5,887 research outputs found

    Unit Circle Roots Based Sensor Array Signal Processing

    Get PDF
    As technology continues to rapidly evolve, the presence of sensor arrays and the algorithms processing the data they generate take an ever-increasing role in modern human life. From remote sensing to wireless communications, the importance of sensor signal processing cannot be understated. Capon\u27s pioneering work on minimum variance distortionless response (MVDR) beamforming forms the basis of many modern sensor array signal processing (SASP) algorithms. In 2004, Steinhardt and Guerci proved that the roots of the polynomial corresponding to the optimal MVDR beamformer must lie on the unit circle, but this result was limited to only the MVDR. This dissertation contains a new proof of the unit circle roots property which generalizes to other SASP algorithms. Motivated by this result, a unit circle roots constrained (UCRC) framework for SASP is established and includes MVDR as well as single-input single-output (SISO) and distributed multiple-input multiple-output (MIMO) radar moving target detection. Through extensive simulation examples, it will be shown that the UCRC-based SASP algorithms achieve higher output gains and detection probabilities than their non-UCRC counterparts. Additional robustness to signal contamination and limited secondary data will be shown for the UCRC-based beamforming and target detection applications, respectively

    Super-Resolution of Positive Sources: the Discrete Setup

    Full text link
    In single-molecule microscopy it is necessary to locate with high precision point sources from noisy observations of the spectrum of the signal at frequencies capped by fcf_c, which is just about the frequency of natural light. This paper rigorously establishes that this super-resolution problem can be solved via linear programming in a stable manner. We prove that the quality of the reconstruction crucially depends on the Rayleigh regularity of the support of the signal; that is, on the maximum number of sources that can occur within a square of side length about 1/fc1/f_c. The theoretical performance guarantee is complemented with a converse result showing that our simple convex program convex is nearly optimal. Finally, numerical experiments illustrate our methods.Comment: 31 page, 7 figure

    Determinacy, indeterminacy and dynamic misspecification in linear rational expectations models

    Get PDF
    This paper proposes a testing strategy for the null hypothesis that a multivariate linear rational expectations (LRE) model has a unique stable solution (determinacy) against the alternative of multiple stable solutions (indeterminacy). Under a proper set of identification restrictions, determinacy is investigated by a misspecification-type approach in which the result of the overidentifying restrictions test obtained from the estimation of the LRE model through a version of generalized method of moments is combined with the result of a likelihood-based test for the cross-equation restrictions that the LRE places on its finite order reduced form under determinacy. This approach (i) circumvents the nonstandard inferential problem that a purely likelihood-based approach implies because of the presence of nuisance parameters that appear under the alternative but not under the null, (ii) does not involve inequality parametric restrictions and nonstandard asymptotic distributions, and (iii) gives rise to a joint test which is consistent against indeterminacy almost everywhere in the space of nuisance parameters, i.e. except for a point of zero measure which gives rise to minimum state variable solutions, and is also consistent against the dynamic misspecification of the LRE model. Monte Carlo simulations show that the testing strategy delivers reasonable size coverage and power in finite samples. An empirical illustration focuses on the determinacy/indeterminacy of a New Keynesian monetary business cycle model for the US.Determinatezza, Indeterminatezza, Massima verosimiglianza, Metodo generalizzato dei momenti, Modello lineare con aspettative, Identificazione, Variabili Strumentali, VAR,VARMA Determinacy, Generalized method of moments, Indeterminacy, LRE model, Identification, Instrumental Variables, Maximum Likelihood, VAR, VARMA

    HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION

    Get PDF
    This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms

    3-D Beamspace ML Based Bearing Estimator Incorporating Frequency Diversity and Interference Cancellation

    Get PDF
    The problem of low-angle radar tracking utilizing an array of antennas is considered. In the low-angle environment, echoes return from a low flying target via a specular path as well as a direct path. The problem is compounded by the fact that the two signals arrive within a beamwidth of each other and are usually fully correlated, or coherent. In addition, the SNR at each antenna element is typically low and only a small number of data samples, or snapshots, is available for processing due to the rapid movement of the target. Theoretical studies indicates that the Maximum Likelihood (ML) method is the only reliable estimation procedure in this type of scenario. However, the classical ML estimator involves a multi-dimensional search over a multi-modal surface and is consequently computationally burdensome. In order to facilitate real time processing, we here propose the idea of beamspace domain processing in which the element space snapshot vectors are first operated on by a reduced Butler matrix composed of three orthogonal beamforming weight vectors facilitating a simple, closed-form Beamspace Domain ML (BDML) estimator for the direct and specular path angles. The computational simplicity of the method arises from the fact that the respective beams associated with the three columns of the reduced Butler matrix have all but three nulls in common. The performance of the BDML estimator is enhanced by incorporating the estimation of the complex reflection coefficient and the bisector angle, respectively, for the symmetric and nonsymmetric multipath cases. To minimize the probability of track breaking, the use of frequency diversity is incorporated. The concept of coherent signal subspace processing is invoked as a means for retaining the computational simplicity of single frequency operation. With proper selection of the auxiliary frequencies, it is shown that perfect focusing may be achieved without iterating. In order to combat the effects of strong interfering sources, a novel scheme is presented for adaptively forming the three beams which retains the feature of common nulls

    Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions

    Get PDF
    We study the joint determination of the lag length, the dimension of the cointegrating space andthe rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using modelselection criteria. We consider model selection criteria which have data-dependent penalties aswell as the traditional ones. We suggest a new two-step model selection procedure which is ahybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency.Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arisefrom the joint determination of lag-length and rank using our proposed procedure, relative to anunrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting thelag-length only and then testing for cointegration. Two empirical applications forecasting Brazilianinflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of themodel-selection strategy proposed here. The gains in different measures of forecasting accuracy aresubstantial, especially for short horizons.
    corecore