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Abstract

Numerous contexts in macroeconomics, finance, and quality control require real-time estimation of

trends, turning points, and anomalies. The real-time signal extraction problem is formulated as a

multivariate linear prediction problem, the optimal solution is presented in terms of a known model,

and multivariate direct filter analysis is proposed to address the more typical situation where the process’

model is unknown. It is shown how general constraints – such as level and time shift constraints – can be

imposed on a concurrent filter in order to guarantee that real-time estimates have requisite properties.

The methodology is applied to petroleum and construction data.
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1 Introduction

In the applications of time series analysis to macroeconomics, finance, and quality control it is

essential to extract useful information about trends, turning points, and anomalies in real time.

The practitioner does not have the luxury of sifting past data for structural breaks, indicators of

regime change, or changes to volatility. Informative elections are contingent upon understanding

the dynamics of various time series at time present. Because long-term movements, as well as

aberrations, are defined in terms of the long-run behavior of a time series over past, present, and

future, any analysis of the present state necessarily involves a degree of forecasting. This broad

topic is referred to as real-time signal extraction.

A signal is any component of a time series that is deemed useful for a particular application.

If long-term movements are of interest, the signal is a trend. If short-term fluctuations about a

longer-term mean are of interest, the signal is a cycle. If shocks (e.g., due to rare terrorist events

or natural disasters) are of interest, the signal consists of the process’ extreme values. If regular

patterns of an annual period, linked to cultural or meteorological patterns, are of interest, the

signal is a seasonal component. If all the dynamics are of interest, but at some future time, then

the signal is a multi-step ahead forecast.

However, these signals typically involves some of the past and future values of a time series

– since the future is unknown, we have to rely on the present and past values. The statistical

process by which a signal is estimated from available data is referred to as extraction, and the

residual from the signal extraction is referred to as the noise. Whereas signals can be estimated

from historical, or past, sections of a time series, when effort is focused upon time present we refer

to the analysis as real-time signal extraction. Real-time signal extraction is considerably more

challenging than historical signal extraction. The difficulty lies in the uncertainty about the future,

which is transmitted unto the signal extraction estimates themselves.

There are other ways of viewing the real-time signal extraction problem that have been consid-

ered over the past decades: (i) constructing an asymmetric filter from a given symmetric filter, such

that time delay properties are optimized; (ii) modifying a given filter to handle edge effects; (iii)

constructing model-based filters such that revisions (the difference between real-time and historical

estimates) are minimized. Although these approaches have yielded somewhat different bodies of

literature (discussed in Section 2 below), the methodologies share common facets, since they are

addressing essentially the same problem.
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This article focuses upon a particular methodology called Direct Filter Analysis (DFA). As the

original development of DFA (Wildi, 2008) was univariate, the methodology’s power was limited

to the information content within a single time series. But because batches of time series can be

closely linked, exhibiting correlated trends, common dynamics, or even predictive relationships, it

is natural to expect that a multivariate extension of DFA to vector time series will more greatly

facilitate informed decision making. The topic of this article is Multivariate Direct Filter Analysis

(MDFA).

Many signals can be formulated as weighted linear combinations of a time series, in which

case the real-time signal extraction problem can be approached as a Linear Prediction Problem

(LPP). In order to pose an LPP, a solution criterion is needed, and Mean Squared Error (MSE)

is often used: one seeks a real-time signal extraction that has minimal MSE discrepancy with the

actual target signal. The LPP is solved by substituting multi-step ahead forecasts and backcasts

for any requisite values of the process lying outside the available sample; however, this solution

depends on knowing something about the dynamics in the time series process (because forecasting

and backcasting formulas require the Wold decomposition to be available). The most venerable

approach to understanding these dynamics is to posit a time series model, fit this model to the

observed data, and plug-in the formulas for the forecasts and backcasts. This approach, which

goes back to the work of Yule in the 1930s, is called the classic paradigm, being based upon a

Model-Based Analysis (MBA).

An attractive feature of MBA is that analytical formulas for the LPP solutions can often be

obtained, thereby facilitating computation. The philosophy underpinning the classic paradigm

is that a Data Generation Process (DGP) exists, and statistical inference attempts to identify

a model class for the DGP, fitting that model via estimating values of the parameters. While

recognizing that any such model need not be correct, i.e., exactly match the DGP itself, such

models can yet be useful to the extent to which they reflect important features in the data. Yet

it is difficult to keep a model simple – which is necessary to its utility – and at the same time be

sufficiently versatile to explain all the data’s features. For a given LPP, only a subset of the DGP’s

features are necessary to be successful in prediction. For instance, long-term forecasting stresses

the low-frequency movements of the DGP, and identification of the high-frequency dynamics is less

important.

The full set of LPP solutions for a given time series is greatly constrained once a model is

introduced, as only a particular subset of solutions can be obtained. If the model is badly mis-
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specified, the resulting LPP solution will be inadequate. This empirical disfunctionality motivated

the genesis of DFA, which essentially provides access to a much wider pool of LPP solutions. Of

course, model mis-specification is always present; the issue is whether it has a significant impact

upon the objectives of analysis. For instance, a given model’s mis-specification may have grave

repercussions for certain problem structures, while being adequate for other LPPs. The given LPP

of interest determines the gravity and impact of model mis-specification.

The overall leitmotif of this paper is to provide a mechanism for solving an LPP by adapting a

given bi-infinite filter to an available finite sample. We first show this can be done by substituting

forecasts and backcasts based on formulas involving the Wold decomposition of the process (our

main result in Section 3 below is formulated just in terms of forecasts, as it would be applied to

the case of a long sample, but Appendix A discusses the full extension to cases where backcasts are

necessary). Our second goal is to demonstrate how the same solution can be obtained nonparamet-

rically if our class of concurrent filters is sufficiently broad. Thirdly, we adapt this so-called MDFA

to allow for natural constraints on the filter class.

This article presents the generalized treatment of the multivariate LPP in Section 3, following

background on the overall filtering framework in Section 2. Section 4 develops MDFA in its basic

form, with extensions to level and time shift constraints, and finally a general form suitable for

nonstationary time series. We present applications in Section 5 to multivariate trend estimation

in Petroleum data, as well as multivariate seasonal adjustment of Construction data. Section 6

summarizes our findings, with proofs in Section 7; background material and additional figures are

provided in the Supplementary material.

2 Background and Framework

It is common to approach real-time problems with linear filters, although there is a burgeoning

literature on non-linear techniques. Borowski, Schettlinger, and Gather (2009) examine the multi-

variate real-time problem using regression techniques, with extensions in Schettlinger, Fried, and

Gather (2010) that robustify the results. Nonparametric approaches to signal extraction may in-

volve singular spectrum analysis (Golyandina, Nekrutkin, and Zhigljavski (2001)), a regularized

singular value decomposition (Lin, Huang, and McElroy (2019)), or wavelets, for example – see

Alexandrov, Bianconcini, Dagum, Maass, and McElroy (2012) for an overview. However, in this

article we are focused on real-time signal extraction problems associated with a linear filter.
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There exists a substantial literature addressing the issue of how to obtain a causal (or asym-

metric) adaptation of a given symmetric filter. Musgrave (1964) proposed a causal version of the

Henderson trend filter (Henderson, 1916), with extensions provided in Doherty (2001), Gray and

Thomson (2002), Dagum and Luati (2002), and Proietti and Luati (2008). The methodology of

reproducing kernel Hilbert spaces was applied by Dagum and Bianconcini (2008) to generate a

causal adaptation of the Henderson trend filter; see Dagum and Luati (2012) for an overview. Note

that these are nonparametric methods that focus upon the phase-delay (i.e., time lag) properties of

asymmetric filters, developed without reference to the particular dynamics of any given data set.

Baxter and King (1999) proposed an ideal band-pass filter for cycle extraction, which would

suppress all frequencies in the data that do not correspond to the business cycle; a real-time version

was discussed by Christiano and Fitzgerald (2003). In related work, Pollock (2009) discussed the

wrapping of filter coefficients as a way to obtain asymmetric versions of a frequency-selective filter

such as the ideal band-pass. Similarly, there is interest among economists in generating asymmetric

versions of the Hodrick-Prescott (HP) filter described in Hodrick and Prescott (1997): see Mise,

Kim, and Newbold (2005), Garratt, Lee, Mise, and Shields (2008, 2009), and Garratt, Mitchell,

Vahey, and Wakerly (2011).

The HP filter can be viewed as an optimal Wiener-Kolmogorov (WK) filter for trend extraction

from a process consisting of an integrated random walk plus white noise (McElroy, 2008b), and

hence the optimal real-time filter (assuming this model specification is correct) would be given

by the finite-sample WK filter formulas discussed in Bell and Martin (2004), Pollock (2007) and

McElroy (2008a). The multivariate finite-sample WK filters are discussed in McElroy and Trimbur

(2015) and McElroy (2017); also see Harvey (1989) for a state space formulation, and McElroy and

McCracken (2017) for the case of multivariate forecasting. The finite-sample WK filter is a model-

based approach to the real-time problem, and in contrast with the above nonparametric approaches,

assumes a very specific and complete knowledge about the data’s dynamics; see Findley and Martin

(2006) and Tiller (2012). The discrepancy between a symmetric WK filter and its concurrent

approximation is equivalent to examining the revision relationship between historical and real-time

estimators (Maravall and Pérez, 2012); revisions, and the impact of model mis-specification, are

discussed in McElroy and Wildi (2010).

When models are mis-specified, the finite-sample WK approach leads to sub-optimal real-

time estimation. Wildi and Schips (2004) introduced the basic problem, showing that model

mis-specification leads to substantial under-performance in real-time signal extraction problems.
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Proietti (2005) assessed the impact of model mis-specification on the separation of trend from cy-

cle; also see Harvey and Delle Monache (2009) and Delle Monache and Harvey (2011). Turning

to forecasting, there is a much larger literature regarding the impact of model mis-specification –

for example, see Schorfheide (2005), Del Negro, Schorfheide, Smets, and Wouters (2007), Aruoba,

Diebold, and Scotti (2009), Clark and McCracken (2010), and Schorfheide and Song (2015). More

recently, Wildi (2018) examined the real-time seasonal adjustment problem, focusing on univariate

approaches.

The general problem of approximating a linear filter (whether a WK filter based on a model,

or a nonparametric filter such as the ideal band-pass) with a concurrent version was formulated as

an LPP in Wildi and McElroy (2016); below, we formulate the multivariate LPP and provide its

solution. We begin with some notation needed to frame the problem.

Let {Xt} be a zero mean N -dimensional weakly stationary time series, with autocovariance

function (acf) defined for h ∈ Z via Γh = Cov[Xt+h, Xt]. (The jkth entry of each matrix is

denoted Γh(j, k).) We define the z-transform of {Xt} via X(z) =
∑∞

j=−∞Xj z
j . The spectral

density function (sdf) is a Hermitian matrix-valued function of ω ∈ [−π, π], defined as the Fourier

Transform (FT) of the acf, i.e., the z-transform of the acf evaluated at z = e−iω:

F (ω) =
∞∑

h=−∞
Γh e

−iωh = Γ(e−iω).

Given a bounded sdf (i.e., each (j, k)th entry of F has bounded modulus as a function of ω), the

acf can be recovered via inverse FT:

Γh = 〈F 〉h =
1

2π

∫ π

−π
F (ω) eiωh dω, (1)

which uses the bracket notation to define the integral of a function (of ω) multiplied by eiωh, and

the whole divided by 2π. Note that the integrand F is a matrix-valued function, so (1) is a compact

way of expressing an element-wise integration that yields the various components of Γh.

We suppose that a finite-sample {X1, X2, . . . , XT } is available, from which the sample autoco-

variance can be computed via

Γ̂h = T−1
T−h∑
t=1

Xt+hX
′
t

for h ≥ 0, and with Γ̂h = Γ̂′−h for h < 0. Moreover we can compute the Discrete Fourier Transform

(DFT) via

X̃(ω) = T−1/2
T∑
t=1

Xt e
−iωt. (2)
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This can be computed for any ω ∈ [−π, π], though for applications we restrict to the Fourier

frequencies given by 2πj/T for any −[T/2] ≤ j ≤ T − [T/2]− 1. (This guarantees that, whether T

is odd or even, there are T Fourier frequencies lying in [−π, π].) The multivariate periodogram is

defined to be the Hermitian matrix

F̂ (ω) = X̃(ω) X̃(−ω)
′
. (3)

The periodogram furnishes a basic estimate of the spectral density F of the process. There is an

empirical version of (1), where the periodogram is mapped to the sample autocovariance:

Γ̂h = 〈F̂ 〉h =
1

2π

∫ π

−π
F̂ (ω) eiωh dω. (4)

The latent dynamics of {Xt} can be revealed through the application of a multivariate linear

filter Ψ; this consists of a doubly-infinite sequence {Ψj} of N × N -dimensional matrices, such

that when applied to a time series {Xt} a new time series {Yt} is obtained with z-transform

Y (z) = Ψ(z)X(z). Expanding this expression, we see that for any t ∈ Z

Yt =

∞∑
j=−∞

Ψj Xt−j . (5)

It is convenient to have a notation for Yt that alerts us to the fact that it has arisen through

the convolution of {Ψj} and {Xt}; we shall employ the short-hand {Ψ ∗X}t for Yt in (5). The

properties of a filter can be studied by setting z = e−iω in its z-transform, thereby yielding the

frequency response function (frf): Ψ(e−iω) =
∑∞

j=−∞Ψj e
−iωj . Another quantity of interest is the

derivative of a filter, defined by differentiating the z-transform: d
dzΨ(z) =

∑∞
j=−∞ jΨj z

j−1. This

filter will be denoted by ∂Ψ for short.

When Ψj = 0 for j < 0 the signal depends only on present and past values of the process,

and hence the filter is called causal, or concurrent. In contrast, if Ψj 6= 0 for j < 0 then the filter

depends on future values, and is not causal. A real-time signal Ŷt is the output of a causal filter, as

it can be computed given present data at hand, in “real time.” However, many signals of interest

are defined through symmetric filters, which have the property that Ψj = Ψ−j for j ≥ 1.

For applications, it is practical to use a causal filter, allowing for real-time signal estimates.

(Such a filter requires an infinite past of data observations, or in practice a long sample; for short

samples, a finite-length causal filter is needed, and the necessary adaptations of the following theory

are discussed in Appendix A of the Supplement.) We seek a real-time estimate Ŷt = {Ψ̂ ∗X}t,

where Ψ̂(z) =
∑

j≥0 Ψ̂j z
j is a causal filter that approximates Ψ on the time series of interest, i.e.,
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the filter error

εt = Yt − Ŷt = {Ψ ∗X}t − {Ψ̂ ∗X}t (6)

should be stationary, mean zero, and have small variance. Because εt is an N -vector, we can design

a criterion that involves minimizing the trace or determinant of its covariance matrix, for example.

The quest for Ψ̂ such that the filter error is small is called the linear prediction problem (LPP).

A model-based (MB) approach to the problem proceeds as follows: we can compute the optimal

Ψ̂ analytically, given knowledge of Ψ and the spectral density of {Xt}. (If the data is difference

stationary, we can still solve the LPP, expressing it in terms of the differencing polynomial and the

Wold decomposition of the differenced process.) These MB solutions to the LPP yield a formula

for Ψ̂, which can then be applied to generate real-time signals.

A deficiency with the MB approach is mis-specification: we must have the exact parametric

form of the process’ Wold decomposition. Multivariate direct filter analysis (MDFA) instead for-

goes knowledge of this parametric form, and attempts to minimize det Var[εt] with respect to the

unknown coefficients of Ψ̂. The MDFA solution to an LPP is defined explicitly in Section 4 below,

and is based on an empirical formulation of Var[εt] involving the periodogram.

We mention two extensions of this basic MDFA. First, it may be of interest to constrain the

solution Ψ̂ in various ways – this can be done by restricting the class of causal filters. For instance,

it may be of interest to ensure that Ψ̂ and Ψ treat constants and trend lines in the same manner,

leading to the level and time shift constraints. Second, the data process that we analyze may be

difference-stationary, in which case the periodogram is massively biased and cannot be used as an

estimator – we must modify the basic criterion, which can be accomplished by imposing generalized

level and time shift constraints, as shown below.

3 Multivariate Linear Prediction Problems

We define the class of real-time estimation problems considered in this article.

Definition 1 A target is defined to be the output of any known linear filter acting on the data

process, i.e., {Yt} is a target time series corresponding to a given filter Ψ acting on a given observed

time series {Xt} if and only if we can write Yt = {Ψ ∗X}t for all integers t.

In practice, the target is specified by the analyst in accordance with their particular objectives.

Below we provide some common examples.
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Example 1 Multi-step Ahead Forecasting. Suppose that our goal is to forecast all of the

component series h steps ahead, where h ≥ 1 is the given forecast lead. Hence the target is

expressed as Yt = Xt+h for all t ∈ Z. This target corresponds to Ψ(z) = z−h IN , where IN is the

identity matrix of dimension N . Thus, each Ψ` is a N × N matrix, all of which are zero except

Ψ−h, which is given by IN .

Example 2 Ideal Low-Pass. In order to estimate a trend from a given series, conceptually we

wish to screen out all the higher frequency components in the data. With reference to the spectral

representation, if Ψ(e−iω) is zero for all ω in a band of the higher frequencies, then {Yt} will only

be composed of low frequency stochastic sinusoids. The simplest way to achieve such an output

is to design the frf as an indicator function (denoted with a χ), involving a steep cutoff of noise

frequencies; see Baxter and King (1999). This is viewed by some as the best possible definition of

trend, and hence the filter is called the ideal low-pass. Thus we have

Ψ(e−iω) = χ[−µ,µ](ω) IN

for some cutoff µ ∈ (0, π) that separates the pass-band from the stop-band. The coefficients are

given by

Ψ` =
sin(`µ)

π`
IN

for ` 6= 0 and Ψ0 = µ/π IN .

Example 3 Model-Based Random Walk Trend. The Local Level Model (LLM) discussed in

Harvey (1989) is capable of modeling a time series consisting of a random walk trend {Wt} and a

white noise irregular {Zt}, such that Xt = Wt + Zt. Both the multivariate trend and the irregular

are driven by independent white noise processes, with respective covariance matrices ΣW and ΣZ ,

and the frf for the optimal trend extraction filter (McElroy and Trimbur, 2015) is

Ψ(e−iω) = ΣW [ΣW + (2− 2 cos(ω)) ΣZ ]−1.

Example 4 Model-Based Integrated Random Walk Trend. Example 3 can be generalized

to the Smooth Trend Model (STM) developed in Harvey (1989), where now the trend {Wt} is an

integrated random walk, i.e., the application of the second differencing filter (1 − z)2 to {Wt} yields

a white noise process with covariance matrix ΣW . Then the frf for the optimal trend extraction

filter – which also coincides with the multivariate HP filter (cf. McElroy and Trimbur, 2015) – is

given by

Ψ(e−iω) = ΣW

[
ΣW + (2− 2 cos(ω))2 ΣZ

]−1
.
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The chief difference with the frf of the LLM is that the sinusoidal factor is now squared.

Example 5 Model-Based Seasonal Adjustment. Flexible structural models were discussed

in McElroy (2017), with atomic components for each distinct unit root (with any conjugate roots)

in the differencing operator. For monthly data this specification is an integrated random walk

trend component {Wt} (identical to the trend discussed in Example 4), together with six atomic

seasonal components that combine into a single seasonal component {St} with differencing operator

U(z) = 1+z+z2 + . . .+z11, along with the irregular {Zt}. Six separate covariance matrices govern

the dynamics of the seasonal component, allowing for different degrees of smoothness at each of

the six seasonal frequencies. The filter that suppresses the seasonal component {St} and extracts

trend {Wt} and irregular {Zt} is a model-based seasonal adjustment filter, and is an example of a

multivariate WK filter.

As we see from these examples, the targets of real-time signal extraction are features of the

stochastic process that are of interest to a particular user. Targets can be ad hoc (cf. Example 2)

or model-based (cf. Examples 3, 4, and 5), and may depend upon all the components of a vector

process.

Definition 2 The Linear Prediction Problem (LPP) seeks a linear estimate such that the

filter error (6) has mean zero, and such that the determinant of the filter error variance Var[εt] is

minimized.

The filter error variance matrix is referred to as the filter MSE. When the data process is

itself causal and linear, it is possible to give an explicit solution to the LPP in terms of the

Wold decomposition (Brockwell and Davis, 1991). All purely nondeterministic weakly stationary

(mean zero) processes have a Wold decomposition Xt =
∑∞

`=0 Θ` εt−`, where {εt} is WN(Σ) and

Θ(z) =
∑∞

`=0 Θ` z
`. For any power series, we introduce the notation [Θ(z)]ba =

∑b
j=a Θj z

j . With

these preliminaries, we can state the solution to the LPP.

Proposition 1 Suppose that {Xt} is mean zero and weakly stationary with Wold decomposition

expressed as Xt =
∑∞

`=0 Θ` εt−`, where Θ(z) is invertible (i.e., has all zeroes outside the unit circle).

Then the solution to the LPP posed by a target Yt = {Ψ ∗X}t is given by

Ψ̂(z) =

∞∑
`=0

Ψ` z
` +

−∞∑
`=−1

Ψ` [Θ(z)]∞−` z
` Θ(z)−1. (7)
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Moreover, the MSE corresponding to this solution is given by

1

2π

∫ π

−π

∞∑
`,k=1

Ψ−` [Θ(e−iω)]
`−1
0 Σ [Θ(eiω)]

k−1
0

′
Ψ−k

′ eiω(`−k) dω. (8)

Remark 1 A short intuitive proof can be given for formula (7): if we define Ŷt such that all future

values Xt−` for ` < 0 in the definition of Yt are replaced by −`-step ahead forecasts X̂t−`, then the

resulting filter error εt will be uncorrelated with {Xt−`, ` ≥ 0}. Hence, det Var[εt] will be minimized;

the filter yielding such a Ŷt is given by formula (7), because X̂t−` is given by [Θ(z)]∞−` z
` Θ(z)−1

acting upon {Xt} (cf. McElroy and McCracken (2017)), so that heuristically

Ŷt =
∞∑
`=0

Ψ`Xt−` +
−∞∑
`=−1

Ψ` X̂t−` =

∞∑
`=0

Ψ` z
`Xt +

−∞∑
`=−1

Ψ` [Θ(z)]∞−` z
` Θ(z)−1Xt.

In other words, the LPP solution is given by replacing missing future observations with model-

based forecasts, and then applying the target filter to the extended series – this is a multivariate

extension of the approach described in Dagum (1978) for handling edge effects with a moving

average filter. The full proof of the Proposition derives formula (8), which gives us a lower bound

on the determinant of the MSE when we use sub-optimal proxies for Ψ̂.

As indicated by Remark 1, the result of Proposition 1 is chiefly useful when we know Θ(z).

However, this is rarely the case in practice – it must be estimated. The classical parametric

approach involves formulating a time series model, fitted using the Gaussian likelihood, and finally

computing the LPP solution in terms of the fitted model. Alternatively, one might consider fitting

a specified model such that the LPP MSE is minimized. A more broad nonparametric approach

involves considering classes of concurrent filters and directly minimizing the LPP MSE over this

class – this is the methodology of Direct Filter Analysis (DFA).

Illustration 1 VAR(1). Consider an LPP where the true process {Xt} is a Vector Autoregression

(VAR) of order 1. This process can be described via

Xt = ΦXt−1 + εt

for a matrix Φ that is stable, i.e., has all eigenvalues bounded by one in modulus (Lütkepohl, 2007).

It is known that the VAR(1) has the causal representation Θ(z) = (1− Φ z)−1. Because for ` < 0

[Θ(z)]∞−` =

∞∑
j=−`

Φj zj = Φ−` z−` (1− Φ z)−1,
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we find that (7) reduces to

Ψ̂(z) =
∞∑
`=0

Ψ` z
` +

−∞∑
`=−1

Ψ` Φ−`. (9)

The second term in this expression we denote by LΨ(Φ). Hence, the optimal concurrent filter is

determined by applying the filter to past data and modifying the present weight Ψ0 by adding

the quantity LΨ(Φ). In the case of h-step ahead forecasting of the first time series (Example 1),

Ψ̂(z) = LΨ(Φ) = Φh. This formula demonstrates that it is essential that Φ be stable, and if fitting

a VAR(1) we must parametrize Φ such that stability is guaranteed. (Such a parametrization is

discussed in Roy, McElroy, and Linton (2019).)

4 Multivariate Direct Filter Analysis

We can now discuss a more general solution to the LPP. One perspective on Proposition 1 is that it

provides a particular class of concurrent filters that arise from specified models. However, so long

as these models are mis-specified, the resulting concurrent filters will be sub-optimal. Therefore, it

may be possible to improve performance by utilizing broader classes of concurrent filters that are

not derived from a particular model. The MDFA seeks a concurrent filter Ψ̂(z) that optimizes the

determinant of the MSE in a given LPP.

4.1 Basic MDFA

Suppose that the causal filters of interest belong to a class G described by a vector parameter ϑ

belonging to a parameter manifold. Because we seek elements of G that will solve an LPP, i.e., be

a good concurrent approximation to Ψ, we use the notation

G = {Ψ̂ϑ : ϑ belongs to a parameter space}. (10)

First suppose that {Xt} is weakly stationary with mean zero and spectral density F . The real-time

estimation error is given in (6), which has mean zero and N ×N variance matrix

E[εt ε
′
t] = 〈

[
Ψ(e−iω)− Ψ̂ϑ(e−iω)

]
F (ω)

[
Ψ(eiω)− Ψ̂ϑ(eiω)

]′
〉
0
. (11)

This suggests the criterion function detDΨ(ϑ,G) for any Hermitian function G, defined via

DΨ(ϑ,G) = 〈
[
Ψ(e−iω)− Ψ̂ϑ(e−iω)

]
G(ω)

[
Ψ(eiω)− Ψ̂ϑ(eiω)

]′
〉
0
. (12)
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In the following development, setting G = F yields an ideal criterion based on the process, whereas

setting G = F̂ (the periodogram) yields an empirical criterion, providing estimates that we can

compute from data. Taking the determinant of (12) yields the MDFA criterion function. Given

a filter class G, the best possible concurrent filter is given by Ψ̂ϑ(F ), where ϑ(F ) is a minimizer

of detDΨ(ϑ, F ). This ϑ(F ) is the Pseudo-True Value for the filter parameter, in analogy with

the terminology for model parameters. A case of interest arises from taking a very broad class G,

namely let G consist of all length q concurrent filters, with ϑ = vec[Ξ′] and

Ξ =
[
Ψ̂0, Ψ̂1, . . . , Ψ̂q−1

]′
. (13)

So Ξ is a qN ×N dimensional matrix. Then the criterion (12) can be rewritten as

DΨ(ϑ,G) = Ξ′B Ξ− Ξ′A−A′ Ξ + 〈Ψ(e−iω)G(ω) Ψ(eiω)
′〉0, (14)

where

A′ =
[
〈Ψ(e−iω)G(ω)〉0, 〈Ψ(e−iω)G(ω)〉1, . . . , 〈Ψ(e−iω)G(ω)〉q−1

]
, (15)

and B is a block matrix such that the jkth N ×N block of B is 〈G〉k−j for 1 ≤ j, k ≤ q. (Because

G is Hermitian, 〈G〉k−j is real, and it follows that A is real as well.)

Proposition 2 The minimizer of the MDFA criterion given by the determinant of (12), with

respect to G consisting of all length q concurrent filters, is

Ξ(G) = B−1A,

where the jkth block of B is 〈G〉k−j, and A is given by (15). The minimal value is the determinant

of

〈Ψ(e−iω)G(ω) Ψ(eiω)
′〉0 −A

′B−1A. (16)

Remark 2 To implement Proposition 2 in practice, G is given by the periodogram so that 〈G〉h =

Γ̂h by (4). It is necessary to compute A, given by (15), and we can proceed by approximating the

integrals over a Riemann mesh corresponding to Fourier frequencies, i.e., for 0 ≤ j ≤ q−1 compute

〈Ψ(z) F̂ 〉j ≈ T
−1

T−[T/2]−1∑
j=−[T/2]

Ψ(e−iωj ) F̂ (ωj)

for ωj = 2πj/T .
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Example 6 One-step Ahead Forecasting. Suppose we consider the one-step ahead forecasting

of stationary time series and G corresponds to all VMA filters of order q (i.e., the filter corresponds

to a VMA(q − 1) polynomial), where

ϑ = vec[Ψ̂′0, Ψ̂
′
1, . . . , Ψ̂

′
q−1].

With Ψ(z) = z−1 from (12) we have

DΨ(ϑ,G) = 〈
[
eiωIN − Ψ̂ϑ(e−iω)

]
G(ω)

[
e−iωIN − Ψ̂ϑ(eiω)

]′
〉
0

= 〈

[
IN −

q−1∑
`=0

Ψ̂` e
−iω(`+1)

]
G

[
IN −

q−1∑
`=0

Ψ̂` e
iω(`+1)

]′
〉
0

= 〈G〉0 − 2 Ξ′ 〈G〉1:q + Ξ′B Ξ.

Hence the optimizer is

Ξ(G) = B−1 〈G〉1:q,

which is the first component of the solution to the Yule-Walker system of order q determined by

G. Therefore the MDFA solution is the same as the fit of a VAR(q) using Proposition 1.

We designate the resulting prediction function Ψ̂ϑ(G) as a Linear Prediction Filter (LPF). Again,

when G = F this LPF is a theoretical object, but when G = F̂ the LPF can be constructed directly

from the sample. When G is large enough to include the optimal MB filter Ψ̂ of Proposition

1, then Ψ̂ϑ(F ) corresponds to this Ψ̂ (assuming the model is correctly specified); in such a case,

using the parametric model generally provides a more efficicient estimation of Ψ̂, especially for

small samples. However, if we construct Ψ̂ from parameter estimates obtained from the Whittle

likelihood, then Ψ̂
ϑ(F̂ )

is identical to the fitted optimal filter, and therefore is asymptotically efficient

as well. Because G may be too narrow to include the optimal filter (for example, the set of length

q concurrent filters will not include any optimal filters with infinitely many coefficients), it may be

advantageous to use a parametric model (i.e., proceed according to Proposition 1) if one is confident

in having a correct specification. This paper’s advocacy of MDFA is hinged upon cases where the

practitioner does not have this certainty.

Illustration 2 VAR(1). Again consider a VAR(1) process, and suppose we wish to use MDFA

to approximate the optimal LPP solution – even though we don’t know the true dynamics. Let G

denote the set of moving average filters of length q, and G is the spectral density of the VAR(1);

13



the solution given by Proposition 2 can be compared to that of the LPP, which has the first q

components given by

Υ′ = [Ψ0 + LΨ(Φ),Ψ1, . . . ,Ψq−1].

This is an approximate solution to the system Ξ′B = A′, because Υ′B has j + 1th component, for

0 ≤ j ≤ q − 1, equal to
q−1∑
`=0

Ψ` 〈G〉j−` + LΨ(Φ) Γj .

Noting that

LΨ(Φ) Γj =

−∞∑
`=−1

Ψ−` Φ−` Γj =

∞∑
`=−1

Ψ−` Γj−`,

because for a VAR(1) process Γh = Φh Γ0 when h ≥ 0, we see that component j + 1 of Υ′B is

q−1∑
`=0

Ψ` Γj−` = [A′]j+1 −
∞∑
`=q

Ψ` Γj−`.

As q →∞ the error term vanishes (for each j), indicating that Υ′B ≈ A′, or Ξ ≈ Υ.

To compute the quantities given in Proposition 2, and more generally to compute the MDFA

criterion (12), we propose to approximate each integral by an average over Fourier frequencies.

Although finer meshes could clearly be implemented, the Fourier frequency mesh is sufficient for

statistical purposes – this is because when considering the asymptotic properties of linear function-

als of the periodogram (i.e., weighted linear combinations of periodogram ordinates), there is no

difference between averaging over Fourier frequencies or integrating over every frequency. Moreover,

using the Fourier frequencies produces an empirical criterion function that is a closer approximation

to the sample mean squared error, which is shown by the following heuristic arguments. Recalling

that the real-time filter error εt = Yt − Ŷt has variance given by (11), the sample variance is

T−1
T∑
t=1

εt ε
′
t = T−1

T−[T/2]−1∑
j=−[T/2]

F̂ε(ωj),

where F̂ε is the periodogram of the filter errors and ωj = 2π j/T is a Fourier frequency. This equality

is a discrete version of the Plancherel identity; the right hand side (with F̂X the periodogram of

the process) is approximated by

T−1

T−[T/2]−1∑
j=−[T/2]

[
Ψ(e−iωj )− Ψ̂(e−iωj )

]
F̂X(ωj)

[
Ψ(eiωj )− Ψ̂(eiωj )

]′
.

14



This is exactly the criterion DΨ(ϑ, F̂X) of (12) with the integrals replaced by Riemann sums over

the Fourier frequencies.

With this justification, we see that the entries of the matrix B in Proposition 2 are approximately

computed via

Bj,k ≈ T−1

T−[T/2]−1∑
`=−[T/2]

G(ω`) exp{i (k − j)(ω`)}

for 1 ≤ j, k ≤ T . Moreover, for 0 ≤ k ≤ T − 1

A′k ≈ T−1

T−[T/2]−1∑
`=−[T/2]

Ψ(e−iω`)G(ω`) e
ikω` ,

where A′ = [A′0, . . . , A
′
T−1]. Finally,

〈Ψ(e−iω)G(ω) Ψ(eiω)
′〉0 ≈ T

−1

T−[T/2]−1∑
`=−[T/2]

Ψ(e−iω`)G(ω`) Ψ(eiω`)
′
.

4.2 Constrained MDFA

Various constraints upon the concurrent filter can be envisioned, and imposing such strictures

results in a constrained MDFA. Writing ∆(z) = Ψ(z) − Ψ̂(z) as the discrepancy filter, we see

from (6) that E[εt] is given by the application of ∆(z) to E[Xt]; by Definition 2, we require that

E[εt] = 0 for any LPP. If E[Xt] = 0 then this condition is always satisfied, but with nonzero means

additional constraints on ∆(z) must be imposed, which implicitly amount to constraints on Ψ̂(z).

The following results are well-known (Brockwell and Davis, 1991): if E[Xt] is constant but nonzero,

then we require ∆(1) = 0. If E[Xt] is linear in t, then we require ∆(1) = 0 and ∂∆(1) = 0. Hence,

we obtain three fundamental types of constraints: Level Constraint (LC), Time-Shift Constraint

(TSC), and Level and Time-Shift Constraint (LTSC). These are defined as follows:

LC : ∆(1) = 0 or Ψ(1) = Ψ̂(1)

TSC : ∂∆(1) = 0 or ∂Ψ(1) = ∂Ψ̂(1)

LTSC : ∆(1) = 0, ∂∆(1) = 0 or Ψ(1) = Ψ̂(1), ∂Ψ(1) = ∂Ψ̂(1).

In the case of concurrent filters of form (13), LC is accomplished by demanding that
∑q−1

j=0 Ψ̂j =

Ψ(1). More generally, we consider linear constraints formulated via

Ξ = RΦ +Q, (17)
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where R is Nq ×Nr and Φ is Nr×N dimensional, consisting of free parameters; Q is a matrix of

constants, and is Nq×N dimensional. This is not the most general formulation (we could instead

work with vec[Ξ′], but is sufficient to describe LC, TSC, and LTSC.

Level Constraint (LC).
∑q−1

j=0 Ψ̂j = Ψ(1) implies that

Ψ̂0 = Ψ(1)−
q−1∑
j=1

Ψ̂j . (18)

Hence Φ′ = [Ψ̂1, Ψ̂2, . . . , Ψ̂q−1] and

R =


−1 . . . −1

1 0 0
...

. . .
...

0 0 1

⊗ IN Q =


Ψ(1)

0
...

0

 .

Time Shift Constraint (TSC). The constraint is ∂Ψ(1) = ∂Ψ̂(1) =
∑q−1

j=0 j Ψ̂j , or Ψ̂1 = ∂Ψ(1)−∑q−1
j=2 j Ψ̂j . Hence Φ′ = [Ψ̂0, Ψ̂2, . . . , Ψ̂q−1] and

R =



1 0 . . . 0

0 −2 −3 . . .

0 1 0 . . .
...

. . .
...

...

0 . . . 0 1


⊗ IN Q =



0

∂Ψ(1)

0
...

0


.

Level and Time Shift Constraint (LTSC). Take the Time Shift constraint formula for Ψ̂1, and

plug this into (18), to obtain

Ψ̂0 = Ψ(1)−

∂Ψ(1)−
q−1∑
j=2

j Ψ̂j

− q−1∑
j=2

Ψ̂j

= Ψ(1)− ∂Ψ(1) +

q−1∑
j=2

(j − 1) Ψ̂j .
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Hence Φ′ = [Ψ̂2, . . . , Ψ̂q−1] and

R =



1 2 3 . . .

−2 −3 −4 . . .

1 0 . . . 0
...

. . .
...

...

0 . . . 0 1


⊗ IN Q =



Ψ(1)− ∂Ψ(1)

∂Ψ(1)

0
...

0


.

More generally, we can envision an LPP involving M linear constraints on each scalar filter in

Ξ, taking the form K = [J ⊗ IN ] Ξ, where J is M × q dimensional (M < q) and K is NM × N

dimensional. (The LC, TSC, and LTSC examples all have this form.) In order to express this

constraint in the form (17), we use the Q-R decomposition (Golub and Van Loan, 1996) of J ,

writing J = C GΠ for an orthogonal matrix C (which is M × M dimensional), a rectangular

upper triangular matrix G (which is M × q dimensional), and a permuation matrix Π (which is

q × q dimensional). Standard matrix software will provide the Q-R decomposition J , and should

produce the rank of J as a by-product – if this rank is less than M , then there are redundancies in

the constraints that should first be eliminated. Hence proceeding with a full rank J , we partition

G as G = [G1G2] such that G1 has M columns and G2 has q −M columns. This quantity q −M

corresponds to the number of free coefficient matrices, and is therefore the same as r. The Q-R

decomposition guarantees that G1 is an upper triangular matrix, and moreover it is invertible.

Therefore [
G−1

1 C−1 ⊗ IN
]
K =

([
IM , G

−1
1 G2

]
Π⊗ IN

)
Ξ,

and the action of Π (together with the tensor product) amounts to a block-wise permutation of the

elements of Ξ. Let the output of this permutation be denoted Ξ

Ξ

 = (Π⊗ IN ) Ξ,

where Ξ is NM ×N dimensional and Ξ is Nr×N dimensional. Then by substitution we can solve

for Ξ in terms of Ξ:

Ξ =
[
G−1

1 C−1 ⊗ IN
]
K −

[
G−1

1 G2 ⊗ IN
]

Ξ.
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Therefore we recognize the free variables Φ = Ξ, and obtain R and Q in (17) via

R = Π−1

 −G−1
1 G2

Ir

⊗ IN
Q =

Π−1

 G−1
1 C−1

0

⊗ IN
 K.

These formulas allow one to compute the form (17) from given constraints, and an analytical

solution to the resulting MDFA criterion be obtained from the following result.

Proposition 3 The minimizer of the MDFA criterion given by the determinant of (12), with

respect to G consists of all length q concurrent filters subject to linear constraints of the form (17),

is

Φ =
[
R′BR

]−1
R′ (A−BQ) . (19)

Letting H = INq −R [R′BR]−1R′B, the minimal value is the determinant of

〈Ψ(e−iω)G(ω) Ψ(eiω)
′〉0 −A

′R
[
R′BR

]−1
R′A+Q′BH Q− 2A′H Q. (20)

For computation, we utilize the same approximations to B and A as discussed in the previous

subsection, obtaining the constrained MDFA filter Ξ via (19) followed by (17).

4.3 Non-stationary MDFA

We here consider difference-stationary vector time series, which means there exists a scalar differ-

encing polynomial δ(z) such that {∂Xt} given by {δ ∗X}t is mean zero and covariance stationary.

Examination of (6) indicates that the error process is not stationary unless we make certain as-

sumptions about ∆(z) = Ψ(z)− Ψ̂(z). It is necessary that we can factor δ(z) from ∆(z), i.e., there

exists ∆̃(z) such that

∆(z) = ∆̃(z) δ(z), (21)

as otherwise we cannot guarantee that {εt} will be stationary. However, (21) is sufficient to guar-

antee that the filter error be stationary, because

εt = {∆̃ ∗ ∂X}t

in such a case. We next discuss a set of filter constraints that guarantee (21), beginning with

a lemma that discusses factorization of filters. We say a filter Ψ is absolutely convergent if∑∞
j=−∞ ‖Ψj‖ <∞ for a given matrix norm ‖ · ‖.
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Proposition 4 Any linear filter Ψ can be expressed as

Ψ(z) = Ψ(ζ) + (z − ζ) Ψ](z)

for any ζ ∈ C such that |ζ| = 1, and an absolutely convergent filter Ψ], so long as ∂Ψ is absolutely

convergent. If in addition the filter ∂∂Ψ with z-transform ∂∂Ψ(z) =
∑∞

j=−∞ j(j − 1) Ψj z
j is

absolutely convergent, then there also exists an absolutely convergent filter Ψ[ such that

Ψ(z) = Ψ(ζ) + ∂Ψ(ζ) (z − ζ) ζ + (z − ζ)2 Ψ[(z).

Note that if Ψ(ζ) = 0, it follows from Proposition 4 that z − ζ can be factored from Ψ(z).

Similarly, (z − ζ)2 can be factored from Ψ(z) is Ψ(ζ) = ∂Ψ(ζ) = 0.

Definition 3 For ω ∈ [−π, π], a filter Ψ annihilates ω-noise of order 1 if Ψ(e−iω) = 0, and annihi-

lates ω-noise of order 2 if in addition ∂Ψ(e−iω) = 0.

Hence, we have the following immediate corollary of Proposition 4.

Corollary 1 If a filter Ψ annihilates ω-noise of order 1 and ∂Ψ is absolutely convergent, then

Ψ(z) = (z − e−iω) Ψ](z).

If a filter Ψ annihilates ω-noise of order 2, and ∂∂Ψ is absolutely convergent, then

Ψ(z) = (z − e−iω)
2

Ψ[(z).

We can apply Corollary 1 to factor a noise-differencing polynomial δN (z) from ∆(z): for each

ω such that the target filter Ψ annihilates ω-noise of order d, we impose the constraint that Ψ̂ shall

have the same property, and hence (z − e−iω)
d

can be factored from both filters. For instance, if

noise frequencies are ω` with multiplicities d`, then repeated application of Corollary 1 yields

Ψ(z) =
∏
`

(z − e−iω`)
d` Ψ\(z) = δN (z) Ψ?(z)

for some residual filter Ψ\, where Ψ?(z) =
∏
`−e−iω`d` Ψ\(z) and δN (z) =

∏
`(1 − eiω` z). By

imposing the same linear constraints on Ψ̂, we likewise obtain Ψ̂(z) = δN (z) Ψ̂?(z), and hence

∆(z) =
(

Ψ?(z)− Ψ̂?(z)
)
δN (z). (22)

So if δ(z) = δN (z), then (21) holds at once. More generally, a given process’ differencing polynomial

may be factored into relatively prime polynomials δN (z) and δS(z), which correspond to noise and
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signal dynamics respectively – see Bell (1984) and McElroy (2008a). Many signal extraction filters

Ψ have the property that they annihilate ω-noise of the appropriate order, such that δN (z) can

be factored; in addition, the noise filter with z-transform IN − Ψ(z) has the same property with

respect to the signal frequencies, i.e., δS(z) can be factored from IN − Ψ(z) in the same manner.

Hence IN − Ψ(z) = δS(z) Ψ�(z) for some factor Ψ�(z), and imposing the same constraints on the

concurrent filter yields

∆(z) = (IN − Ψ̂(z))− (IN −Ψ(z)) =
(

Ψ̂�(z)−Ψ�(z)
)
δS(z).

However, (22) also holds, and the roots of δS(z) and δN (z) are distinct (because the polynomials

are relatively prime by assumption), and hence δ(z) = δN (z) δS(z) must be a factor. Therefore,

∆̃(z) = (Ψ̂�(z)−Ψ�(z))/δN (z), and (21) holds.

In summary, given a factorization of δ(z) into signal and noise differencing polynomials, the

noise constraints and signal constraints on Ψ must also be imposed upon Ψ̂, and this ensures

that {εt} will be stationary with mean zero. If ω satisfies δN (e−iω) = 0, then we impose that Ψ̂

annihilates ω-noise of order given by the multiplicity of the root in δN (z). Otherwise, if ω satisfies

δS(e−iω) then we impose that Ψ̂(e−iω) = Ψ(e−iω) (if the root is simple – if a double root, then also

impose that ∂Ψ̂(e−iω) = ∂Ψ(e−iω)). In practice, we must determine the real and imaginary parts of

each such constraint, and write the corresponding constraints on Ψ̂ in the form K = [J ⊗ IN ] Ξ for

filters of form (13), applying the methodology of the previous subsection. With these constraints

in play, the formula (11) holds with Ψ(z)− Ψ̂(z) replaced by ∆̃(z) and F being the spectral density

of {∂Xt}, i.e., we define the nonstationary MDFA criterion function as detDΨ(ϑ,G) for

DΨ(ϑ,G) = 〈∆̃(e−iω)G(ω) ∆̃(eiω)
′
〉0

= 〈
[
Ψ(e−iω)− Ψ̂ϑ(e−iω)

]
G(ω) |δ(e−iω)|−2

[
Ψ(eiω)− Ψ̂ϑ(eiω)

]′
〉
0
. (23)

The expression (23) utilizes (21), and employs the understanding that poles in δ(z)−1 are exactly

canceled out by the corresponding zeros in Ψ(z)− Ψ̂(z). Moreover, the ratio (Ψ(z)− Ψ̂(z))/δ(z) =

∆̃(z) is bounded in z, as the previous discussion guarantees. As a matter of convenience, given

that the frequencies of singularity in |δ(e−iω)|−2
are a set of Lebesgue measure zero, calculation of

DΨ(ϑ,G) can proceed by using the second expression, computing the numerical integration over

only those frequencies where δ(e−iω) is nonzero. Whereas the theoretical filter error MSE is given by

DΨ(ϑ, F ), with F being the spectral density of {∂Xt}, for estimation we approximate the integral

over Fourier frequencies, and utilize the periodogram of the differenced data for G. Again, we omit
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any contributions to the sum arising from Fourier frequencies that correspond to zeros of δ(e−iω),

as such an omission only results in a loss of order T−1. (The alternative is to compute the quantities

∆̃(e−iω) at Fourier frequencies, using the factorization results of Corollary 1; this is not worth the

effort in practical applications.)

5 Simulations and Applications

We now apply the preceding methods to simulations and real data, exploring real-time trend ex-

traction problems as well as seasonal adjustment, in a multivariate context. Since we wish to

demonstrate that MDFA is effective for any one given time series with sufficiently long sample size,

we use a single Monte Carlo in our simulation studies.

5.1 VAR(1) Specification and Trend Extraction
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Figure 1: Bivariate low-pass trend filter applied to VAR(1) simulation (grey), with trends in black.

We suppose the true process is a VAR(1), and apply the ideal low-pass trend filter defined
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in Example 2, where µ = π/6. We seek to solve the corresponding trend extraction LPP. First,

we can use the optimal solution (9) given in Illustration 1, supposing that we know that the

VAR(1) parameters. Second, we can use MDFA, proceeding as if we do not know the true process

is a VAR(1), as we would in practice, and hence use the periodogram; MDFA should be able to

replicate the optimal solution, so long as the filter class G is sufficiently rich. The VAR(1) is defined

by

Xt =

 1.0 0.5

−0.2 0.3

 Xt−1 + εt,

with stationary initialization, and {εt} a Gaussian white noise of identity innovation variance.

Operationally, we simulate this process with sample size 4500. Then the ideal trends are produced

by truncating the MB filter to length 4001 (it is symmetric, so the indices range between −2000

and 2000) and applying to the simulation, only retaining the central 500 data points, as displayed

in Figure 1. (In this way we can dispense with edge effects, and the extra 4000 observations are

not used in the MDFA.) The grey lines of Figure 1 are the central 500 observations of the VAR(1)

simulation, and the black line is the target. We wish to use MDFA (setting q = 30) with various

constraints (LC, TSC, LTSC) to obtain a real-time estimate, comparing the result to the optimal

solution given by implementing Illustration 1. In that case we find that

LΨ(Φ) =

 0.398 0.266

−0.106 0.026


by direct calculation, and hence the optimal filter is easily computed. The in-sample MSEs of the

various methods are displayed in Table 1. Note that the basic MDFA (no constraints) replicates the

optimal filter, as their MSE is the same up to negligible error. When imposing a level constraint

(LC) there is a modest loss to the MDFA performance, which makes sense given that the optimal

filter does not impose a level constraint – in fact, the value of the optimal concurrent filter at

frequency zero is

Ψ̂(1) =

 0.982 0.266

−0.106 0.610

 ,
which is quite different from I2. On the other hand, the time shift constraint alone (TSC) has little

impact on the performance of MDFA, because ∂Ψ̂(1) ≈ 0 · I2, i.e., the optimal filter already has

this property of zero time shift. When both level and time shift constraints (LTSC) are imposed,

MSE increases even more.
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Series LPP Opt MDFA Basic MDFA LC MDFA TSC MDFA LTSC

1 .3905 .3838 .3915 .3863 .4064

2 .1300 .1289 .1364 .1300 .1628

Table 1: LPP MSE for bivariate VAR(1) process – with target trend given by the LLM MB trend –
for various concurrent filters: LPP Opt is the optimal filter, whereas the MDFA filters are labeled
according to the constraints imposed.

5.2 Petrol
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Figure 2: Bivariate trend filter applied to Null LLM simulation (grey), with trends in black. The
simulation is obtained from a LLM fitted to bivariate Petrol (Consumption and Imports), so the
component series of the simulation are labelled accordingly.

We now study the MB trend filter arising from a LLM (cf. Example 3) fitted to a bivariate

petroleum series: Industrial Petroleum Consumption and OPEC Oil Imports, Jan 1973 through

December 2016, both seasonally adjusted (displayed in Figure B.1 of the Supplement). The MLEs
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for the model parameters are given by

ΣW =

 2.32 · 10−4 5.04 · 10−4

5.04 · 10−4 34.73 · 10−4

 ΣZ =

 110.44 · 10−5 7.17 · 10−5

7.17 · 10−5 128.57 · 10−5

 .
Because the trend variance for the second component is 15 times larger than that of the first

component, the correspoding trend filter does less smoothing.

We are interested in the performance of MDFA relative to the MB concurrent filter. We begin

with a specification of the LLM exactly corresponding to the model fitted to the Petrol data, so that

the MB concurrent filter Ψ̂ solves the LPP. (We refer to this as the null specification of the LLM.)

We show that MDFA (with appropriate constraints) can replicate this optimal filter. As with the

VAR(1) simulation we truncate the target MB filter to length 4001 and generate a simulated LLM

of length 4500. The simulations, together with the target trends (given by the WK trend filters),

are displayed in Figure 2.

Null LLM Alternative LLM Petrol Data

Series MB MDFA MB MDFA MB MDFA

Consumption .1285 .1268 1.3224 .9841 .1295 .1176

Imports .1728 .1691 .8433 .6603 2.1691 2.2033

Table 2: Empirical LPP MSE for real-time trend estimators (MB Concurrent filter versus MDFA
filter) applied to bivariate LLM null process, LLM alternative process, and Petrol data, with target
trend given by the null LLM MB trend. (Units of 10−3.)

We apply MDFA in the manner described in Section 4.3, where δS(z) = 1 − z and δN (z) = 1.

By extracting the bottom row (corresponding to T = 528, the length of the petrol sample) of

the matrix formula for the finite-sample filter (McElroy and Trimbur, 2015), we obtain a very

close approximation to the MB concurrent filter, which we denote by Ψ̂. Results are displayed in

Figure B.3 of the Appendix, with the target trend in black (these are the same black trend lines as

displayed in Figure 2, but here shown without the underlying simulation) and the MDFA real-time

trend in dark grey; MDFA does a good job of tracking the real trend, although with some loss to

smoothness in addition to a lag effect – this is to be expected of a concurrent filter, to some degree.

Indeed, the optimal concurrent filter (light grey) is exactly matched by the MDFA filter. The

first column block of Table 2 shows the in-sample MSE for the two concurrent filters (MB versus

MDFA), showing negligible discrepancies, i.e., the MDFA filter replicates the optimal concurrent

filter.
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Figure 3: Bivariate trend filter applied to alternative LLM simulation (grey), with trends in black.
The simulation is obtained from altering the paramteres of an LLM fitted to bivariate Petrol
(Consumption and Imports), so the component series of the simulation are labelled accordingly.

Next, we alter the specification to illustrate that MDFA can out-perform the MB concurrent

filter. We do this by substantially increasing the variability in the irregular, producing a noisier

simulation – now the MB concurrent will do too little smoothing. The new irregular covariance

matrix is

ΣZ =

 18.32 · 10−3 1.19 · 10−3

1.19 · 10−3 18.39 · 10−3

 .
We refer to this as the alternative LLM process. The resulting simulation with trends is shown in

Figure 3. Application of MDFA yields the trends plotted in Figure B.4 of the Appendix. For the

first series, MDFA tracks the MB trend better than the MB concurrent filter does; the second block

of columns in Table 2 shows the in-sample MSE for the two concurrent filters, showing substantial

improvements for MDFA (26% and 22% reductions to MSE, respectively for the two series).

Finally, we conduct a comparison on the Petroleum data itself, recognizing that the LLM might

be mis-specified. We do not have the long samples available considered before, so we compute a
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Figure 4: Monthly Petroleum data: LLM bivariate trend output (black), with non-stationary
MDFA trend (dark grey) and MB concurrent trend (light grey). The trend lines have been vertically
staggered for easier visualization.

series of MB trends based on the matrix formulas for signal extraction, based on the specified model,

and delete the first and last five years of such trends. The result is a trend that approximately

corresponds to the output of the symmetric MB filter Ψ. Taking the same MB filter as target, we

compute the non-stationary MDFA solution to the LPP, and compare to the concurrent MB filter

output. The resulting trends are plotted in Figure 4. The in-sample MSE is displayed in the final

block of columns in Table 2, showing a modest improvement for MDFA on the first series, and

similar performance on the second series.

5.3 Housing Starts

Next, we consider the quadvariate time series of Housing Starts (South, West, NorthEast, Mid-

West) January 1964 through December 2012, abbreviated as Starts (displayed in Figure C.5 of the

Supplement). As with the previous subsection, we simulate the null specification and verify that
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MDFA can replicate the MB concurrent filter. (In order to improve finite-sample effects, we let

T = 2000 while maintaining the filter length of 4001.) Again, we are using the constrained MDFA

described in section 4.3, where the signal has differencing operator (1 − z)2 (i.e., a double root at

frequency zero) and the noise has differencing operator U(z) (i.e., single roots at the other eleven

roots of unity). The alternative specification is obtained by increasing the variability in each of

the six atomic components that drive the seasonality – this has the effect of rendering the seasonal

more noisy, and hence a seasonal adjustment filter should have frf with wider troughs; we therefore

expect the MB concurrent filter will generate an overly stable seasonal component, leaving some

dynamic seasonality behind in the seasonal adjustment. Finally, we omit the first and last fifteen

years of data and engage in an empirical analysis, with results displayed in Figure C.11. All the

in-sample MSEs are provided in Table 3, with results displayed in Figures C.7, C.8, C.9, and C.10

of the Appendix.

Null Model Alternative Model Starts Data

Series MB MDFA MB MDFA MB MDFA

South 2.1371 2.0123 9.2617 7.4844 9.7014 10.1348

West .8051 .7398 3.5080 2.7124 2.4644 2.0859

NorthEast .1628 .1508 .8041 .6067 1.0232 1.0411

MidWest .4805 .4394 2.1825 1.6332 1.4035 1.1902

Table 3: Empirical LPP MSE for real-time seasonal adjustment estimators (MB Concurrent filter
versus MDFA filter) applied to quadvariate structural null process, structural alternative process,
and Starts data, with target seasonal adjustment given by the null structural MB seasonal adjust-
ment.

Again, MDFA replicates (and somewhat improves upon) the MB filter in in the null specification.

Under the alternative specification the MDFA filter is superior to the MB concurrent, yielding

19%, 23%, 26%, and 25% reductions to in-sample MSE, for South, West, NorthEast, and MidWest

respectively. On the actual data, with fifteen years of truncation the sample is still not long enough

to grant the periodogram a fully accurate portrayal of the dynamics, and therefore MDFA has worse

performance for South and NorthEast, with increases of 5% and 2% to in-sample MSE, whereas

for West and MidWest MDFA drops the MSE by 15% in both cases.
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6 Conclusion

Real-time signal extraction – and, more generally, the LPP – is a sophisticated estimation problem

with widespread applications to time series forecasting, monitoring and systems control. This

paper’s approach differs from the classic time series paradigm by replicating the true structure of the

multivariate LPP in the optimization criterion. Specifically, we substitute a generic target, involving

a linear combination of one-step and multi-step ahead forecasts (of possibly infinite horizon) for

the traditional one-step ahead error norm. Our first result is a real-time filter corresponding to a

Model-Based Analysis (MBA); secondly, we generalize these solutions by adopting a nonparametric

approach denoted Multivariate Direct Filter Analysis (MDFA). The generalization uses the same

choice of the target signal, but utilizes a nonparametric spectral estimate in the criterion and is

facillitated by a broad class of moving average filters. Various degrees of hybridization between the

MBA and MDFA designs are feasible.

Our empirical examples illustrate that: (i) the MDFA is able to replicate the MBA when

the chosen model corresponds to the true process, and (ii) the MDFA can outperform the MBA

in cases of model mis-specification, given that the MDFA filter class is taken sufficiently large.

Another distinguishing feature of our methoology is that filter coefficients are obtained directly, as

an argument (i.e., a parameter) of the criterion, which allows for more precise control of frequency

domain filter characteristics. As an example, improved timeliness of the real-time filter can be

obtained by imposing a vanishing time-shift at frequency zero (described as the TSC of Section

4.2). More generally, we discuss the construction of filter constraints that can accomodate unit

roots of arbitrary argument (i.e., complex roots of unit modulus and possibly non-zero phase) and

order in the data generating process. The empirical examples demonstrate the flexibility of this

approach, allowing us to address a nuanced presentation of seasonality, as well as trend extraction

of varying degrees of smoothness.

Our treatment readily extends to co-integration: McElroy (2017) discusses how co-integration

at at a unit root ζ = eiω can be viewed as the occurence of rank reduction in the spectral density

F of the differenced process at frequency ω. Curiously, it can occur that signal extraction filters

no longer have the property that they equal zero at a noise frequency ω, if this corresponds to

a co-integrating frequency. Hence, in order to construct real-time filters with the appropriate

properties, instead of insisting that Ψ̂(e−iω) = 0 we can just impose a mimicry of the target filter,

i.e., Ψ̂(e−iω) = Ψ(e−iω). This looks exactly the same as the constraint at the signal frequency, and
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is therefore trivial to implement. While in principle this extension is simple, we have omitted an

application from this paper, as a full treatment of the topic seems to merit a separate article.

Another extension is motivated from the univariate DFA, which was extended in Wildi and

McElroy (2019) to a still more general error criterion allowing for customization of filters, so that a

practitioner can directly accomodate specific user-priorities of having a smoother real-time estimate

of the signal, versus having a more timely estimate (i.e., less phase delay). A corresponding mul-

tivariate extension of the so-called Accuracy-Timeliness-Smoothness trilemma is currently under

investigation by the authors.

7 Proofs

Proof of Proposition 1. In order for a linear solution to be MSE optimal, it is sufficient that the

resulting error process be uncorrelated with the present and past data, denoted Xt:. If we can show

that the real-time signal extraction error process {εt} depends only on future innovations, then by

the causality of {Xt} the error process must be uncorrelated with Xt:, establishing optimality. The

filter error of the putative solution is given by

Ψ(z)− Ψ̂(z) =

−∞∑
`=−1

Ψ` z
`
(

1− [Θ(z)]∞−` Θ(z)−1
)

=

−∞∑
`=−1

Ψ` z
` [Θ(z)]

−(`+1)
0 Θ(z)−1.

Applying this to {Xt} yields

εt =
∞∑
`=1

Ψ−` [Θ(z)]`−1
0 εt+`.

Noting that [Θ(z)]`−1
0 is an order `−1 polynomial in z, and is applied to εt+`, it is apparent that εt

is a linear function of future innovations {εt+1, εt+2, . . .}. Computing the variance of εt yields the

expression for the minimal MSE. 2

Proof of Proposition 2. First note that the typical component of A has the form

〈Ψ(z)G〉` =

∞∑
k=−∞

Ψk 〈G〉`−k (24)

for 0 ≤ ` < q, which shows that A is real-valued. The argument follows the same method as in

McElroy and Findley (2015); each entry of the matrix objective function is a quadratic in Ξ, and

therefore the minimizer is obtained by computing the gradient and Hessian, which are −2A+ 2B Ξ

and 2B respectively, yielding the solution. Plugging back into DΨ yields (16). 2
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Proof of Proposition 3. Substituting (17) in (14) yields

DΨ(ϑ,G) = Φ′
[
R′BR

]
Φ +

[
Q′BR−A′R

]
Φ + Φ′

[
R′BQ−R′A

]
+Q′BQ−Q′A−A′Q+ 〈Ψ(e−iω)G(ω) Ψ(eiω)

′〉0.

Now by applying the method of proof in Proposition 2, we obtain the formula (19) for Φ. Plugging

back into DΨ(ϑ,G) yields the minimal value (20). 2

Proof of Proposition 4. We claim that Ψ](z) =
∑∞

j=−∞Ψ]
j z

j with

Ψ]
j =


ζ−(j+1)

∑∞
k=j+1 Ψk ζ

k j ≥ 0

−ζ−(j+1)
∑∞

k=−j Ψ−k ζ
−k j ≤ −1.

To show this, first observe that

Ψ(z)−Ψ(ζ) =
∞∑
j=1

Ψj (zj − ζj) +
−∞∑
j=−1

Ψj (zj − ζj).

Beginning with the first term, so that j ≥ 1, we write zj − ζj = ζj (z/ζ − 1) pj−1(z/ζ) where

pk(z) =
∑k

`=0 z
`. Next, by coefficient matching we can verify that

∞∑
j=1

Ψj (zj − ζj) = (z/ζ − 1)

∞∑
j=1

Ψj ζ
j pj−1(z/ζ)

= (z/ζ − 1)
∞∑
j=0

∞∑
k=j+1

Ψk ζ
k (z/ζ)j = (z − ζ)

∞∑
j=0

Ψ]
j z

j .

Next, take j ≤ −1, and use the symbol y = z−1:

−∞∑
j=−1

Ψj (zj − ζj) =

∞∑
j=1

Ψ−j (yj − ζ−j) = (yζ − 1)

∞∑
j=1

Ψ−j ζ
−j pj−1(yζ)

= (yζ − 1)

∞∑
j=0

∞∑
k=j+1

Ψ−k ζ
−k (yζ)j

= −y (z − ζ)
∞∑
j=1

ζj−1
∞∑
k=j

Ψ−k ζ
−k yj−1

= (z − ζ)

−∞∑
j=−1

Ψ]
j z

j .

This establishes algebraically that Ψ](z) with coefficients as defined above equals (Ψ(z)−Ψ(ζ))/(z−

ζ), whenever the Laurent series converges. Based on the above calculations, we can write

Ψ(z)−Ψ(ζ)

z − ζ
=

∞∑
j=1

(
Ψj ζ

j−1 pj−1(z/ζ)−Ψ−j ζ
−j y pj−1(yζ)

)
.
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To check the absolute convergence, it suffices to set z = 1; note that |pk(ζ)| ≤ (k + 1) if |ζ| = 1.

Thus we obtain the bound ∥∥∥∥Ψ(z)−Ψ(ζ)

z − ζ

∥∥∥∥ ≤ ∞∑
j=1

j (‖Ψj‖+ ‖Ψ−j‖) ,

which is finite by the assumption that ∂Ψ is absolutely convergent. Next, we claim that Ψ[(z) =∑∞
j=−∞Ψ[

j z
j with

Ψ[
j =


ζ−(j+2)

∑∞
k=j+2(k − 1− j) Ψk ζ

k j ≥ 0

ζ−(j+2)
∑∞

k=−j(k + j + 1) Ψ−k ζ
−k j ≤ −1.

To verify this, observe that

Ψ(z)−Ψ(ζ)− ∂Ψ(ζ) (z − ζ) ζ−1 =
∞∑
j=1

Ψj

[
(zj − ζj)− j ζj−1 (z − ζ)

]
+

−∞∑
j=−1

Ψj

[
(zj − ζj)− j ζj−1 (z − ζ)

]
.

First assuming that j ≥ 1, note that p`−1(z) − ` equals zero unless ` ≥ 2, and otherwise equals∑`−1
k=1 pk−1(z) (z − 1). Therefore

∞∑
j=1

Ψj

[
(zj − ζj)− j ζj−1 (z − ζ)

]
= (z − ζ)

∞∑
j=1

Ψj ζ
j−1 [pj−1(z/ζ)− j]

= (z − ζ)2
∞∑
j=2

Ψj ζ
j−2

j−1∑
k=1

pk−1(z/ζ)

= (z − ζ)2
∞∑
j=0

Ψ[
j z

j

by coefficient matching in the final step. Similarly, letting j ≤ −1 and using zp`−1(z) − ` =

(z − 1)
∑`

k=1 pk−1(z), we have

−∞∑
j=−1

Ψj

[
(zj − ζj)− j ζj−1 (z − ζ)

]
= (z − ζ)

∞∑
j=1

Ψ−j ζ
−j [−y pj−1(yζ) + j ζ−1

]
= (z − ζ)2 y

∞∑
j=1

Ψ−j ζ
−(j+1)

j∑
k=1

pk−1(yζ)

= (z − ζ)2 y ζ−1
∞∑
j=0

∞∑
k=j+1

(k − j) Ψ−k ζ
−k (yζ)j

= (z − ζ)2
−∞∑
j=−1

Ψ[
j z

j
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by matching coefficients. To establish convergence of the Laurent series for Ψ[, observe that

Ψ(z)−Ψ(ζ)− ∂Ψ(ζ) (z − ζ) ζ−1

(z − ζ)2 =

∞∑
j=2

Ψj ζ
j−2

j−1∑
k=1

pk−1(z/ζ) + y

∞∑
j=1

Ψ−j ζ
−(j+1)

j∑
k=1

pk−1(yζ).

Hence the matrix norm has the bound (setting z = 1 and taking |ζ| = 1) of∥∥∥∥Ψ(z)−Ψ(ζ)− ∂Ψ(ζ) (z − ζ) ζ−1

(z − ζ)2

∥∥∥∥ ≤ ∞∑
j=2

‖Ψj‖
(
j

2

)
+
∞∑
j=1

‖Ψ−j‖
(
j + 1

2

)
,

using |
∑j

k=1 pk−1(ζ)| ≤
(
j+1

2

)
. Because ∂∂Ψ is absolutely convergent, the above norm is finite.

2
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