization-based techniques such as best orthogonal basis, matching pursuit, basis pursuit etc., are especially relevant signal processing techniques for wave propagation, diffraction, holography, and related problems. Atomic decompositions, multiresolution techniques, Gabor functions, and Wigner distributions are among the signal processing techniques which have or may be applied to problems in optics. Research aimed at solving such problems at the intersection of wave optics and signal processing promises not only to facilitate the development of 3DTV systems, but also to contribute to fundamental advances in optics and signal processing theory. © 2007 IEEE
    • …
    corecore