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A Novel Doppler Effect Reduction Method for Wayside Acoustic Train 
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Abstract: Wayside acoustic detection of train bearing faults plays a significant role in 

maintaining safety in the railway transport system. Due to the relative movement 

between the train and the detection system, the collected acoustic signals are distorted 

by the Doppler Effect which results in frequency-domain distortion. Combining the 

multi-scale chirplet path pursuit (MSCPP) method, a variable digital filter (VDF), and 

a new motion parameter estimation method, a novel Doppler Effect reduction method 

is proposed. This can be used by wayside acoustic monitoring systems to improve 

detection system for train bearing faults, as illustrated in this paper. The MSCPP 

method with the build-in criterions is firstly used to estimate the instantaneous 

frequencies (IFs) of harmonic components in the wayside acoustic signals. Next, 

VDFs whose centre frequencies are the fitted IFs are constructed to exclude harmonic 

components. Using these, residual signals, free of strong harmonic interferences, can 

be obtained. At the same time, the motion parameters can be obtained by using a 

recently developed estimation method based on fitted IFs. The residual signal is then 

resampled to reduce the Doppler Effect by using the resampling time vector 

constructed using those estimated motion parameters. Finally, any bearing fault 

features can be extracted using the spectral kurtosis (SK) method. The effectiveness 

of the proposed signal processing method is verified by simulation and field-based 

experiments, as demonstrated in this paper. 

Keywords: Doppler Effect reduction, train bearing, wayside acoustic detection, multi-

scale chirplet path pursuit, variable digital filter, time-domain interpolation 

resampling 
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1 Introduction  

Train bearings are a key component of the vehicle that must support the entire 

weight of the train and operate at high speeds. Faults occurring in train bearings can 

result in economic loss or even casualties. Hence, fault detection in these key 

components plays a significant role in maintaining and continuing to increase role of 

rail in transportation networks. Wayside acoustic detection for train bearings has 

recently attracted increased attention because one monitoring station will observe 

multiple vehicles and no physical track access is required in order to install the 

equipment.  

The signals obtained by wayside acoustic monitoring stations are distorted by the 

Doppler Effect due to the relative motion between the train being inspected and the 

detection system. The Doppler Effect results in serious frequency-domain distortion 

to the collected signals, which is an obstacle to train bearing fault detection. Hence, 

the reduction of the Doppler Effect is a key stage in wayside acoustic train bearing 

fault detection. The most commonly used methods of Doppler Effect reduction can be 

classified into two main categories: instantaneous frequency (IF)-based method, and 

parameter-based method. 

The IF-based methods are the combination of instantaneous frequency (IF) 

extraction and time-domain interpolation resampling (TIR). Central to those methods 

are accurate IF estimation. Some methods, (e.g. Hilbert transform [1], time-frequency 

ridge extraction [2]) have been proposed to address this issue. In IF-based methods, 

the resampling time vector tr  is constructed based on the IF generated by the target 

bearing and its invariant frequency of [2, 3], as shown in Eq. (1). 
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where k  is the resampling point; of  is the stationary frequency of the signal; ( )of t  is 

the IF curve which is the variation of of  caused by the Doppler Effect; and st  is the 

sampling interval for the raw signal. The advantage of this kind of method is that it is 

simple to implement while yet effective. However, the resonance frequency of the 

target bearing is difficult to estimate because of the complex structure of the rotational 

system. Furthermore, Eq. (1) implies two problems: (i) how to find the IFs generated 

by the target bearing, and (ii) how to estimate the invariant frequency of  beforehand. 

Hence, these kinds of methods are rarely applied in practice. 



The parameter-based method is a scheme that combines multiple motion 

parameters and time-domain interpolation resampling. In order to construct the 

resampling time vector, tr , motion parameters for the target bearing are obtained 

using either velocity sensor based measurements or the matching pursuit method. 

Using sensor based measurements, the parameters can be obtained in real time [4], but 

extra sensors will increase cost of the condition monitoring system. To overcome this 

disadvantage, researchers have proposed methods such as the Dopplerlet  transform [5, 

6] and the single side Laplace wavelet [7] which are based on matching a Doppler 

distorted correlation model to calculate the motion parameters. In these methods, the 

construction of tr  is only based on motion parameters [8, 9], as shown in Eq. (2). 

 2 2( )r s vt
tr t

c

 
   (2)

where r  is the distance between the train and the microphone measured 

perpendicularly to the track; s  is the initial distance between the train and 

microphone measured longitudinally along the track (as shown in Figure 4); v  is the 

speed of the train (the speed is considered as a constant because the time for a train 

passing the microphone is short); t  is the time within the period of detection; and c  is 

the speed of sound. The performance of those matching pursuit methods has been 

verified[5-7], however constructing the matching model is a time-consuming process 

and thus these techniques cannot be applied in real-time condition monitoring systems.  

Drawing from the strengths of both the IF and parameter based methods, 

researchers have proposed a novel Doppler Effect reduction method in which IF 

extraction and curve fitting, based on the least-squares method, are applied to estimate 

motion parameters [8, 10, 11]. The method has been shown to perform well, however 

the resonant frequencies of the target bearings can be masked by high levels of 

background noise such as those found in real operating conditions. Additionally, 

curve fitting based on the least-squares method is complex [12] and may not support 

real-time operation.  

To overcome the above problems, a novel Doppler Effect reduction method is 

proposed in this paper. The method is a combination of the multi-scale chirplet path 

pursuit (MSCPP) method, a variable digital filter (VDF), and the new motion 

parameter estimation method described in [12]. The use of the MSCPP method with 

the build-in criteria is firstly used to extract the IFs of harmonic components found in 

wayside acoustic signals. The build-in criteria are used to determinate the births and 
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 f( ),n n nta h h  (4)

Multi-scale chirplet atoms , , ( )a b tIh  are used in the MSCPP method, as follows 

 21 2 ( /2 )
, , ( ) l ( )i at bt

a b I t e t
   Ih I  (5)

where a  and b  are the slope and offset coefficients respectively and at b  should be 

less than / 2sf  (where sf   is the sampling frequency); I  is the dyadic time interval, 

i.e. 2 ,( 1)2j jk k    I  where ݇ ൌ 0,1,⋯ , ሺ2௝ െ 1ሻ  and ݆ ൌ 0,1,⋯ , logଶሺܰ െ 1ሻ , 

and N  is the number of sampling points;  l ( )tI  is the rectangular window function, 

which is 1 when t  I and 0 when t  I ; and  
1 2

I  is the normalization factor which 

makes 
2

, , ( ) 1a b I L
t h . 

Eq. (5) indicates that the IF of the multi-scale chirplet atom is at b . Hence, the 

IF of f( )t  can be estimated by linking the linear frequencies of the atoms together 

piece by piece. The optimal atom in a dyadic time interval can be obtained through 

calculating the maximum correlation coefficient Iβ  between the atom and f( )t  in the 

time interval, as shown in Eq. (6). 

 
, ,max f( ), a btI I

I
β h  (6)

where   represents the inner product operator. In this case, Iβ contains the 

amplitude and the initial phase information of f( )t [15]. Denoting c ( )tI  as the 

representation of the component decomposed in the dyadic interval, this is expressed 

as shown in Eq. (7).  

 2( )c ( ) l ( )Ii at btt e t    β
I I I  (7)

The best path algorithm [15] is then used to construct c ( )tI  whose time period is 

equal to that of signal f( )t  and whose energy is the largest among all the possible 

paths, as shown in Eq. (8). 

    2

1 2max ( c ( ) ) s. t . , ,
n

n n n

I

t
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where n  is the number of decompositions; and n  represents the analysis time 

period without overlap. By repeating the above steps, f( )t  can be decomposed as  

 

1

f( ) c ( )
n

n nt t  r  (9)



where nr  is the residual signal after n-th decomposition. The energy of nr  decreases 

with increasing n . The decomposition is stopped if the energy of the residual signal 

falls below a certain threshold. Hence, for a signal with multiple components, the 

signal component extracted by the MSCPP method is the one with the largest energy 

in the signal being analysed. The instantaneous frequency of the signal component 

extracted by MSCPP can be estimated by concatenating the piecewise linear 

frequencies of the chirplets. 

While this approach has been shown to work for clean signals, there are multiple 

IF curves and a high level of background noise in the time-frequency representations 

of wayside acoustic signals. In order to avoid crossover between IFs, and to find the 

true IF curves of the harmonic components, the use of an energy contribution 

coefficient ߠ௜ሺ݅ ൌ 1,2,⋯ ,ܰሻ is proposed, as shown in Eq. (10).  

 
௜ߠ ൌ

EሺTFRሺIF௝ୀଵ,ଶ,⋯,୒,௝ஷ௜ሻሻ
EሺTFRሺIFଵ,ଶ,⋯,୒ሻሻ

 (10)

  
where IFଵ,ଶ,⋯,ே  is the instantaneous frequency vector. IF௝ୀଵ,ଶ,⋯,ே,௝ஷ௜  is the 

instantaneous frequency vector without the i -th point; TFR( )  is the amplitude of the 

time-frequency representation obtained using a short-time Fourier transform; E( )  

represents the energy of the vector. i  has a greater value if the i -th point has a lesser 

contribution to the energy of the IF component, and vice-versa. The energy 

contribution coefficient vector θ ൌ ሺߠଵ, ⋯,ଶߠ ,  .ேሻ is normalised as θ෠, as shown in Eqߠ

(11) 

 min

max min

ˆ 



θ θ

θ
θ θ

 (11)

where and maxθ  and minθ  are the maximum and minimum values of θ  respectively.  

Two build-in criteria for the MSCPP method are proposed to determine the births 

and the deaths of the IF curves caused by the Doppler Effect, as shown as Eq. (12).  
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where ,i jIF  is the j-th point in the i-th IF curve; 

1, (start )ki I
IF  and , (end)ki IIF  are the start 

point of the (k+1)-th time interval and the end point of the k-th time interval in the i-th 

IF curve, respectively; M( )  represents the mean operation of the absolute value.  



The sections of IF curves with minor amplitude values are easily influenced by 

background noise and other components in the time-frequency domain, which easily 

results in relatively large errors for motion parameter estimation. Hence, the first 

criterion in Eq. (12)is proposed to exclude IF sections with minor amplitude values in 

the time-frequency domain. In addition, the IF curves caused by the Doppler Effect 

monotonically decreases according to Eq. (17). What’s more, the background noise 

will influence the slope of the IF sections in some time intervals I  in real operating 

conditions. Hence, the second criterion in Eq. (12), as a compromise, is proposed. 

Through considering both criterions in Eq. (12), the births and deaths of interested IF 

sections can be identified. 

 

3 Variable digital filter with zero-phase shift 

A variable digital filter is constructed and used to exclude harmonic components 

from the collected wayside acoustic signal. The fitting line of the IF obtained using 

the MSCPP method is used as the centre frequency of the VDF.  

The transform function of the VDF H( , )s t  can be obtained by changing the 

frequency variable s  in that of original filter H( )s [16], that is H( , ) H( )s t s . The 

Chebyshev � filter is selected as the base filter used in this paper. The main reasons 

for this are that its amplitude response function is steep in the transition band and 

decreases monotonously. As described in [16], the relationship between s  and s  is  
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where c  is the cut-off frequency of the classical low-pass filter H( )s ; s  is the 

sampling frequency; and z  and wb  are the centre frequency and bandwidth of the 

VDF, respectively. 



By design, the centre frequency for the VDF changes with time. This may result 

in phase shift and hence signal distortion. Hence, a forward-backward filter is used to 

eliminate phase shift. The forward-backward filter algorithm is a common tool used to 

create a zero-phase nonlinear filter [17, 18]. Examples of the use of a forward-

backward filter to obtain a phase shift-free signal can be found in [18-20]. 

The Empirical Mode Decomposition (EMD) method is one of the most 

commonly used methods for nonlinearly separating components of a signal [21]. To 

verify the effectiveness of the MSCPP and the VDF method, a comparison with 

respect to the EMD method is conducted; results are shown in Figure 2. Three 

simulated test signals with different SNR but all including the same two harmonic 

components influenced by the Doppler Effect are used in the comparison. Their time 

domain waveforms are shown in Figure 2 (a). Both harmonic components are 

constructed according to acoustic theory as described in [22]. The motion parameters 

are set as: v = 35 m/s, c = 340 m/s, r = 0.2 m, fs = 8192 Hz. In addition, the initial 

longitudinal distance (along the track) and stationary frequency for both components 

are (s1 = 2 m, f1 = 200 Hz) and (s2 = 4 m, f2 = 100 Hz) respectively. The signal-to-noise 

ratios (SNR) for the three simulated signals are different, i.e. noise does not exist in 

the first signal and the SNR for the latter two signals are 0 dB and -5 dB respectively. 

Figure 2 (b) and (c) shows the results after the simulated signals are subjected to the 

MSCPP+VDF and EMD methods respectively. Figure 2 (b) shows that the 

MSCPP+VDF method can be used to extract the elements of harmonic components 

with high energies effectively. Intrinsic mode functions (IMFs) corresponding to two 

harmonic components are obtained by using the EMD method [23], which are shown 

in Figure 2 (c). Figure 2 (c) shows that the EMD method has limited capacity for the 

separation of harmonic components influenced by Doppler Effect. It can be seen from 

Figure 2 that the MSCPP+VDF method has a greater capability for resisting noise 

than the EMD method. Hence, the MSCPP+VDF method is considered to be 

advantageous in the separation of multiple harmonic components influenced by the 

Doppler Effect.  
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௢݂ܿଶ

ܿଶ െ ଶݒ
ቆ1 െ

ݐଶሺݒ െ ௖ሻݐ

ඥݎଶሺܿଶ െ ଶሻݒ ൅ ݐଶܿଶሺݒ െ ௖ሻଶݐ
ቇ (18)

 
where ௢݂ is the constant frequency of the i-th acoustic tone. c  is the speed of sound in 

the air. In general, c  can be calculated using the temperature and humidity as over 

this scale it is not heavily influenced by the wind. Or, as in the field experiments 

carried out here, it can be measured. In this case an R3-50 sonic anemometer was 

used to measure the speed of sound [4]. The derivative of Eq. (18) gives:  

 
f௜
ᇱሺݐሻ ൌ

ଶሺܿଶݎଶݒ െ ௖௜ሻݐଶሻf௜ሺݒ

ඥሾݎଶሺܿଶ െ ଶሻݒ ൅ ଶݐଶܿଶሺݒ െ ௖௜ଶሻሿଷݐ
 (19)

 
It can be seen from Eq. (19) that f௜

ᇱሺݐሻ is less than zero, that is, f௜ሺݐሻ in Eq. (18) 

has a monotonically decreasing trend. To determine an estimation of the CPA time 

(teci) for the i-th sound source, the maximum value of the IF derivative is used, as 

shown in Eq. (20).  

௖௜݁ݐ  ൌ Arg maxหf௜
ᇱሺݐሻห (20)

The estimation of train speed, ݁ݒ௜, is shown as follows: 
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ᇱሺ݁ݐ௖௜ሻሿଶ െ ሾf௜ሺ݁ݐ௖௜ሻ െ f௜ሺݐሻሿଶሻf௜ሺ݁ݐ௖௜ሻଶே

௧ୀଵ;௧ஷ௧௘೎೔

 (21)

where ݁ݐ௖௜ is the estimated value of ct for the i-th sound source. There is a minor error 

between the true and estimated IFs associated with each sound source. These errors 

are not systematic, and hence an average of the estimated values from a number of 

sound sources should be used to provide an accurate estimate of train speed, vea . The 

process for estimating the train speed is summarised in Figure 5. 

 
Figure 5 The process of estimating train speed 

The estimated initial longitudinal distance between where the target bearing 

enters the detection region and the microphone (along the track), se , is  

Acoustic signal MSCPP

IF1 tec1 ve1

IF2 tec2 ve2

... ... ...

IFn tecn ven

Average vea



݁ݏ  ൌ ௖௧ݐሺܽ݁ݒ െ ଴ሻ (22)ݐ

where 0t  is the time when the target bearing enters the detection zone and tct is the 

CPA time for the target bearing. Eq. (21) and Eq. (22) show that motion parameters 

( ,v s ) can be estimated after extracting the IFs of harmonic components of the 

recorded acoustic signals. By substituting ( ,vea se ) into Eq. (2), the resampling time 

vector tr can be obtained. Hence, the Doppler-free signal can be constructed by using 

the TIR method.   

 

5 A novel Doppler Effect reduction method for wayside acoustic detection of train 

bearing faults 

In this paper, a novel method combining the multi-scale chirplet path pursuit 

(MSCPP) method, a variable digital filter (VDF) and a new motion parameter 

estimation method is proposed to remove the Doppler Effect from wayside acoustic 

signal associated with train axle bearings.  In the proposed method, IFs of the 

harmonic components are first extracted using the multi-scale chirplet path pursuit 

(MSCPP) method. A cubic-spline is then used to fit standard curves to the extracted 

IFs. Next, the motion parameters ( ,v s ) associated with the curves are estimated using 

the new motion parameter estimation method. At the same time, the curves are used to 

define the centre frequencies of a series of VDFs. In this work, the VDF bandwidth is 

set to be 15 Hz. The VDFs are then used to exclude the unwanted harmonic 

components of the signal which are assumed to be noise. In this work, the process is 

repeated until the duration of the shortest IF is less than 0.25 of the detection period 

(i.e. one sixteenth of a second). The motion parameters can be obtained through an 

average of multiple harmonic components, and from these the resampling time vector 

can also be calculated. At the same time, a residual signal can be obtained by using 

the VDFs to exclude strong harmonic components. From these two things, the 

Doppler-free signal can be obtained by subjecting the residual signals to the time-

domain interpolation resampling (TIR) method. Finally, the fault feature signal can be 

extracted from the Doppler-free signal using the spectral kurtosis method. Bearing 

faults can thus be detected by observing the Hilbert envelope of the fault feature 

signal. A flow chart describing this method is shown in Figure 6.  



      
Figure 6: Flow chart for the proposed method 

 
6 Verification by simulation  

Based on acoustic theory described by Morse [22], the collected sound pressure 

at the microphone P  can be expressed as Eq. (23) when the sound source is given as 

harmonic with an intensity of 0 0sin( )q q t .  

 0 0
0cos( ( ))

4 (1 cos )

q
P t d c

d M

 
 

  


 (23)

 
In Eq. (21), d  is the distance between the sound source and the microphone; and 

/M v c ( v  is the train speed and c  is the speed of sound). As previously discussed, 

the variation of the frequency is described by Eq. (16).  

To verify the effectiveness of the proposed method, a simulated signal is 

constructed according to the standard practices as described in [10, 24]. The simulated 

signal is shown in Eq. (22). In practice, there are many components in a collected 

acoustic signal including those with strong harmonic elements. Thus, 6 harmonic 

components ݄௜ୀଵ⋯ହ and a Gaussian noise ( )n t  are added to a weak periodical impulse 

signal ( )s t  to simulate a bearing fault signal whose signal-to-noise rate is -5dB. In the 

simulated signal, the fault feature frequency, cf , is set to 160 Hz. The resulting 

simulated signal represents a wayside acoustic signal of a train bearing, including the 

Doppler Effect, reconstructed according to Morse’s acoustic theory as described in 
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train speed can be estimated to be 35.66 m/s. Given a known ct  in the simulated 

signal ( ct =0.116), the estimate for the initial longitudinal distance between the train 

and the microphone (along the track) would therefore be 4.14 m, as per Eq. 22. 

Substituting these parameters ( , )vea se  into Eq. (2), the resampling time vector, tr , 

can be obtained as shown in Figure 9.  

 
Figure 8 IFs extracted by MSCPP and fitting 
curves 

 
Figure 9 Time vectors 

            Table 2 Estimated velocity values for harmonic components   

 h1 h2 h3 h4 h5 h6 

ve 43.4 31.94 33.28 34.46 34.06 36.82 

A series of variable digital filters whose centre frequencies are based on the fitted 

values of the IF curves are constructed in order to exclude harmonic components 

which would otherwise dominate the fault signals. The residual signal can then be 

resampled according to the resampling time vector, tr . The time domain waveform of 

the resampled signal is shown in Figure 10(a).  Figure 10 (b) and (c) show the Hilbert 

envelope spectrum and TFR of the resampled signal respectively. Comparing Figure 

7(c) and Figure 10(c), it can be seen that the main harmonic components are excluded, 

and that the residual harmonic components still exist. Figure 10 (b) shows that there is 

no obvious peak at cf  or any of its harmonics, which results in misdiagnosis.  

The resampled signal is subjected to the SK method with the result shown in 

Figure 11. Figure 11 (a) shows the time domain waveform of the fault feature signal. 

Comparing this with Figure 10 (a), the impulse signal is more clearly evident and the 

residual harmonic components are excluded. This is confirmed by the TFR of the fault 

feature signal as shown in Figure 11 (c). Peaks at cf , 2 cf  and 3 cf are prominent in 
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Table 3 The values of vea and ε for simulation signals with different SNR 

SNR -6 -7 -8 -9 

vea 35.72 36.27 37.13 39.54 

ε 2.1% 3.6% 6.1% 13% 

 
Figure 12 The Hilbert envelope spectra of the fault feature signals extracted from simulation signals 
with different SNR. 

 

7 Verification using field experiments 

In order to test the performance of the proposed method in a real railway 

environment, acoustic signals were collected from the wayside as a test train was 

passing. The wayside acoustic system is represented in Figure 3 and described in [4] 

although in this experiment data from only one microphone within the array system 

was considered. The test train consisted of a single car of a DMU hauling two test 

wagons, as shown in Figure 13 (a). The speed of the test train through the monitored 

section was approximately 13.5 m/s, i.e. approximately 278 RPM for a wheel size of 

0.9 m. For safety reasons, it was not possible to operate a train with known faulty 

bearings, so instead a loudspeaker was fitted to the third axle of the train and an 

acoustic signal recorded from bearings being operated in the test facility was played 

in order to simulate a vehicle with a bearing fault. Ground reflections were reduced 

both by selection of a test site with an open and grassed area to disperse reflections, 

and the use of an acoustic barrier as part of the construction of a wedge shaped 

acoustic funnel, again described in [4]. Two cases were considered, Case 1 represents 

a fault in the outer race, while Case 2 represents a roller fault. These are shown as 

Figure 13 (b) and (c). In order to align the recordings with the speed of the train, the 

rotational speed used during the laboratory measurements was approximately 

270 RPM. The sampling frequency used was 8192 Hz. The parameters of the test 
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the estimated speed, vea, and the actual speed, v, shows that the proposed method can 

be used to estimate the actual speed accurately. In addition, the highest-energy IF 

ridge extracted in TFR plane using the STFT method is applied to the motion 

parameter estimation, comparing with the MSCPP method. The estimated motion 

parameters using the STFT method is shown in Table 5 which demonstrates that the 

MSCPP method has an obvious advantage.   

Table 5 Estimation motion parameter values of for harmonic components - Case 1 

 ve (h1) ve (h2) ve (h3) vea ε se 

MSCPP 15.98 m/s 14.47 m/s 9.56 m/s 13.34 m/s 1.2% 1.34 m 

STFT 14.76 m/s 16.34 m/s 12.35 m/s 14.48 m/s 7.3% 1.45 m 

 

 
Figure 15 IFs of harmonic components for field 
test Case 1 

 
Figure 16 Time vectors in Case 1 

 
Substituting these parameters ( , )vea se  into Eq. (2), the resampling time vector 

tr  can be obtained, as shown in Figure 16 .Variable digital filters are then constructed 

to exclude the harmonic components whose centre frequencies are obtained by fitting 

curves to the IF curves obtained using the MSCPP method. The residual signal can be 

obtained and resampled according to the resampling time vector, tr . The time domain 

waveform of the resampled signal is shown in Figure 17 (a). Comparing this with 

Figure 19 (b), the harmonic components have been removed. This can be verified by 

observing the TFR of the resampled signal, as shown in Figure 17 (c). The Hilbert 

envelope spectrum of the resampled signal as shown in Figure 17 (b) indicates that the 

bearing fault feature is still masked by high levels of background noise and residual 

harmonic components, most notably at 12.5 Hz and 141.7 Hz. In order to overcome 

this, the resampled signal is next subjected to the spectral kurtosis method. The time 

domain waveform of the extracted fault feature signal is shown in Figure 18 (a). The 

Hilbert envelope spectrum and TFR of the fault feature signal are shown in  Figure 18 
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In this paper, a novel method based on a combination of the MSCPP method, the 

application of a series of VDFs and a new motion parameter estimation method is 

proposed and demonstrated to be suitable for the removal of the Doppler Effect from 

wayside acoustic signals. The effectiveness of the proposed method has successfully 

been verified through testing with a known simulated signal and through two case 

studies. The MSCPP component of the proposed method has been shown to be able to 

extract IFs corresponding to relevant harmonic components. VDFs, whose centre 

frequencies are chosen by fitting curves to the IFs, are then constructed and used to 

exclude these main harmonic components. The motion parameters of the train bearing 

can be estimated, using the new motion parameter estimation method, and used to 

generate a resampling time vector. Finally, the Doppler-free signal can be obtained by 

resampling the residual signal from the VDF outputs using the resampling time vector. 

Fault feature extraction is then demonstrated by applying the SK method to the 

Doppler-free signals. Computation for the approach can be undertaken using a 

standard laptop computer sufficiently quickly that in a deployed system it could occur 

between vehicle passages. The proposed method has been evaluated using both 

simulation and field experiments. The following conclusions are obtained through 

consideration of this testing: 

(1) The MSCPP method is a powerful tool for the extraction of IFs. However, it 

is not possible to automatically select its parameters which somewhat limits its 

practical application. Hence, adaptive parameter selection for MSCPP is a target 

of further research.  

(2) The new motion parameter estimation method is effective. However, the 

results are highly dependent on accurate IF estimation. Improved IF extraction 

methods should, therefore, be a target of future research. 

(3) In this work, light-gate sensor was used to identify the vehicle passage and 

define the detection period for the target bearing. In order to decrease the cost and 

improve practicality, a method which can be used to extract several IFs 

simultaneously should be researched. 
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