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Identification of Detailed Time-Frequency
Components in Somatosensory Evoked Potentials

Zhiguo Zhang, Member, IEEE, Keith D. K. Luk, and Yong Hu, Member, IEEE

Abstract—Somatosensory evoked potential (SEP) usually con-
tains a set of detailed temporal components measured and iden-
tified in time domain, providing meaningful information on phys-
iological mechanisms of the nervous system. The purpose of this
study is to reveal complex and fine time-frequency features of SEP
in time-frequency domain using advanced time-frequency analysis
(TFA) and pattern classification methods. A high-resolution TFA
algorithm, matching pursuit (MP), was proposed to decompose a
SEP signal into a string of elementary waves and to provide a time-
frequency feature description of the waves. After a dimension re-
duction by principle component analysis (PCA), a density-guided
K-means clustering was followed to identify typical waves existed
in SEP. Experimental results on posterior tibial nerve SEP signals
of 50 normal adults showed that a series of typical waves were dis-
covered in SEP using the proposed MP decomposition and clus-
tering methods. The statistical properties of these SEP waves were
examined and their representative waveforms were synthesized.
The identified SEP waves provided a comprehensive and detailed
description of time-frequency features of SEP.

Index Terms—Density estimation, K-means clustering, matching
pursuit, somatosensory evoked potentials, time-frequency analysis.

I. INTRODUCTION

S OMATOSENSORY evoked potential (SEP) is the elec-
trical response of the central nervous system to an electrical

stimulation of a peripheral nerve. SEP has been widely used in
electrophysiological diagnosis and intraoperative monitoring
because it is capable of providing meaningful information on
physiological mechanisms of the nervous system [1]–[4]. In
previous studies, a number of stable temporal components were
validated to exist in SEP and they reflect sequential activation
of neural structures along the somatosensory pathways [1]–[7].
These detailed temporal components were generally identified
by measuring latencies and amplitudes of a set of small onsets,
peaks, and notches in time domain.
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The identification and measurement of SEP components can
also be performed in time-frequency domain by time-frequency
analysis (TFA) methods. Recently, it was found that TFA of SEP
provided an earlier and more sensitive indication of neural in-
jury than time domain measurements, and thus it is suggested
that TFA of SEP should be useful in preventing spinal cord
injury during surgery [8]–[12]. TFA of a SEP signal leads to
a time-frequency distribution (TFD), describing the energy or
power of the signal as a 2-D function of time and frequency.
Generally, the TFD of a normal SEP signal exhibits a distinct
peak in the time-frequency domain, and the time-frequency fea-
tures of the SEP signal are extracted as the measurements of the
main peak in the TFD, including the peak power, peak time, and
peak frequency [9]–[12]. Compared with the temporal compo-
nents of SEP, the time-frequency features are more stable and
easily-identifiable, and they present rapid changes in time-fre-
quency domain when deficits happen in spinal cord function
[8]–[12].

Currently, only the time-frequency features associated with
the main peak in the TFD of SEP were examined in detail. How-
ever, there are many other minute peaks and features existed in
the TFD and their features have not been studied yet. Although
the short-time Fourier transform (STFT) was recommended in
[9]–[12] as an appropriate method for SEP analysis among var-
ious TFA methods, the minute peaks revealed by STFT heavily
depend on the selection of analysis window, making it difficult
to obtain reliable and stable time-frequency features as refer-
ences. In [13]–[15], multiresolution wavelet analysis was pro-
posed to expand an evoked potential into a set of coarse and
detailed components. The wavelet analysis provided an alter-
native way, i.e., time-frequency decomposition, to analyze SEP
signals, but it could not offer a time-frequency parameter de-
scription of the decomposed components and thus it was diffi-
cult to establish reference values to assess the SEP.

This study aims to reveal complex and fine time-frequency
features of SEP using advanced TFA and pattern classification
methods. Firstly, to overcome the limitations of STFT and
wavelet analysis, a high-resolution TFA method, matching
pursuit (MP), was adopted for SEP analysis. The MP method
decomposes a signal into a series of time-frequency com-
ponents (TFCs) from a large and redundant dictionary in an
iterative fashion [16]. More importantly, the MP algorithm is
able to provide a straightforward parameter description of the
decomposed TFCs. In addition, the MP method is very robust
in the presence of noise, so it is suitable for dealing with SEP
accompanied with heavy background noise [17]. All these
merits make the MP algorithm a powerful tool in processing
of various biomedical signals, such as electroencephalography
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(EEG) [17], otoacoustic emission (OAE) [18], and visual
evoked potential (VEP) [19]. In this paper, the Gabor dictio-
nary was used in the MP decomposition and each Gabor-type
TFC was described by five parameters, including the latency,
frequency, time span, amplitude, and phase. Secondly, we used
pattern recognition methods to identify stable and represen-
tative time-frequency features from a large number of TFCs
decomposed from SEP signals under study. To fulfill this pur-
pose, clustering analysis was applied to group the TFCs into a
finite number of clusters, and each cluster of TFCs had similar
time-frequency parameters (features). The K-means clustering
algorithm was adopted, and the probability density function
(PDF) of TFCs was estimated to provide initial centroids for
K-means. Because it was difficult to perform a clustering in a
5-D space (a Gabor-type TFC was described by five features),
principle component analysis (PCA) was applied to reduce the
dimension of the feature space prior to the clustering [20].

SEP signals recorded from fifty patients undergoing scoliosis
surgery were studied in the paper. Five clusters of TFCs were
identified, and each cluster represented a typical SEP wave em-
bodying specific and stable time-frequency features of normal
SEPs. The statistical properties of the SEP waves were calcu-
lated to give reference values for normal SEP signals. Repre-
sentative waveforms of these SEP waves were synthesized ac-
cordingly, and their sum yielded a synthetic normal SEP signal
with typical time-frequency features. Moreover, the correlations
between different SEP waves were calculated to investigate the
dependencies between them. We also showed that the time-fre-
quency features identified in our study were in good accordance
with SEP’s temporal components revealed in previous studies.
All these results together presented an integrated and clear pic-
ture on the time-frequency nature of normal SEPs, and they pro-
vided more detailed time-frequency features than conventional
TFA methods.

II. MATERIALS AND METHODS

A. Experimental Procedure and Data Collection

Fifty patients undergoing scoliosis surgery were included in
the study (38 female and 12 male). Their age ranged from 11 to
18 years (mean 15 years). All patients received general anaes-
thesia, induced by thiopentone (thiopental) (0.4 mg/kg) or fen-
tanyl (1–2 mg/kg). Isoflurane (0.5%–0.8%) and nitrous oxide/
oxygen (typically 60:40%) were used to maintain the anaes-
thesia. None of the patients had any neurological deficit before,
immediately after, or at the two months assessment following
the surgery.

A pair of stimulating electrodes was applied over the pos-
terior tibial nerve (PTN) behind the medial malleoli to elicit
SEP, and the constant current stimulation was in the range of
10–30 mA. Single pulse stimulation with a frequency between
5.1 and 5.7 Hz and duration of 0.3 ms was used [21]. The SEP
signals were collected over (2 cm posterior to Cz, 10–20 in-
ternational system of EEG electrode placement) versus the Fz of
the 10–20 system using subcutaneous needle electrodes. An in-
traoperative spinal cord monitoring system (Nicolet Viking IV,
Nicolet Biomedical, Madison, WI) was employed to record the
responses. A 20–3000 Hz bandpass filter and automatic arte-

fact rejection was applied to reduce noise. The sweep time of
SEP recording was 100 ms. To eliminate possible stimulation
artefacts, the first 10 ms of each 100 ms trial were discarded
and the remaining 90 ms of data were kept for further analysis.
Each SEP signal was obtained by ensemble average of 100 trials
to improve the SNR. The averaged SEP were measured alter-
nately during left or right sided stimulation every 15–20 min
during noncritical procedures such as incision, and continuously
during critical surgical procedures or if abnormal SEP occurred.
The averaged SEP signals were then analysed on the Pentium 4
PC platform (3.2 GHz, 1 GB RAM) using MATLAB software
(version 7.0, Mathworks, Natick, MA).

B. Matching Pursuit

Given a discrete-time SEP signal , the MP method ex-
pands into a sum of TFCs

(1)

where is the th TFC, is the number of decomposed
TFCs, and is the decomposition residue. The MP decom-
position is generally achieved in an iterative manner, and inter-
ested readers are referred to [16]–[19] for more details.

In the MP method, the TFCs are chosen from a redundant
dictionary, and different dictionaries will result in different de-
composition results. The Gabor dictionary was used in our study
due to its simplicity, completeness, and good time-frequency lo-
calizations [16], [17]. A more complicated dictionary, such as
the chirplet dictionary [19], describes a TFC with more param-
eters, and it may give a better representation if SEP’s underlying
time-frequency components match the dictionary well. How-
ever, the true shapes of SEP components are unknown, and a
more complicated dictionary leads to a heavier computational
complexity. In the MP algorithm, the interpretation on decom-
position results is more important than selection of dictionary
[16], [17]. Thus, the Gabor dictionary is enough to describe most
signals, including SEP.

A Gabor-type TFC has the form as

(2)

where , , , , and are, respectively, the latency, frequency,
span, amplitude, and phase. In the Gabor function,
is the waveform envelope with center at time and span de-
scribed by . The parameter is the waveform’s latency, which is
defined as the time duration from the stimulus onset to the max-
imum of the waveform envelope. It can be seen that a Gabor-
type TFC is generated by translating (with ), modulating (with

), dilating (with ), scaling (with ), and phase-shifting (with
) an envelope function. Therefore, the latency , the frequency
, the span , the amplitude , and the phase constitute a 5-D

parameter vector to characterize a Gabor-
type TFC.

C. Feature Selection and Dimension Reduction

We next grouped all the TFCs decomposed from 50 SEP sig-
nals into several clusters and extracted representative time-fre-
quency features of each cluster. Due to the curse of dimension-
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ality [20], it was difficult to cluster these TFCs in a 5-D feature
space and thus a dimension reduction was a crucial procedure
prior to the clustering. On the other hand, if the dimensionality
was too low, say, one or two, the number of clusters might be
underestimated. By comparing the complexity and accuracy, we
chose to use three features in the clustering.

In our study, the dimensionality was reduced by principal
component analysis (PCA). Compared with other dimension re-
duction techniques like projection pursuit and factor analysis,
PCA has a simple and efficient implementation and its effec-
tiveness has been validated in numerous applications [22]. PCA
aims to reduce the dimensionality of the data while retaining
as much as possible of the information (variance) of the orig-
inal data. Consider an original data set , where is
the number of sample vectors and is the dimension of sample
vectors (or number of variables), with mean vector
and covariance matrix . The eigenvalue decompo-
sition of , , yields a diagonal matrix
with d eigenvalues (sorted in descending order) of and an
orthogonal matrix whose columns consist of d eigenvectors.
By a linear transformation , PCA forms a
new set of data , whose rows are principal components orthog-
onal to each other. The resultant first principal component has
the largest variance and so on. We can only preserve
principal components of with large variances and discarded
others, which was shown to be the best approximation (in a
sense of minimum mean squared error) to the original data in
a reduced dimension [22].

Among the five parameters of a TFC, latency and frequency
were more important than others because they determined the

position of TFCs in the time-frequency domain. Thus, PCA was
only used for other three parameters: , , and . To eliminate
the influence of different scales, parameters , , and were
first standardized to have mean zero and standard deviation (SD)
one. After the PCA, the first principal component (PC1, with
symbol ) was used for the following clustering, and the feature
vector to describe a TFC was reduced to . That
is, the TFCs were clustered in a 3-D space according to their
latencies, frequencies, and PC1 values.

D. Density-Guided K-Means Clustering

To simplify the clustering, the main TFCs, which accounted
for the largest energy in each SEP signal, were first categorized
as an individual cluster. We later showed that these main TFCs
shared similar time-frequency features and were associated with
the main peaks of TFDs obtained by other TFA methods. In
the following study, we mainly focused on the clustering of
sub-TFCs, i.e., all the TFCs decomposed from 50 subjects ex-
cept 50 main TFCs. The classical K-means clustering method
was adopted here mainly due to its simplicity and effective-
ness. Also, compared with other popular clustering methods,
K-means doesn’t need to know the data distribution (as com-
pared with Gaussian mixture method) and its results are more
robust and easily-interpretable (as compared with hierarchical
clustering) [23]. Given the number of clusters and initial
centroids of clusters, the K-means algorithm assigned each TFC
to the nearest cluster centroid. However, the K-means algorithm

is very sensitive to the selection of the number of clusters and
the initial cluster centroids, whose different values may lead
to totally different clustering results. A commonly-used initial
guess for K-means is obtained by placing cluster centroids at
the peaks (local maxima with higher values than neighbouring
areas) in the joint probability density function (PDF) of the sam-
ples [24]–[26]. Therefore, we first estimated the joint PDF of
TFCs in the 3-D feature space in order to provide necessary
guide for the K-means algorithm. A multidimensional joint PDF
was estimated by the kernel density estimation algorithm using
Gaussian kernels as

(3)

where was the number of sub-TFCs, was the bandwidth
matrix to adjust the smoothness of the PDF and was the
determinant of . The bandwidth matrix should be carefully
selected to avoid any under-smoothed or over-smoothed PDF.
As suggested in [27], the bandwidth matrix was chosen as
a diagonal matrix , where (
indicated , , or ) was optimally calculated to minimize the
asymptotic mean integrated squared error (AMISE) in the re-
spective dimension. More precisely, the bandwidth parameter

was obtained as

(4)

where was the dimension of the feature vector ( in this
study) and was the SD in dimension . A simple estimate
of was given as

(5)

where was the median of , .
In the feature space, the joint PDF showed some peak areas,

where the TFCs having similar features were concentrated.
After detecting these PDF peaks, the number of peaks was
adopted as the number of clusters and the locations of peaks
were used as the initial centroids for the K-means clustering.

III. RESULTS

A. Time-Frequency Analysis of SEP

An example of PTN-SEP signal and its TFD are illustrated in
Fig. 1. The TFD was obtained by a short-time Fourier transform
(STFT) with a 40 ms Hanning window. It was validated in [12]
that, the main peak in the TFD can provide more reliable moni-
toring parameters than conventional temporal components, such
as P37 and N45.

Unlike the STFT method, the MP algorithm does not directly
present an energy distribution in time-frequency domain but de-
composes the signal into a series of TFCs described by a set of
time and frequency parameters. In our study, MP decomposition
was performed until decomposed TFCs explained 99% of the
energy of each signal. Five highest energy TFCs decomposed
from the SEP signal in Fig. 1 are illustrated in Fig. 2(a). The
Wigner-Ville distribution (WVD) of each decomposed TFC was
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Fig. 1. The waveform, periodogram, and STFT-based TFD of an example of
PTN-SEP signal. (a) A typical PTN-SEP waveform; (b) the periodogram calcu-
lated with fast Fourier transform; (c) STFT with a 40 ms Hanning window. The
cross signs in (a) indicate the P37/N45 temporal components, and the cross in
(c) denotes the main peak in the TFD.

Fig. 2. TFCs from an example of PTN-SEP using MP decomposition and their
TFD. (a) Five highest energy TFCs (C1–C5) are shown; (b) the TFD of the SEP
signal was obtained by summing the WVDs of all decomposed TFCs. The cross
signs in (b) denote the latencies and frequencies of five highest energy TFCs in
the time-frequency domain.

also estimated, and the sum of all the WVDs gave a straightfor-
ward energy distribution of the SEP signal in the time-frequency
domain [17], as shown in Fig. 2(b).

Apart from several high energy TFCs, such as those shown
in Fig. 2, a majority of TFCs had very low energies and con-
tributed little to the energy distribution of the whole signal. To
facilitate the following clustering, we only considered the TFCs
with relative energy, which was calculated as the ration between
the energy of a TFC and the energy of the signal, greater than
1%. In addition, those TFCs with too low frequency
or too short time span were discarded as spurious
components originated from baseline shift or impulsive noise.

After these filtering procedures, a total of 164 TFCs from 50
SEP signals were used for further clustering and statistical anal-
ysis. As mentioned in the previous section, 50 main TFCs of 50
subjects were first regarded as a cluster, and we only considered
the clustering of 114 sub-TFCs.

Fig. 3 presents the histograms (normalized by the number
of main or sub-TFCs) and 1-D PDFs of five MP parameters

of the main TFCs and sub-TFCs. The 1-D PDFs
were estimated using the kernel density estimation method in
(3)–(5). The distinct peaks in PDFs of main TFCs implied that
the main TFCs had clear and similar characteristics, especially
their latencies (around 40 ms) and frequencies (around 50 Hz).
On the other hand, the information provided by histograms and
PDFs of sub-TFCs was relatively vague. No evident charac-
teristic, or more than one evident characteristic were observed
in the histograms and PDFs of sub-TFCs. For instance, two
peaks around 40 ms and 80 ms existed in the PDF of latency of
sub-TFCs. Therefore, these sub-TFCs should be further catego-
rized into several individual clusters to present straightforward
and useful features.

B. Identification of SEP Waves

Prior to the clustering, PCA was conducted to reduce the
dimension and the joint PDF of the sub-TFCs was estimated
to give initial conditions to the K-means clustering. Fig. 4(a)
showed the 3-D joint PDF of the sub-TFCs in the latency-fre-
quency-PC1 feature space. In the joint PDF, all the local peaks
in the 3-D feature space were detected as candidates for initial
centroids of clusters. A total of 25 peaks were discovered, but, of
course, not all of them indicated a potential cluster. By checking
the PDF values of these peaks, we found that four peaks (P1–P4,
as indicated by cross signs in Fig. 4) had relatively large PDF
values (100%, 92%, 84%, and 77% of the maximum PDF value,

), while other peaks have values ranging from 18% to 49%
of . By plotting these peaks values in descending order, as
shown in Fig. 4(c), we can see that P1–P4 have distinctly larger
values than others. So, the four PDF peaks, P1–P4, were used
as initial centroids for K-means, and the number of clusters was
determined as four.

The K-means clustering was performed for sub-TFCs in the
3-D latency-frequency-PC1 feature spaces and the results were
shown in Fig. 5. Four clusters of sub-TFCs were identified and
the numbers of sub-TFCs in each cluster were respectively 35,
41, 19, and 19. These numbers were further adjusted because
some SEP signals contained more than one TFC in a cluster.
If a cluster had two or more TFCs from one signal, only the
TFC with the highest energy was retained, and other TFCs with
smaller energies were discarded. After the adjustment, the num-
bers of TFCs in the four clusters were 34, 32, 18, and 18, respec-
tively. The 50 main TFCs were also shown in Fig. 5 and they
were naturally categorized into one cluster, named as wave I.
Four clusters of sub-TFCs were labeled as waves II-V. That is,
five representative SEP waves were identified in PTN-SEP of
normal adults. In summary, the clustering of Gabor-type TFCs
include following steps: 1) selection of the main wave I with the
maximal power; 2) dimension reduction (5-D to 3-D) by PCA;
3) removal of TFCs with too low power; 4) density estimation
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Fig. 3. Histograms and 1-D PDFs of MP parameters of main TFCs and sub-TFCs from 50 PTN-SEP signals. The histograms are normalized by the number of
main or sub-TFCs. The total number of main TFCs is 50 and the total number of sub-TFCs is 114.

Fig. 4. Distribution and 3-D joint PDF of sub-TFCs. (a) Distributions of sub-TFCs in the latency-frequency-PC1 feature space; (b) the projections of the 3-D joint
PDF on 2-D latency-frequency feature spaces; (c) PDF values of peaks detected in the 3-D joint PDF. The circles denote the TFCs, and the cross signs indicate the
PDF peaks used as initial centroids for clustering.

and K-means clustering; 5) removal of redundant TFCs from
one subject in one cluster.

C. Statistical Analysis of SEP Waves

We further study the statistical characteristics of these iden-
tified SEP waves. The histograms and 1-D PDFs of wave’s pa-
rameters are illustrated in Fig. 6. It can be seen that most param-
eters had prominent characteristics, especially the latency and
frequency. The characteristics of span, amplitude, and phase,
were not very significant, because the three parameters were not
directly and individually used in clustering. The mean, SD, and
coefficient of variation (CV) of the parameters of five waves are
listed in Table I for quantitative assessment. The CV values were
calculated as and were used to measure
and compare the variability between different sets of parameters
with different scales. Since CV is not suitable for parameters
having negative values or having mean values close to zero, the

CV values of phase were not included in Table I. We also calcu-
lated the average CVs of all parameters for each wave and av-
erage CVs of all waves for each parameter. The former average
CVs showed that the latency had the smallest variability and the
amplitude had the largest variability, while the latter showed that
waves I, II, and III had relatively smaller parameter variability
than waves IV and V. Interpretation of these observations will
be discussed in the next section.

Next, for the purpose of identifying the dependency between
different parameters, the correlation coefficients between pa-
rameters of each wave were calculated and listed in Table II.
Similarly, the correlation coefficients between different waves
for each parameter were calculated and listed in Table III to in-
vestigate the associations between different waves in one SEP
signal. The latter correlation calculation was a little more com-
plicated than the former, because not all SEP signals consisted
of all the five waves. If we wanted to calculate the correlation
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Fig. 5. Distribution and clustering results of TFCs. (a) Distribution and clustering results of TFCs in 3-D space, where different grey levels denote different clusters
of TFCs; (b) distribution and clustering results of TFCs in time-frequency domain, where the contour lines denote the Gaussian probability densities calculated
from the mean and covariance values in Tables I and II.

between some parameters of two waves, say, latencies of waves
II and III, we first found the SEP signals containing both waves
II and III from all the 50 signals. Then, the latencies of waves
II and III in these signals formed two vectors for calculation of
correlation coefficient.

We can read from Table II that: 1) the latency and frequency
showed some considerable negative correlations in all the five
waves; 2) the amplitudes had negative correlations with fre-
quency and span in most waves to some extent. On the other
hand, Table III told us that: 1) some large correlations were
observed between waves III and IV for all parameters except
phase; 2) the latencies of waves I and II had some large positive
correlations; 3) wave V showed a number of strong correlations
with other waves in many parameters.

The results in Table II implied that the latency and frequency
of one SEP wave were not independently distributed. As a result,
we calculated the covariance matrix of latency and frequency
and showed their joint normal distribution in the time-frequency
domain. It can be seen from Fig. 5(b) that all these waves had
clear distribution patterns in the time-frequency domain. Gen-
erally, the frequencies decreased a little with the increase of la-
tencies, representing the negative correlations between the two
parameters. Other correlations observed in Tables II and III were
discussed in the next section.

D. Synthesized SEP Signal

Last, based on the mean values of parameters of five waves in
Table I, a typical PTN-SEP signal and its five waves were syn-
thesized, as illustrated in Fig. 7. We can see that the P37 and
N45 components were very distinct in the synthetic PTN-SEP
signal. Other small peaks and ridges in these synthetic wave-
forms were also labelled to facilitate further discussion on the
associations between these waves and temporal components in
the next section.

IV. DISCUSSION

A. Characteristics and Occurrences of SEP Waves

In this paper, a mixture of TFA and clustering methods
was employed to analyze the time-frequency features of SEP
signals. A series of waves, which were in the form of Gabor
functions and defined by five parameters, were identified in
PTN-SEP signals of normal subjects. With the illustration
of Fig. 7 and statistical data of Table I, we can describe a
typical PTN-SEP response as follows. After a stimulus to the
posterior tibial nerve, some short-latency responses (wave V)
having largely different frequencies and amplitudes occur
first ( 30 ms). At around 30–40 ms after the stimulus, some
high-frequency (80–120 Hz) responses (wave II) are gener-
ated but their amplitudes are relatively small. Shortly after,
the frequency of the SEP response decreases to about 40–60
Hz at around 40–50 ms but the fluctuation of magnitudes is
much larger (wave I), resulting in two significant temporal
components P37 and N45. After roughly 50 ms, the SEP is
mainly some low-frequency (20–50 Hz) middle-latency re-
sponses (waves III and IV), whose magnitudes are relatively
large. Overall, a SEP signal is a non-stationary signal with
time-variant frequency contents.

However, not all five waves could be identified in one indi-
vidual SEP signal and the occurrences of waves II-V were re-
spectively 34, 32, 18, and 18 in 50 subjects. The low occurrence
rates were due to several reasons. Firstly, we only considered
the clustering of TFCs with relative energy larger than 1% and
those TFCs with small energies were left out. Secondly, slight
shifts for conducting potentials are very common between dif-
ferent trials of a SEP signal, so the signals under study, which
were ensemble average of 100 trials, may lose some useful infor-
mation. Thirdly, the heavy background noise influenced the SEP
recordings and decomposition results. Of course, we cannot rule
out the possibility that some waves are spurious and unstable.
Among the five waves, the occurrence rates of waves IV and V
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Fig. 6. Histograms and 1-D PDFs of MP parameters of five SEP waves. The histograms are normalized by the number of each cluster of TFCs.

were small and their average CVs were large, so the possibilities
that they were spurious waves are relatively large.

B. Associations Between SEP Waves and Conventional
Features

Next, we discuss the associations between the five waves
and the temporal components of SEP. The SEP waveform com-
ponents could consist of responses from nervous system and
their volume conduction. When the electric stimulation was ap-
plied on posterior tibial nerve, several SEP responses could be
recorded along the somatosensory pathway [28]. Typical peaks
of those SEP waveforms include N8 for the popliteal fossa (PF)
response, N22–N24 for spinal responses from L4/5 to C5 [29],
P31 of sub-cortical response from C5-Fz, and P37-N45 from
cortical response Cz-Fz. The latency in different wave forms
may help to indicate the origins of the components decomposed
in this study. The temporal components P37 and N45 are two
most important temporal components in PTN-SEP. As shown
in Fig. 7, the components and of wave I were analogous
to P37 and N45, respectively, although the rise between them
was not as sharp as the rise from P37 to N45. The components

and in wave II, whose latencies were very close to the
latencies of P37 and N45, also contributed a lot to the forma-
tion of P37 and N45. In addition, several peaks of waves I and
II, including , , , and , were associated with some
short-latency temporal components, such as P30 and N33 re-
ported in [4]. On the other hand, waves III and IV (mainly the
former) constituted the W-shaped middle-latency response in a
PTN-SEP signal [4]. It was difficult to find the counterparts of
wave V in time domain. Although some peripheral components,
such as N8 to N22 of PF and spinal responses originated from

periphery nerve responses, had similar latency to the wave V,
they can hardly contribute to SEP signals recorded on the scalp.
In addition, as mentioned before, the wave V had a low occur-
rence rate and its parameters exhibited a large variability. Con-
sidering all these factors, it is of great possibility that the wave
V is a spurious component. The origin of wave V is not clear
but its short latency suggests that it may be the stimulus artifact.

In summary, the relationship between waves I-V and tem-
poral components of SEP can be concluded as 1) waves I and
II formed the P37 and N45 components; 2) waves I and II
contributed to several short-latency SEP components as well;
3) waves III and IV shaped the middle-latency W-shaped
components.

The relationship and comparison between waves I-V and the
peak identified in conventional TFA of SEP were also investi-
gated. Wave I was the main TFC of a SEP signal and explained a
large proportion of signal energy, which was similar to the main
peak identified in TFD obtained by other TFA methods [9]–[12].
Table I showed that the latencies and frequencies of wave I
were, respectively, 43.19 6.51 ms and 50.14 11.50 Hz,
while the peak times and peak frequencies of TFDs obtained by
STFT with a 40-ms Hanning window were respectively 45.29

6.98 ms and 40.77 4.16 Hz. We can see that the wave I oc-
curred a little earlier than the peak of STFT, and the frequency
of wave I was higher than the peak frequency of STFT. The dif-
ferences should be due to that, the peak in STFT was not only
determined by wave I, but also influenced by other waves. In
the synthetic SEP signal of Fig. 7, the relative energies of waves
I-V were, respectively, 43.91%, 4.39%, 30.36%, 11.54%, and
9.80%. Two low-frequency waves (III and IV) had relatively
larger energies and they lowered the frequency of the peak in
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TABLE I
STATISTICAL VALUES OF PARAMETERS OF FIVE SEP WAVES: THE VALUES OF PARAMETERS ARE GIVEN AS ����� �� (CV)

TABLE II
CORRELATION COEFFICIENTS BETWEEN PARAMETERS IN EACH SEP WAVE

STFT, while waves II and V were relatively smaller and con-
tributed less to the peak. Overall, compared with the STFT, the
proposed MP method can reveal more and finer time-frequency
features of SEP.

As to the five parameters of the Gabor-type waves, we can see
from Table I that the latency, which had a small variation (CV
value), was the most stable and reliable parameter. The measure-
ments of frequency and span were also suggestive and valuable,
but the amplitude with a large variability was not very suitable as
an indicator. The large variability of amplitude may stem from
the considerable variability of scalp-electrode impedance and
the inter-subject variability. Our observations on latency and
amplitude of SEP waves were in good accordance with the con-
ventional argument that the amplitudes of temporal components
of SEP generally show larger variability than latencies [1].

C. Limitations and Future Work

This work proposed a new scheme consisting of high-reso-
lution TFA method and pattern recognition method to discover
minute time-frequency features of SEPs, and a more detailed
description of time-frequency patterns of normal PTN-SEPs
was presented based on the proposed scheme. The time and
frequency locations and other parameters of the identified
time-frequency components showed small intrasubjective vari-
ability, and thus these intrinsic and definite time-frequency

TABLE III
CORRELATION COEFFICIENTS BETWEEN WAVES FOR EACH PARAMETER

features may provide important information for evaluation
of somatosensory conduction and understanding the physio-
logical mechanisms of SEP, which paves the way for future
clinical and scientific research. It must be emphasised that the
identified time-frequency components are used to represent
the distribution of SEP power in the time-frequency domain.
Thus, these time-frequency components are associated with
typical power peaks of normal SEPs in the time-frequency
domain, but they may not be strictly and individually associated
with independent SEP components or waveforms having clear
physiological and anatomical meaning (i.e., showing distinct
spinal cord function or arising from specific sites in the nerve
pathway). The study on the dependency between the five
waves, as shown in Table III, suggested that some time-fre-
quency components may have dependencies, such as waves III
and IV. That is to say, an independent SEP component may be
comprised of several Gabor-type time-frequency components.
More precisely, all these identified time-frequency components
provide an integrated description of normal PTN-SEPs in the
time-frequency domain, but their individual physiological and
anatomical meaning is still unknown or may be absent, which
is the major limitation of this study.

The physiological meaning of the time-frequency features
is expected to be demonstrated by investigating the relation
between the time-frequency features and localised spinal cord
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Fig. 7. A synthetic PTN-SEP signal of normal subjects and its five typical
waves. Five synthetic waves were obtained using the mean values of param-
eters in Table I. The synthetic SEP waveform was obtained as the sum of waves
I-V.

injury. Previous studies have shown that different SEP tem-
poral components reflect different origins of spinal cord tracts
[30]–[34]. Therefore, we hypothesize that these time-frequency
features are jointly or individually associated with the locali-
sation and pathological information of spinal cord function. In
the study, the five typical SEP waves and the reference values
for their parameters were obtained based on normal subjects
without any spinal cord injury. When a specific injury occurs,
these time-frequency features may exhibit certain change
patterns. The occurrence and absence of SEP waves and the
changes of their parameters can be used to indicate the changes
of spinal cord functions. To evaluate this hypothesis, a new
experimental study is being designed, which will incorporate
well-defined focal spinal cord lesions and new animal models.

For clinical applications, this study provides a normal base-
line of time-frequency features for assessment of the status of
spinal cord during operation. However, the MP method has a
very heavy computational complexity, which hinders its appli-
cation to extract the time-frequency features of SEP during op-
erations. Recently, several fast MP methods have been devel-
oped and some have been successfully applied in real-time video
coding and audio analysis [35]–[37]. In future study, fast algo-
rithms for the MP methods should be developed or applied for
the purpose of spinal cord monitoring.

Lastly, the new time-frequency analysis scheme for SEPs
provided in this paper can be further applied to analyze SEPs
recorded over other locations and on a single-trial basis. Since
current study only focuses on SEP recorded over scalp, it can
not completely indicate the spinal cord function. Later, SEPs
recorded over the spine and other locations should be analyzed
to provide a more complete indicator of spinal cord function.
In addition, a single-trial SEP recording contains richer in-
formation about complex brain dynamics than averaged SEP
recording. Analyzing SEP recording on a single-trial basis with
the proposed time-frequency analysis method may lead to more
meaningful and interesting findings.

V. CONCLUSION

In this paper, the time-frequency features of SEP were
studied by high-resolution time-frequency analysis and clus-
tering methods. The MP algorithm first decomposed SEP
signals into a set of TFCs, and a clustering was followed to
group these TFCs into several clusters of waves. Five SEP
waves were identified in PTN-SEP signals from 50 normal
adults and they gave an integrated and detailed description of
time-frequency features of SEP. The newly-identified time-fre-
quency features of SEP may contribute to understanding
complex response patterns and physiological origins of SEP.
Further study on the correlation between these instinct com-
ponents with the localisation and pathological information of
spinal cord function may provide a new diagnostic tool for
precision detection of spinal cord function deficits in clinical
application.
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