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Abstract: Wayside acoustic detection of train bearing faults plays a significant role in
maintaining safety in the railway transport system. Due to the relative movement
between the train and the detection system, the collected acoustic signals are distorted
by the Doppler Effect which results in frequency-domain distortion. Combining the
multi-scale chirplet path pursuit (MSCPP) method, a variable digital filter (VDF), and
a new motion parameter estimation method, a novel Doppler Effect reduction method
is proposed. This can be used by wayside acoustic monitoring systems to improve
detection system for train bearing faults, as illustrated in this paper. The MSCPP
method with the build-in criterions is firstly used to estimate the instantaneous
frequencies (IFs) of harmonic components in the wayside acoustic signals. Next,
VDFs whose centre frequencies are the fitted [Fs are constructed to exclude harmonic
components. Using these, residual signals, free of strong harmonic interferences, can
be obtained. At the same time, the motion parameters can be obtained by using a
recently developed estimation method based on fitted IFs. The residual signal is then
resampled to reduce the Doppler Effect by using the resampling time vector
constructed using those estimated motion parameters. Finally, any bearing fault
features can be extracted using the spectral kurtosis (SK) method. The effectiveness
of the proposed signal processing method is verified by simulation and field-based
experiments, as demonstrated in this paper.

Keywords: Doppler Effect reduction, train bearing, wayside acoustic detection, multi-
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1 Introduction

Train bearings are a key component of the vehicle that must support the entire
weight of the train and operate at high speeds. Faults occurring in train bearings can
result in economic loss or even casualties. Hence, fault detection in these key
components plays a significant role in maintaining and continuing to increase role of
rail in transportation networks. Wayside acoustic detection for train bearings has
recently attracted increased attention because one monitoring station will observe
multiple vehicles and no physical track access is required in order to install the
equipment.

The signals obtained by wayside acoustic monitoring stations are distorted by the
Doppler Effect due to the relative motion between the train being inspected and the
detection system. The Doppler Effect results in serious frequency-domain distortion
to the collected signals, which is an obstacle to train bearing fault detection. Hence,
the reduction of the Doppler Effect is a key stage in wayside acoustic train bearing
fault detection. The most commonly used methods of Doppler Effect reduction can be
classified into two main categories: instantaneous frequency (IF)-based method, and
parameter-based method.

The IF-based methods are the combination of instantaneous frequency (IF)
extraction and time-domain interpolation resampling (TIR). Central to those methods
are accurate IF estimation. Some methods, (e.g. Hilbert transform [1], time-frequency
ridge extraction [2]) have been proposed to address this issue. In IF-based methods,

the resampling time vector # is constructed based on the IF generated by the target

bearing and its invariant frequency f, [2, 3], as shown in Eq. (1).

(k) =Z—’;;'(ft; (1)

where k is the resampling point; f is the stationary frequency of the signal; f, (¢) is

the IF curve which is the variation of f, caused by the Doppler Effect; and A¢, is the

sampling interval for the raw signal. The advantage of this kind of method is that it is
simple to implement while yet effective. However, the resonance frequency of the
target bearing is difficult to estimate because of the complex structure of the rotational
system. Furthermore, Eq. (1) implies two problems: (i) how to find the IFs generated

by the target bearing, and (ii) how to estimate the invariant frequency f, beforehand.

Hence, these kinds of methods are rarely applied in practice.



The parameter-based method is a scheme that combines multiple motion
parameters and time-domain interpolation resampling. In order to construct the
resampling time vector, ##, motion parameters for the target bearing are obtained
using either velocity sensor based measurements or the matching pursuit method.
Using sensor based measurements, the parameters can be obtained in real time [4], but
extra sensors will increase cost of the condition monitoring system. To overcome this
disadvantage, researchers have proposed methods such as the Dopplerlet transform [5,
6] and the single side Laplace wavelet [7] which are based on matching a Doppler
distorted correlation model to calculate the motion parameters. In these methods, the
construction of # is only based on motion parameters [8, 9], as shown in Eq. (2).

th«/r2+(s—vt)2 @)

c
where r is the distance between the train and the microphone measured

tr =

perpendicularly to the track; s is the initial distance between the train and
microphone measured longitudinally along the track (as shown in Figure 4); v is the
speed of the train (the speed is considered as a constant because the time for a train
passing the microphone is short); ¢ is the time within the period of detection; and ¢ is
the speed of sound. The performance of those matching pursuit methods has been
verified[5-7], however constructing the matching model is a time-consuming process
and thus these techniques cannot be applied in real-time condition monitoring systems.

Drawing from the strengths of both the IF and parameter based methods,
researchers have proposed a novel Doppler Effect reduction method in which IF
extraction and curve fitting, based on the least-squares method, are applied to estimate
motion parameters [8, 10, 11]. The method has been shown to perform well, however
the resonant frequencies of the target bearings can be masked by high levels of
background noise such as those found in real operating conditions. Additionally,
curve fitting based on the least-squares method is complex [12] and may not support
real-time operation.

To overcome the above problems, a novel Doppler Effect reduction method is
proposed in this paper. The method is a combination of the multi-scale chirplet path
pursuit (MSCPP) method, a variable digital filter (VDF), and the new motion
parameter estimation method described in [12]. The use of the MSCPP method with
the build-in criteria is firstly used to extract the IFs of harmonic components found in

wayside acoustic signals. The build-in criteria are used to determinate the births and



the deaths of IF curves, and the estimated IFs are then subjected to cubic-spline fitting.
Secondly, the fitted curves are set as the centre frequencies of the VDFs which are
constructed to exclude the main harmonic components from the collected acoustic
signals. Consequently, the residual signal can be obtained. At the same time, a new
method, proposed by Timlelt et al [12] and based on the obtained IFs, is used to
estimate the motion parameters. These parameters are then used to construct the
resampling time vector, ¢, as per Eq. (2). The Doppler-free signal can be obtained by
resampling the residual signal using the time-domain interpolation resampling (TIR)
method. Finally, any bearing fault features can be extracted using the spectral kurtosis

(SK) method. The simplified flow chart of the proposed method is shown in Figure 1.

Parameter
estimation

TR b sk CRault feaure >

(____\__’\_f'_g;sidc acoustic uliél)—b MSCPP

Figure 1 Simplified flow chart of the proposed method
The sections of this paper are organised as follows: In section 2, the MSCPP
method is introduced. In section 3, the VDF method is introduced. Motion parameter
estimation is introduced in section 4. A novel Doppler Effect reduction method based
on the proposed method is presented in section 5. In section 6 and section 7, the
simulation and field experiments demonstrating the proposed method are introduced.

The conclusions of this paper are presented in the final section.

2 Multi-scale chirplet path pursuit

The MSCPP method was initially proposed by Candes et al. [13]. The method is
based on the estimation of IFs within continuously time-varying component signals. It
makes use of a multi-scale chirplet atom whose IF is a straight-line. A brief
introduction to the MSCPP method is provided in the following section.

Any signal f(z) can be represented as a linear combination of a group of atoms
{hn} , as shown in Eq. (3), where a, is the index of the n-th atom [14]. If {hn} is
orthogonal, then the inner product can be used to compute a,(Eq.(4)). Hence, a,

reflects similarity between the signal f(z) and the atom A, .

f(r)=2 a,h, 3)

neZ



a, =(f(0).h,)/|h, 4)

Multi-scale chirplet atoms &, , ,(¢) are used in the MSCPP method, as follows

ha,b,j (f) _ |I|—1/2 e—i(at2/2+bt) 11 (f) (5)

where a and b are the slope and offset coefficients respectively and az+ b should be

less than f, /2 (where f, is the sampling frequency); I is the dyadic time interval,
ie. I=[k27,(k+1)27 | where k =0,1,-,(2/ = 1) and j = 0,1,,log,(N — 1),
and N is the number of sampling points; 1,(¢) is the rectangular window function,
which is 1 when ¢ e I'and 0 when ¢ ¢ I ; and |I |71/2 is the normalization factor which

makes

ha,b,] (l()HL2 =1.

Eq. (5) indicates that the IF of the multi-scale chirplet atom is a¢ + 5. Hence, the
IF of f(¢) can be estimated by linking the linear frequencies of the atoms together

piece by piece. The optimal atom in a dyadic time interval can be obtained through
calculating the maximum correlation coefficient £, between the atom and f(¢) in the
time interval, as shown in Eq. (6).

B, = max (f(t).h, ) (6)
where <0> represents the inner product operator. In this case, f, contains the
amplitude and the initial phase information of f(¢) [15]. Denoting c,(f) as the
representation of the component decomposed in the dyadic interval, this is expressed
as shown in Eq. (7).

¢, (=] |7, (1) (7
The best path algorithm [15] is then used to construct c,(¢#) whose time period is
equal to that of signal f(¢) and whose energy is the largest among all the possible

paths, as shown in Eq. (8).
max(Z||c,(t)||2) s.t.l—[”z{ll’“,lg’...}e{]} )

Ie[T”
where n is the number of decompositions; and []" represents the analysis time

period without overlap. By repeating the above steps, f(¢) can be decomposed as

f(t) = Zn:c”(t) " 9)



where r" is the residual signal after n-th decomposition. The energy of r" decreases
with increasing 7. The decomposition is stopped if the energy of the residual signal
falls below a certain threshold. Hence, for a signal with multiple components, the
signal component extracted by the MSCPP method is the one with the largest energy
in the signal being analysed. The instantaneous frequency of the signal component
extracted by MSCPP can be estimated by concatenating the piecewise linear
frequencies of the chirplets.

While this approach has been shown to work for clean signals, there are multiple
IF curves and a high level of background noise in the time-frequency representations
of wayside acoustic signals. In order to avoid crossover between IFs, and to find the
true IF curves of the harmonic components, the use of an energy contribution
coefficient 8;(i = 1,2,-+-, N) is proposed, as shown in Eq. (10).

_ E(TFR(IFj1,0,j20)
£ T E(TFR(IF, ,...0))

(10)

where IF;,..y 18 the instantaneous frequency vector. IFj_;,..yjz; 1s the
instantaneous frequency vector without the 7 -th point; TFR(e) is the amplitude of the

time-frequency representation obtained using a short-time Fourier transform; E(e)
represents the energy of the vector. 6 has a greater value if the 7 -th point has a lesser

contribution to the energy of the IF component, and vice-versa. The energy
contribution coefficient vector © = (8, 0,, -+, 0y) is normalised as 6, as shown in Eq.
(11)

0-0_.
—Gmax "o (11)

and 0, are the maximum and minimum values of @ respectively.

0=

where and 0__

Two build-in criteria for the MSCPP method are proposed to determine the births
and the deaths of the IF curves caused by the Doppler Effect, as shown as Eq. (12).

{TFR(IFL )= 0M(TFR(IF))) 12)

IF, IF, o <0

i1, (start) - i

and IF

i1, (ena) are the start

where IF, ; is the j-th point in the i-th IF curve; IF,

T (start)
point of the (k+1)-th time interval and the end point of the k-th time interval in the i-th

IF curve, respectively; M(|0|) represents the mean operation of the absolute value.



The sections of IF curves with minor amplitude values are easily influenced by
background noise and other components in the time-frequency domain, which easily
results in relatively large errors for motion parameter estimation. Hence, the first
criterion in Eq. (12)is proposed to exclude IF sections with minor amplitude values in
the time-frequency domain. In addition, the IF curves caused by the Doppler Effect
monotonically decreases according to Eq. (17). What’s more, the background noise
will influence the slope of the IF sections in some time intervals I in real operating
conditions. Hence, the second criterion in Eq. (12), as a compromise, is proposed.
Through considering both criterions in Eq. (12), the births and deaths of interested IF

sections can be identified.

3 Variable digital filter with zero-phase shift

A variable digital filter is constructed and used to exclude harmonic components
from the collected wayside acoustic signal. The fitting line of the IF obtained using
the MSCPP method is used as the centre frequency of the VDF.

The transform function of the VDF H(s,#) can be obtained by changing the

frequency variable s’ in that of original filter H(s") [16], that is H(s,z) = H(s"). The

Chebyshev [ filter is selected as the base filter used in this paper. The main reasons
for this are that its amplitude response function is steep in the transition band and

decreases monotonously. As described in [16], the relationship between s and s’ is

, S

[0.(0+,0/2]
.(1)=b,(1)/2<0
o {s +[0.(00-b, /2] @.(0)+b,)/2]}
- sb. (f) (13)

w.(1)-b,(1)/2>0& 0. (t)+b,(1)/2< w,/2
.o | @.(6)=b,(1)/2]

S
o, () +b,(1)]2<®,/2

S

where @, is the cut-off frequency of the classical low-pass filter H(s") ; @, is the

sampling frequency; and w, and b, are the centre frequency and bandwidth of the

VDF, respectively.



By design, the centre frequency for the VDF changes with time. This may result
in phase shift and hence signal distortion. Hence, a forward-backward filter is used to
eliminate phase shift. The forward-backward filter algorithm is a common tool used to
create a zero-phase nonlinear filter [17, 18]. Examples of the use of a forward-
backward filter to obtain a phase shift-free signal can be found in [18-20].

The Empirical Mode Decomposition (EMD) method is one of the most
commonly used methods for nonlinearly separating components of a signal [21]. To
verify the effectiveness of the MSCPP and the VDF method, a comparison with
respect to the EMD method is conducted; results are shown in Figure 2. Three
simulated test signals with different SNR but all including the same two harmonic
components influenced by the Doppler Effect are used in the comparison. Their time
domain waveforms are shown in Figure 2 (a). Both harmonic components are
constructed according to acoustic theory as described in [22]. The motion parameters
are set as: v=35m/s, c=340m/s, r=0.2 m, fs =8192 Hz. In addition, the initial
longitudinal distance (along the track) and stationary frequency for both components
are (s; =2 m, f; =200 Hz) and (s.=4 m, /= 100 Hz) respectively. The signal-to-noise
ratios (SNR) for the three simulated signals are different, i.e. noise does not exist in
the first signal and the SNR for the latter two signals are 0 dB and -5 dB respectively.
Figure 2 (b) and (c) shows the results after the simulated signals are subjected to the
MSCPP+VDF and EMD methods respectively. Figure 2 (b) shows that the
MSCPP+VDF method can be used to extract the elements of harmonic components
with high energies effectively. Intrinsic mode functions (IMFs) corresponding to two
harmonic components are obtained by using the EMD method [23], which are shown
in Figure 2 (c). Figure 2 (c) shows that the EMD method has limited capacity for the
separation of harmonic components influenced by Doppler Effect. It can be seen from
Figure 2 that the MSCPP+VDF method has a greater capability for resisting noise
than the EMD method. Hence, the MSCPP+VDF method is considered to be
advantageous in the separation of multiple harmonic components influenced by the

Doppler Effect.
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Figure 2 Comparison experiment (a) Time domain waveform for simulated signals with different SNR
(b) Results after using the MSCPP+VDF method (c) Intrinsic Mode Functions (IMFs) after using the
EMD method

4 Motion parameter estimation for train bearings

The basic layout of the wayside acoustic detection system discussed in this paper
is shown in Figure 3. The system includes a microphone, a pair of light-gates, a sonic
anemometer and recording equipment. The light-gates are used to trigger the
recording system and thus the time when the target bearing passes the microphone, tc,
can be identified and used to specify the detection period (range of #) for the target
bearing passage. With the perpendicular distance between the train (7 ) and the speed
of sound (c¢) directly measureable, only v and s need to be estimated in order to
construct the resampling time vector # as per Eq. (2). This can then be used to reduce

the Doppler Effect in the recorded signals.

Lightgates

' Target point
T

Microphone

Sonic anemometer
Computer

Figure 3 Basic layout of the wayside acoustic detection system

Motion parameter estimation for a moving source is a current topic of interest.

Recently, a new estimation method based on IF extraction proposed by Timlelt et al.



is a closed-form solution which is less complex and thus suitable for hardware
implementation [12]. In this paper, the method is used to estimate the motion
parameters of train bearings.

Figure 4 shows a schematic diagram of a wayside acoustic detection system for
train bearings. An acoustic signal emitted by a sound source in the train (not

necessarily a bearing) at time 7 is received by the microphone at time ¢. The distance
between the sound source and the microphone, d , varies with time. £, is the time
when the sound source passes the closest point of approach (CPA), i.e. when the
sound source passes directly in front of the microphone. This corresponds to d being
equal to » and s being zero.

Sound source

Microphone

Figure 4 Schematic diagram of a wayside acoustic detection system for train bearings

Assuming a received acoustic signal x(t) generated by i (i = 1,:--,n) sound

sources 1s as shown as in

X(©) = ) A()cos[0;(0)] (14)
i=1

where A (¢) and 0;(t) are the amplitude variation and the phase variation of the i-th
sound source with the Doppler Effect. The distance d and the time 7 are given by Eq.

15 and Eq. 16, respectively [12].

d=(t—1)c=+r2+v2(1—t,)? (15)
o c?t —vit, — \JT2(c? — v2) + v2c2(t — t,)? (16)
CZ — v2

The i-th IF of the received signal f;(t) at time ¢ can be represented as Eq. 17,
because 0;(t) is equal to 21mf,7. Then substituting Eq. 16 in Eq. 17, Eq. 18 can be

obtained as below.



1.d6,(t)  dr (17)
27 dt  7%dt

f,(6) =sz°_—cvz<1—J L) ) (18)

r2(c? —v?) + v2c?(t —t,.)?

fi(t) =

where f, is the constant frequency of the i-th acoustic tone. ¢ is the speed of sound in
the air. In general, ¢ can be calculated using the temperature and humidity as over
this scale it is not heavily influenced by the wind. Or, as in the field experiments
carried out here, it can be measured. In this case an R3-50 sonic anemometer was
used to measure the speed of sound [4]. The derivative of Eq. (18) gives:

v2r?(c? = v*)fi(te)

£ (t) =
(t) \/[7"2(C2 _ UZ) + ‘UZCZ(tZ - tciz)]3

(19)

It can be seen from Eq. (19) that f;'(t) is less than zero, that is, f;(t) in Eq. (18)
has a monotonically decreasing trend. To determine an estimation of the CPA time
(te.i) for the i-th sound source, the maximum value of the IF derivative is used, as
shown in Eq. (20).

te,; = Arg max|f;’ (t)| (20)

The estimation of train speed, ve;, is shown as follows:

B Yl 1eete, C2L(E — tec)f;" (tec)]2[f; (tec;) — f; (1)]2
T BN e (1CE — ey (te) T — [fi(teq) — GO (te)? @D

where te,; is the estimated value of #_for the i-th sound source. There is a minor error

between the true and estimated IFs associated with each sound source. These errors
are not systematic, and hence an average of the estimated values from a number of
sound sources should be used to provide an accurate estimate of train speed, vea. The

process for estimating the train speed is summarised in Figure 5.

Acoustic signal

IF, H tecn -ﬂ ve,

Figure 5 The process of estimating train speed

The estimated initial longitudinal distance between where the target bearing

enters the detection region and the microphone (along the track), se, is



se = vea(ty, — ty) (22)
where £, is the time when the target bearing enters the detection zone and t is the

CPA time for the target bearing. Eq. (21) and Eq. (22) show that motion parameters

(v,s ) can be estimated after extracting the IFs of harmonic components of the
recorded acoustic signals. By substituting ( vea, se ) into Eq. (2), the resampling time

vector ¢ can be obtained. Hence, the Doppler-free signal can be constructed by using

the TIR method.

5 A novel Doppler Effect reduction method for wayside acoustic detection of train
bearing faults

In this paper, a novel method combining the multi-scale chirplet path pursuit
(MSCPP) method, a variable digital filter (VDF) and a new motion parameter
estimation method is proposed to remove the Doppler Effect from wayside acoustic
signal associated with train axle bearings. In the proposed method, IFs of the
harmonic components are first extracted using the multi-scale chirplet path pursuit
(MSCPP) method. A cubic-spline is then used to fit standard curves to the extracted

IFs. Next, the motion parameters (v, s ) associated with the curves are estimated using

the new motion parameter estimation method. At the same time, the curves are used to
define the centre frequencies of a series of VDFs. In this work, the VDF bandwidth is
set to be 15 Hz. The VDFs are then used to exclude the unwanted harmonic
components of the signal which are assumed to be noise. In this work, the process is
repeated until the duration of the shortest IF is less than 0.25 of the detection period
(i.e. one sixteenth of a second). The motion parameters can be obtained through an
average of multiple harmonic components, and from these the resampling time vector
can also be calculated. At the same time, a residual signal can be obtained by using
the VDFs to exclude strong harmonic components. From these two things, the
Doppler-free signal can be obtained by subjecting the residual signals to the time-
domain interpolation resampling (TIR) method. Finally, the fault feature signal can be
extracted from the Doppler-free signal using the spectral kurtosis method. Bearing
faults can thus be detected by observing the Hilbert envelope of the fault feature

signal. A flow chart describing this method is shown in Figure 6.
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Figure 6: Flow chart for the proposed method

6 Verification by simulation
Based on acoustic theory described by Morse [22], the collected sound pressure

at the microphone P can be expressed as Eq. (23) when the sound source is given as

harmonic with an intensity of g = g, sin(®,t) .

P= 4rd (l%ﬁ cos ) xcos(@,(t=d/e)) 23)
In Eq. (21), d is the distance between the sound source and the microphone; and
M =v/c (v is the train speed and ¢ is the speed of sound). As previously discussed,
the variation of the frequency is described by Eq. (16).

To verify the effectiveness of the proposed method, a simulated signal is
constructed according to the standard practices as described in [10, 24]. The simulated
signal is shown in Eq. (22). In practice, there are many components in a collected
acoustic signal including those with strong harmonic elements. Thus, 6 harmonic

components h;_;...; and a Gaussian noise n(¢) are added to a weak periodical impulse
signal s(¢) to simulate a bearing fault signal whose signal-to-noise rate is -5dB. In the

simulated signal, the fault feature frequency, f_, is set to 160 Hz. The resulting

simulated signal represents a wayside acoustic signal of a train bearing, including the

Doppler Effect, reconstructed according to Morse’s acoustic theory as described in



[22]. The motion parameters of sound sources for the harmonic components and the
impulse signal are given in Table 1. The sampling frequency is 8192 Hz and the
sampling time is 0.25 s. The train speed, v, and speed of sound, ¢, are set to 35 m/s

and 340 m/s, respectively. The amplitude values, 4, of each component are shown in

Table 1.

x(t)=s(t)+26:hi(t)+n(t) (24)
Table 1 Motion parameters of the harmonic components and the impulse signal

h; h> h; hy hs hes S
s 2 2 2 4 4 4 4
r 0.5 0.8 1.2 0.5 0.5 0.8 0.5
A 1.5 1 1 1.5 1.8 1 0.5
t. 0.057 0.057 0.114 0.114 0.114 0.114 0.114
fo 250 150 200 100 45 75 1500

The simulated signal, which includes Doppler Effect components, is shown in
Figure 7 (a). Its Hilbert envelope spectrum and time-frequency representations (TFR)
are shown in Figure 7 (b) and (c). These indicate that the fault information is masked

by strong harmonic components and background noise.
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Figure 7 Simulated signal. (a) time domain waveform (b) Hilbert envelope spectrum (c) time-frequency
representation of the simulation signal

The MSCPP method is used to extract IFs of the harmonic components in the
simulated signal with Doppler Effect. The extracted IFs are shown in Figure 8. The
dashed black lines in the figure represent the IFs of the harmonic components. The
solid blue lines represent cubic-spline fittings associated with each IF curve. The

fitting lines are used to estimate the velocity values as shown in Table 2. Hence, the



train speed can be estimated to be 35.66 m/s. Given a known ¢, in the simulated
signal (£,=0.116), the estimate for the initial longitudinal distance between the train

and the microphone (along the track) would therefore be 4.14 m, as per Eq. 22.

Substituting these parameters (vea,se) into Eq. (2), the resampling time vector,

can be obtained as shown in Figure 9.
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Figure 8 IFs extracted by MSCPP and fitting Figure 9 Time vectors

curves

Table 2 Estimated velocity values for harmonic components

h; h, hs hy hs he
ve 43.4 31.94 33.28 34.46 34.06 36.82

A series of variable digital filters whose centre frequencies are based on the fitted
values of the IF curves are constructed in order to exclude harmonic components
which would otherwise dominate the fault signals. The residual signal can then be
resampled according to the resampling time vector, #. The time domain waveform of
the resampled signal is shown in Figure 10(a). Figure 10 (b) and (c) show the Hilbert
envelope spectrum and TFR of the resampled signal respectively. Comparing Figure
7(c) and Figure 10(c), it can be seen that the main harmonic components are excluded,
and that the residual harmonic components still exist. Figure 10 (b) shows that there is

no obvious peak at f, or any of its harmonics, which results in misdiagnosis.

The resampled signal is subjected to the SK method with the result shown in
Figure 11. Figure 11 (a) shows the time domain waveform of the fault feature signal.
Comparing this with Figure 10 (a), the impulse signal is more clearly evident and the

residual harmonic components are excluded. This is confirmed by the TFR of the fault

feature signal as shown in Figure 11 (c). Peaks at f,, 2f. and 3f, are prominent in



the Hilbert envelope spectrum of the fault feature signal shown in Figure 11 (b).

Hence, the effectiveness of the proposed method is demonstrated.
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Figure 10 the resampled signal without Doppler Effect (a) time domain waveform (b) Hilbert envelope
spectrum (c) time-frequency representation of the resampled signal.
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Figure 11 Fault feature signal extracted by SK (a) time domain waveform (b) Hilbert envelope
spectrum (c) time-frequency representation of the fault feature signal

To test the anti-noise ability of the proposed method, several simulation signals

with different SNR values are constructed. The estimated values of vea and the

relative errors ¢ (¢ = |vea — v|/v) can be obtained by using the proposed method, as

shown in

Table 3. The table shows that the ¢ will increase with SNR. Figure 12

demonstrates that Hilbert envelope spectra of fault feature signals which are extracted

from the simulation signals with different SNR using the proposed method. When the

SNR is equal to -9 dB, the fault feature frequency, f., or its harmonics is hard to be

found in Figure 12 (d).



Table 3 The values of vea and ¢ for simulation signals with different SNR

SNR -6 -7 -8 -9
vea 35.72 36.27 37.13 39.54
& 2.1% 3.6% 6.1% 13%
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Figure 12 The Hilbert envelope spectra of the fault feature signals extracted from simulation signals
with different SNR.

7 Verification using field experiments

In order to test the performance of the proposed method in a real railway
environment, acoustic signals were collected from the wayside as a test train was
passing. The wayside acoustic system is represented in Figure 3 and described in [4]
although in this experiment data from only one microphone within the array system
was considered. The test train consisted of a single car of a DMU hauling two test
wagons, as shown in Figure 13 (a). The speed of the test train through the monitored
section was approximately 13.5 m/s, i.e. approximately 278 RPM for a wheel size of
0.9 m. For safety reasons, it was not possible to operate a train with known faulty
bearings, so instead a loudspeaker was fitted to the third axle of the train and an
acoustic signal recorded from bearings being operated in the test facility was played
in order to simulate a vehicle with a bearing fault. Ground reflections were reduced
both by selection of a test site with an open and grassed area to disperse reflections,
and the use of an acoustic barrier as part of the construction of a wedge shaped
acoustic funnel, again described in [4]. Two cases were considered, Case 1 represents
a fault in the outer race, while Case 2 represents a roller fault. These are shown as
Figure 13 (b) and (c). In order to align the recordings with the speed of the train, the
rotational speed used during the laboratory measurements was approximately

270 RPM. The sampling frequency used was 8192 Hz. The parameters of the test



bearing are shown in . The roller passing frequency outer race fy,, and the roller

fault frequency f,,- are approximately 43Hz and 35Hz as calculated using Eq. (23)
and Eq. (24), respectively.

Table 4 Test bearing parameters
Number of rollers  Roller diameter  Pitch diameter ~Contact angle

Type n RD PD B
TAROL 130/230-U-TVP 22 24 mm 187 mm 6.9°
(a)

q‘"“-\_

3" bearing

Figure 13 (a) Test train (b) Test bearing with outer race fault (c) Test bearing with roller fault

n RD
fRPFO :E(I_ECOSﬁjfr (25)
PD RD ’
Srer _E{l_(ﬁcosﬁ] Jfr (26)

Case 1: Outer race fault detection

The time domain waveform of the field test signal corresponding to the outer race
fault is shown as Figure 14 (a); the black line corresponds to the signal from the light-
gate aligned with the microphone. Figure 14 (b) shows the section of the signal
selected for analysis, which is taken when the 31 bearing passes the microphone, tc
=5.617 s. The signal section is divided into two parts, i.e. L1 and L2, by the light-gate

signal as shown in Figure 14 (b). L1 corresponds to an 800 sample section before the



bearing passes the light gate (and microphone), and L2 a 1248 sample section after.
The detection period is the range of time associated with the passage of the bearing
past the microphone and between L1 and L2. It is chosen based on vehicle speed,
wheel diameter, and bearing geometry to ensure that all elements of the bearing are
observed while being loaded. In this work, the detection period is selected to be 0.25 s
as the wheel diameter is 0.9 m and the vehicle assumed to have a minimum speed of
40 Km/h.

The TFR and the Hilbert envelope spectrum of the signal being analysed are
shown in Figure 14 (c) and (d) respectively. Figure 14 (d) shows that the fault

information is masked by strong harmonic interference (at 20 Hz) and background

noise, which result in miss-diagnosis.
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Figure 14 Acoustic signal collected by wayside acoustic detection system - Case 1 (a) the time domain
waveform of the collected signal (b) the time domain waveform of the section signal selected for
analysis signal (c) TFR of the analysis signal (d) Hilbert envelope spectrum of the analysis section

The signal section to be analysed is subjected to the MSCPP method and the
extracted IF curves corresponding to harmonic components are shown in Figure 15.
The dashed black lines in Figure 15 are IF curves. Curve fitting is used to estimate the
motion parameters. The fitted curves are shown as solid blue lines in Figure 15, and
the velocity values are given in Table 5. Thus, the train speed, vea, is found to be
13.34 m/s using Eq. (21) and the initial longitudinal distance between the train and the

microphone, se, can be found to be 1.34 m. In Table 5, the relative error, &, between



the estimated speed, vea, and the actual speed, v, shows that the proposed method can
be used to estimate the actual speed accurately. In addition, the highest-energy IF
ridge extracted in TFR plane using the STFT method is applied to the motion
parameter estimation, comparing with the MSCPP method. The estimated motion
parameters using the STFT method is shown in Table 5 which demonstrates that the

MSCPP method has an obvious advantage.

Table 5 Estimation motion parameter values of for harmonic components - Case 1
ve (h;) ve (h;) ve (h3) vea & se

MSCPP 1598 m/s 1447m/s 9.56m/s 1334m/s 12% 134m
STFT 1476 m/s 1634m/s 1235m/s 1448m/s 7.3% 1.45m
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Figure 15 IFs of harmonic components for field Figure 16 Time vectors in Case 1
test Case 1

Substituting these parameters (vea,se) into Eq. (2), the resampling time vector

tr can be obtained, as shown in Figure 16 .Variable digital filters are then constructed
to exclude the harmonic components whose centre frequencies are obtained by fitting
curves to the IF curves obtained using the MSCPP method. The residual signal can be
obtained and resampled according to the resampling time vector, #. The time domain
waveform of the resampled signal is shown in Figure 17 (a). Comparing this with
Figure 19 (b), the harmonic components have been removed. This can be verified by
observing the TFR of the resampled signal, as shown in Figure 17 (c). The Hilbert
envelope spectrum of the resampled signal as shown in Figure 17 (b) indicates that the
bearing fault feature is still masked by high levels of background noise and residual
harmonic components, most notably at 12.5 Hz and 141.7 Hz. In order to overcome
this, the resampled signal is next subjected to the spectral kurtosis method. The time
domain waveform of the extracted fault feature signal is shown in Figure 18 (a). The

Hilbert envelope spectrum and TFR of the fault feature signal are shown in Figure 18



(b) and (c) respectively. Figure 18 (b) shows peaks at fy,., and 3fp», , Which

indicates the presence of an outer race defect in the test bearing.
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Figure 17 The resampled signal without Doppler Effect in case 1 (a) time domain waveform (b) Hilbert
envelope spectrum (¢) time-frequency representation of the resampled signal
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Figure 18 Fault feature signal extracted by SK - Case 1 (a) time domain waveform (b) Hilbert envelope
spectrum (c) time-frequency representation of the fault feature signal

Case 2: Roller fault detection

Figure 19 (a) shows the time domain waveform of the acoustic signal with the
roller fault recorded during the field tests; the black line corresponds to the signal
from the light-gate aligned with the microphone. This corresponds to the time when
the 3™ bearing passes the microphone, 1c=5.394 s. A section of the collected signal
with 2048 sampling points, as shown in Figure 19 (b), is selected for analysis based
on the position of zc. As with Case 1, the section of the analysis signal is divided into
two parts L1 and L2 whose length are 800 points and 1248 points respectively. The
TFR and the Hilbert envelope spectrum of the section signal are shown in Figure 19

(c) and (d) respectively. These indicate that the fault feature signal is masked by



strong harmonic components (e.g. at 31Hz) and background noise, which results in

miss-diagnosis.
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Figure 19 Acoustic signal collected by wayside acoustic detection system - Case 2 (a) the time domain
waveform of the collected signal (b) the time domain waveform of the section signal selected for
analysis (c) TFR of the analysis section (d) Hilbert envelope spectrum of the analysis signal

Figure 20 shows the result of applying the MSCPP method to the fault signal
section. Five curves, corresponding to harmonic components, are extracted and curves
are fitted to them. As with Case 1, the fitted curves are used to estimate the velocity
values which are given in Table 6. Thus, the estimated train speed , vea , is found to be
14.04 m/s and the initial longitudinal distance between the train and microphone, se,
is 1.37 m, as described by Eq. (22). Also, the estimated motion parameters by using
the STFT method are shown in Table 6, which demonstrates the superiority of the
MSCPP method. Then, Substituting these parameters (vea,se) into Eq. (2), the

resampling time vector, ¢, can be obtained, as shown in Figure 21.
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Table 6 Estimated motion parameter values for harmonic components - Case 2

ve (h;) ve (h;) ve (h3) ve (hy) ve (hs) vea & se
MSCPP 22.77m/s 10.78 m/s 12.88m/s 10.7m/s 13.07m/s 14.04m/s 4% 1.37m
STFT 23.12m/s 11.31m/s 13.56m/s 12.05m/s 14.67m/s 1494 m/s 10.7% 1.46m

As with the first field test case, variable digital filters are constructed using centre
frequencies based on the fitted curves. The residual signal obtained after the main
harmonic components are excluded using the VDFs is then resampled according to #
and thus a signal free of the Doppler Effect can be obtained. The SK method is used

to extract fault feature signals from the Doppler-free signal and the result is shown in

Figure 22. Figure 22 (b) (the Hilbert envelope spectrum) shows peaks at [, and

3z, which indicate the presence of a bearing roller fault.
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Figure 22 Fault feature signal extracted by SK - Case 2 (a) time domain waveform (b) Hilbert envelope
spectrum (c) time-frequency representation of the fault feature signal

Conclusion



In this paper, a novel method based on a combination of the MSCPP method, the
application of a series of VDFs and a new motion parameter estimation method is
proposed and demonstrated to be suitable for the removal of the Doppler Effect from
wayside acoustic signals. The effectiveness of the proposed method has successfully
been verified through testing with a known simulated signal and through two case
studies. The MSCPP component of the proposed method has been shown to be able to
extract IFs corresponding to relevant harmonic components. VDFs, whose centre
frequencies are chosen by fitting curves to the IFs, are then constructed and used to
exclude these main harmonic components. The motion parameters of the train bearing
can be estimated, using the new motion parameter estimation method, and used to
generate a resampling time vector. Finally, the Doppler-free signal can be obtained by
resampling the residual signal from the VDF outputs using the resampling time vector.
Fault feature extraction is then demonstrated by applying the SK method to the
Doppler-free signals. Computation for the approach can be undertaken using a
standard laptop computer sufficiently quickly that in a deployed system it could occur
between vehicle passages. The proposed method has been evaluated using both
simulation and field experiments. The following conclusions are obtained through
consideration of this testing:

(1) The MSCPP method is a powerful tool for the extraction of IFs. However, it

1s not possible to automatically select its parameters which somewhat limits its

practical application. Hence, adaptive parameter selection for MSCPP is a target
of further research.

(2) The new motion parameter estimation method is effective. However, the

results are highly dependent on accurate IF estimation. Improved IF extraction

methods should, therefore, be a target of future research.

(3) In this work, light-gate sensor was used to identify the vehicle passage and

define the detection period for the target bearing. In order to decrease the cost and

improve practicality, a method which can be used to extract several IFs

simultaneously should be researched.
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