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Abstract

We study the joint determination of the lag length, the dimension of the cointegrating space and
the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model
selection criteria. We consider model selection criteria which have data-dependent penalties as
well as the traditional ones. We suggest a new two-step model selection procedure which is a
hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency.
Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise
from the joint determination of lag-length and rank using our proposed procedure, relative to an
unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the
lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian
inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the
model-selection strategy proposed here. The gains in different measures of forecasting accuracy are
substantial, especially for short horizons.
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1 Introduction

There is a large body of literature on the effect of cointegration on forecasting. Engle & Yoo (1987)

compare the forecasts generated from an estimated vector error correction model (VECM) assuming

that the lag order and the cointegrating rank are known, with those from an estimated VAR in levels

with the correct lag. They find out that the VECM only produces forecasts with smaller mean squared

forecast errors (MSFE) in the long-run. Clements & Hendry (1995) note that Engle and Yoo’s conclu-

sion is not robust if the object of interest is differences rather than levels, and use this observation to

motivate their alternative measures for comparing multivariate forecasts. Hoffman & Rasche (1996)

confirm Clements and Hendry’s observation using a real data set. Christoffersen & Diebold (1998) also

use Engle and Yoo’s setup, but argue against using a VAR in levels as a benchmark on the grounds that

the VAR in levels not only does not impose cointegration, it does not impose any unit roots either. In-

stead, they compare the forecasts of a correctly specified VECM with forecasts from correctly specified

univariate models, and find no advantage in MSFE for the VECM. They use this result as a motivation

to suggest an alternative way of evaluating forecasts of a cointegrated system. Silverstovs et al. (2004)

extend Christoffersen and Diebold’s results to multicointegrated systems. Since the afore-mentioned

papers condition on the correct specification of the lag length and cointegrating rank, they cannot

provide an answer as to whether we should examine the cointegrating rank of a system in multivariate

forecasting if we do not have any a priori reason to assume a certain form of cointegration.

Lin & Tsay (1996) examine the effect on forecasting of the mis-specification of the cointegrating

rank. They determine the lag order using the AIC, and compare the forecasting performance of

estimated models under all possible numbers of cointegrating vectors (0 to 4) in a four-variable system.

They observe that, keeping the lag order constant, the model with the correct number of cointegrating

vectors achieves a lower MSFE for long-run forecasts, especially relative to a model that over-specifies

the cointegrating rank. Although Lin and Tsay do not assume the correct specification of the lag

length, their study also does not address the uncertainty surrounding the number of cointegrating

vectors in a way that can lead to a modelling strategy for forecasting possibly cointegrated variables.

Indeed, the results of their example with real data, in which they determine the cointegrating rank

using a sequence of hypothesis tests, do not accord with their simulation results.

At the same time, there is an increasing amount of evidence of the advantage of considering rank

restrictions for short-term forecasting in stationary VAR (and VARMA) models (see, for example, Ahn

& Reinsel 1988, Vahid & Issler 2002, Athanasopoulos & Vahid 2008). One feature of these papers

is that they do not treat lag-length and rank uncertainty, differently. Their quest is to identify the

dimension of the most parsimonious state vector that can represent the dynamics of a system. Here,
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we add the cointegrating rank to the menu of unknowns and evaluate model selection criteria that

determine all of these unknowns simultaneously. Our goal is to determine a modelling strategy that is

useful for multivariate forecasting.

There are other papers in the literature that evaluate the performance of model selection criteria

for determining lag-length and cointegrating rank, but they do not evaluate the forecast performance of

the resulting models. Gonzalo & Pitarakis (1999) show that in large systems the usual model selection

procedures may severely underestimate the cointegrating rank. Chao & Phillips (1999) show that the

posterior information criterion (PIC) performs well in choosing the lag-length and the cointegrating

rank simultaneously.

In this paper we evaluate the performance of model selection criteria in the simultaneous choice

of the lag-length p, the rank of the cointegrating space q, and the rank of other parameter matrices r

in a vector error correction model. We suggest a hybrid model selection strategy that selects p and r

using a traditional model selection criterion, and then chooses q based on PIC. We then evaluate the

forecasting performance of models selected using these criteria.

Our simulations cover the three issues of model building, estimation, and forecasting. We examine

the performances of model selection criteria that choose p, r and q simultaneously (IC(p, r, q)), and

compare their performances with a procedure that chooses p using a standard model selection criterion

(IC(p)) and determines the cointegrating rank using a sequence of likelihood ratio tests proposed by

Johansen (1988). We provide a comparison of the forecasting accuracy of fitted VARs when only coin-

tegration restrictions are imposed, when cointegration and short-run restrictions are jointly imposed,

and when neither are imposed. These comparisons take into account the possibility of model misspec-

ification in choosing the lag length of the VAR, the number of cointegrating vectors, and the rank of

other parameter matrices. In order to estimate the parameters of a model with both long-run and

short-run restrictions, we propose a simple iterative procedure similar to the one proposed by Centoni

et al. (2007).

It is very difficult to claim that any result found in a Monte Carlo study is general, especially in

multivariate time series. There are examples in the VAR literature of Monte Carlo designs which led

to all model selection criteria overestimating the true lag in small samples, therefore leading to the

conclusion that the Schwarz criterion is the most accurate. The most important feature of these designs

is that they have a strong propagation mechanism.1 There are other designs with weak propagation

mechanisms that result in all selection criteria underestimating the true lag and leading to the conclu-

sion that AIC’s asymptotic bias in overestimating the true lag may actually be useful in finite samples

1Our measure of the strength of the propagation mechanism is proportional to the trace of the product of the variance
of first differences and the inverse of the variance of innovations.
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(see Vahid & Issler 2002, for references). We pay particular attention to the design of the Monte Carlo

to make sure that we cover a wide range of data generating processes in terms of the strength of their

propagation mechanisms.

The outline of the paper is as follows. In Section 2 we study finite VARs with long-run and short-

run restrictions and motivate their empirical relevance. In Section 3, we outline an iterative procedure

for computing the maximum likelihood estimates of parameters of a VECM with short-run restrictions.

We provide an overview of model selection criteria in Section 4, and in particular we discuss model

selection criteria with data dependent penalty functions. Section 5 describes our Monte Carlo design.

Section 6 presents the simulation results and Section 8 concludes.

2 VAR models with long-run and short-run common factors

We start from the triangular representation of a cointegrated system used extensively in the cointegra-

tion literature (some early examples are Phillips & Hansen 1990, Phillips & Loretan 1991, Saikkonen

1992). We assume that the K-dimensional time series

yt =

(
y1t
y2t

)
, t = 1, ..., T

where y1t is q × 1 (implying that y2t is (K − q)× 1) is generated from:

y1t = βy2t + u1t (1)

∆y2t = u2t

where β is a q × (K − q) matrix of parameters, and

ut =

(
u1t
u2t

)
is a strictly stationary process with mean zero and positive definite covariance matrix. This is a data

generating process (DGP) of a system of K cointegrated I(1) variables with q cointegrating vectors,

also referred to as a system of K I(1) variables with K−q common stochastic trends (some researchers

also refer to this as a system of K variables with K− q unit roots, which can be ambiguous if used out

of context, and we therefore do not use it here).2 The extra feature that we add to this fairly general

DGP is that ut is generated from a VAR of finite order p and rank r (< K).

In empirical applications, the finite VAR(p) assumption is routine. This is in contrast to the

theoretical literature on testing for cointegration, in which ut is assumed to be an infinite VAR, and

2While in theory every linear system of K cointegrated I(1) variables with q cointegrating vectors can be represented
in this way, in practice the decision on how to partition K-variables into y1t and y2t is not trivial, because y1t are variables
which must definitely have a non-zero coefficient in the cointegrating relationships.
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a finite VAR(p) is used as an approximation (e.g. Saikkonen 1992). Here, our emphasis is on building

multivariate forecasting models rather than hypothesis testing. The finite VAR assumption is also

routine when the objective is studying the maximum likelihood estimator of the cointegrating vectors,

as in Johansen (1988).

The reduced rank assumption is considered for the following reasons. Firstly, this assumption

means that all serial dependence in the K-dimensional vector time series ut can be characterised by

only r < K serially dependent indices. This is a feature of most macroeconomic models, in which

the short-run dynamics of the variables around their steady states are generated by a small number

of serially correlated demand or supply shifters. Secondly, this assumption implies that there are

K − r linear combinations of ut that are white noise. Gourieroux & Peaucelle (1992) call such time

series “codependent,” and interpret the white noise combinations as equilibrium combinations among

stationary variables. This is justified on the grounds that, although each variable has some persistence,

the white noise combinations have no persistence at all. For instance, if an optimal control problem

implies that the policy instrument should react to the current values of the target variables, then it is

likely that there will be such a linear relationship between the observed variables up to a measurement

noise. Finally, many papers in multivariate time series literature provide evidence of the usefulness of

reduced rank VARs for forecasting (see, for example, Velu et al. 1986, Ahn & Reinsel 1988). Recently,

Vahid & Issler (2002) have shown that failing to allow for the possibility of reduced rank structure can

lead to developing seriously misspecified vector autoregressive models that produce bad forecasts.

The dynamic equation for ut is therefore given by (all intercepts are suppressed to simplify the

notation)

ut = B1ut−1 +B2ut−2 + · · ·+Bput−p + εt (2)

where B1, B2, ..., Bp are K×K matrices with rank
[
B1 B2 ... Bp

]
= r, and εt is an i.i.d. sequence

with mean zero and positive definite variance-covariance matrix and finite fourth moments. Note that

the rank condition implies that each Bi has rank at most r, and the intersection of the null-spaces

of all Bi is a subspace of dimension K − r. The following lemma derives the vector error correction

representation of this data generating process.

Lemma 1 The data generating process given by equations (1) and (2) has a reduced rank vector error

correction representation of the type

∆ yt = γ
(
Iq −β

)
yt−1 + Γ1∆ yt−1 + Γ2∆ yt−2 + · · ·+ Γp∆ yt−p + ηt, (3)

in which rank
[

Γ1 Γ2 ... Γp
]
≤ r.

Proof. Refer to the working paper version of the current paper.
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This lemma shows that the triangular DGP (1) under the assumption that the dynamics of its

stationary component (i.e. ut) can be characterised by a small number of common factors, is equivalent

to a VECM in which the coefficient matrices of lagged differences have reduced rank and their left null-

spaces overlap. Hecq et al. (2006) call such a structure a VECM with weak serial correlation common

features (WSCCF).

We should note that the triangular structure (1) implies K − q common Beveridge-Nelson (BN)

trends, but the reduced rank structure assumed for ut does not imply that deviations from the BN

trends (usually refereed to as BN cycles) can be characterised as linear combinations of r common

factors. Vahid & Engle (1993) show that a DGP with common BN trends and cycles is a special

case of the above under some additional restrictions and therefore a stricter form of comevement. Hecq

et al. (2006) show that the uncertainty in determining the rank of the cointegrating space can adversely

affect inference on common cycles, and they conclude that testing for weak common serial correlation

features is a more accurate means of uncovering short-run restrictions in vector error correction models.

Our objective is to come up with a model development methodology that allows for cointegration

and weak serial correlation common features. For stationary time series, Vahid & Issler (2002) show

that allowing for reduced rank models is beneficial for forecasting. For partially non-stationary time

series, there is an added dimension of cointegration. Here, we examine the joint benefits of cointegration

and short-run rank restrictions for forecasting partially non-stationary time series.

3 Estimation of VARs with short-run and long-run restrictions

The maximum likelihood estimation of the parameters of a VAR written in error-correction form

∆ yt = Π yt−1 + Γ1∆ yt−1 + Γ2∆ yt−2 + · · ·+ Γp∆ yt−p + ηt (4)

under the long-run restriction that the rank of Π is q, the short-run restriction that rank of

[ Γ1 Γ2 ... Γp ] is r and the assumption of normality, is possible via a simple iterative procedure

that uses the general principle of the estimation of reduced rank regression models (Anderson 1951).

Noting that the above model can be written as

∆ yt = γ α′yt−1 + C [D1∆ yt−1 +D2∆ yt−2 + · · ·+Dp∆ yt−p] + ηt, (5)

where α is a K×q matrix of rank q and C is a K×r matrix of rank r, one realises that if α was known,

C and Di, i = 1, . . . , p, could be estimated using a reduced rank regression of ∆ yt on ∆ yt−1, · · · ,∆ yt−p

after partialling out α′yt−1. Also, if Di, i = 1, . . . , p, were known, then γ and α could be estimated

using a reduced rank regression of ∆ yt on yt−1 after controlling for
∑p

i=1Di∆ yt−i. This points to an

easy iterative procedure for computing maximum likelihood estimates for all parameters.
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Step 0. Estimate [D̂1, D̂2, . . . , D̂p] from a reduced rank regression of ∆ yt on (∆yt−1, ...,∆yt−p) control-

ling for yt−1. Recall that these estimates are simply coefficients of the canonical variates cor-

responding to the r largest squared partial canonical correlations (PCCs) between ∆ yt and

(∆yt−1, ...,∆yt−p), controlling for yt−1.

Step 1. Compute the PCCs between ∆ yt and yt−1 conditional on

[D̂1∆ yt−1 + D̂2∆ yt−2 + · · · + D̂p∆ yt−p]. Take the q canonical variates α̂′yt−1 corresponding

to the q largest squared PCCs as estimates of cointegrating relationships. Regress ∆ yt on α̂′yt−1

and [D̂1∆ yt−1+D̂2∆ yt−2+· · ·+D̂p∆ yt−p], and compute ln |Ω̂|, the logarithm of the determinant

of the residual variance matrix.

Step 2. Compute the PCCs between ∆ yt and (∆yt−1, ...,∆yt−p) conditional on α̂′yt−1. Take the r canoni-

cal variates [D̂1∆ yt−1 + D̂2∆ yt−2 + · · · + D̂p∆ yt−p] corresponding to the largest r

PCCs as estimates of [D1∆ yt−1 + D2∆ yt−2 + · · · + Dp∆ yt−p]. Regress ∆ yt on α̂′yt−1 and

[D̂1∆ yt−1 + D̂2∆ yt−2 + · · ·+ D̂p∆ yt−p], and compute ln |Ω̂|, the logarithm of the determinant of

the residual variance matrix. If this is different from the corresponding value computed in Step

1, go back to Step 1. Otherwise, stop.

The value of ln |Ω̂| becomes smaller at each stage until it achieves its minimum, which we denote

by ln |Ω̂p,r,q|. The values of α̂ and [D̂1, D̂2, . . . , D̂p] in the final stage will be the maximum likeli-

hood estimators of α and [D1, D2, . . . , Dp]. The maximum likelihood estimates of other parameters

are simply the coefficient estimates of the final regression. Note that although γ and α, and also C

and [D1, D2, . . . , Dp], are only identified up to appropriate normalisations, the maximum likelihood

estimates of Π and [Γ1,Γ2, . . . ,Γp] are invariant to the choice of normalisation. Therefore, the normal-

isation of the canonical correlation analysis is absolutely innocuous, and the “raw” estimates produced

from this procedure can be linearly combined to produce any desired alternative normalisation. Also,

the set of variables that are partialled out at each stage should include constants and other deterministic

terms if needed.

4 Model selection

The modal strategy in applied work for modelling a vector of I(1) variables is to use a model selection

criterion for choosing the lag length of the VAR, then test for cointegration conditional on the lag-order,

and finally estimate the VECM. Hardly ever any further step is taken to simplify the model, and if

any test of the adequacy of the model is undertaken, it is usually a system test. For example, to test

the adequacy of the dynamic specification, additional lags of all variables are added to all equations,
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and a test of joint significance for K2 parameters is used. For stationary time series, Vahid & Issler

(2002) show that model selection criteria severely underestimate the lag order in weak systems, i.e. in

systems where the propagation mechanism is weak. They also show that using model selection criteria

(suggested in Lütkepohl 1993, p. 202) to choose lag order and rank simultaneously can remedy this

shortcoming significantly.

In the context of VECMs, one can consider selecting (p, r) with these model selection criteria first,

and then use a sequence of likelihood ratio tests to determine the rank of the cointegrating space q.

Specifically, these are the analogues of Akaike information criterion (AIC), the Hannan and Quinn

criterion (HQ) and the Schwarz criterion (SC), and are defined as

AIC(p, r) = T
K∑

i=K−r+1

ln
(

1− λ̂2i (p)
)

+ 2(r(K − r) + rKp) (6)

HQ (p, r) = T
K∑

i=K−r+1

ln
(

1− λ̂2i (p)
)

+ 2(r(K − r) + rKp) ln lnT (7)

SC (p, r) = T

K∑
i=K−r+1

ln
(

1− λ̂2i (p)
)

+ (r(K − r) + rKp) lnT, (8)

where K is the dimension of (number of series in) the system, r is the rank of

[ Γ1 Γ2 ... Γp ], p is the number of lagged differences in the VECM, T is the number of observations,

and λ̂2i (p) are the sample squared PCCs between ∆yt and the set of regressors (∆yt−1, ...,∆yt−p) after

the linear influence of yt−1 (and deterministic terms such as a constant term and seasonal dummies if

needed) is taken away from them, sorted from the smallest to the largest. Traditional model selection

criteria are special cases of the above when rank is assumed to be full, i.e. when r is equal to K. Here,

the question of the rank of Π, the coefficient of yt−1 in the VECM, is set aside, and taking the linear

influence of yt−1 away from the dependent variable and the lagged dependent variables concentrates

the likelihood on [ Γ1 Γ2 ... Γp ]. Then, conditional on the p and the r that minimise one of these

criteria, one can use a sequence of likelihood ratio tests to determine q. While in the proof of Theorem 2

we show that the estimators of p and r based on HQ and SC are consistent, the estimator of q from the

sequential testing method with a fixed level of significance is obviously not. Moreover, the asymptotic

distribution of the likelihood ratio test statistic for q conditional on selected p and r may be far from

that when the true p and r are known (Leeb & Potscher 2005). Here, we study model selection criteria

which choose p, r and q.

We consider two classes of model selection criteria. First, we consider direct extensions of the AIC,

HQ and SC to the case where the rank of the cointegrating space, which is the same as the rank of Π,
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is also a parameter to be selected by the criteria. Specifically, we consider

AIC(p, r, q) = T ln |Ω̂p,r,q|+ 2(q(K − q) +Kq + r(K − r) + rKp) (9)

HQ(p, r, q) = T ln |Ω̂p,r,q|+ 2(q(K − q) +Kq + r(K − r) + rKp) ln lnT (10)

SC(p, r, q) = T ln |Ω̂p,r,q|+ (q(K − q) +Kq + r(K − r) + rKp) lnT, (11)

where ln |Ω̂p,r,q| (the minimised value of the logarithm of the determinant of the variance of the residuals

of the VECM of order p, with Π having rank q and [ Γ1 Γ2 ... Γp ] having rank r) is computed by

the iterative algorithm described above in Section 3. Obviously, when q = 0 or q = K, we are back

in the straightforward reduced rank regression framework, where one set of eigenvalue calculations for

each p provides the value of the log-likelihood function for r = 1, ...,K. Similarly, when r = K, we are

back in the usual VECM estimation, and no iterations are needed.

We also consider a model selection criterion with a data dependent penalty function. Such model

selection criteria date back at least to Poskitt (1987), Rissanen (1987) and Wallace & Freeman (1987).

The model selection criterion that we consider in this paper is closer to those inspired by the “minimum

description length (MDL)” criterion of Rissanen (1987) and the “minimum message length (MML)”

criterion of Wallace & Freeman (1987). Both of these criteria measure the complexity of a model by

the minimum length of the uniquely decipherable code that can describe the data using the model.

Rissanen (1987) establishes that the closest the length of the code of any emprical model can possibly

get to the length of the code of the true DGP Pθ is at least as large as 1
2 ln |Eθ(FIMM (θ̂))|, where

FIMM (θ̂) is the Fisher information matrix of model M (i.e., [−∂2lnlM/∂θ∂θ′], the second derivative

of the log-likelihood function of the model M) evaluated at θ̂, and Eθ is the mathematical expectation

under Pθ. Rissanen uses this bound as a penalty term to formulate the MDL as a model selection

criterion,

MDL = − ln lM (θ̂) +
1

2
ln |FIMM (θ̂)|.

Wallace and Freeman’s MML is also based on coding and information theory but is derived from

a Bayesian perspective. The MML criterion is basically the same as the MDL plus an additional term

that is the prior density of the parameters evaluated at θ̂ (see Wallace 2005, for more details and a

summary of recent advances in this line of research). While the influence of this term is dominated

by the other two terms as sample size increases, it plays the important role of making the criterion

invariant to arbitrary linear transformations of the regressors in a regression context.

Based on their study of the asymptotic form of the Bayesian data density, Phillips (1996) and

Phillips & Ploberger (1996) design the posterior information criterion (PIC), which is similar to MML

and MDL criteria. Their important contribution has been to show that such criteria can be applied
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to partially nonstationary time series as well.3 Chao & Phillips (1999) use the PIC for simultaneous

selection of the lag length and cointegration rank in VARs.

There are practical difficulties in working with PIC that motivates simplifying this criterion. One

difficulty is that FIMM (θ̂) must be derived and coded for all models considered (The details of the

Fisher information matrix for a reduced rank VECM is given in the appendix). A more important one

is the large dimension of FIMM (θ̂). For example, if we want to choose the best VECM allowing for up

to 4 lags in a six variable system, we have to compute determinants of square matrices of dimensions as

large as 180. These calculations are likely to push the boundaries of numerical accuracy of computers,

in particular when these matrices are ill-conditioned4. This, and the favourable results of the HQ

criterion in selecting lag p and rank of stationary dynamics r, led us to consider a two step procedure.

4.1 A two-step procedure for model selection

In the first step, the linear influence of yt−1 is removed from ∆yt and (∆yt−1, ...,∆yt−p), then HQ(p, r),

as defined in (7), is used to determine p and r. Then PIC is calculated for the chosen values of p and

r, for all q from 0 to K. This reduces the task to K + 1 determinant calculations only.

Theorem 2 If the data generating process is

∆yt = c+ Πyt−1 + Γ1∆yt−1 + Γ2∆yt−2 + · · ·+ Γp0∆yt−p0 + ηt

in which

(i) all roots of the characteristic polynomial of the implied VAR for yt are on or outside the unit circle

and all those on the unit circle are +1;

(ii) the rank of Π is q0 ≤ K, which implies that Π can be written as γα′ where γ and α are full rank

K × q0 matrices;

(iii) γ′⊥ (I −
∑p0

i=1 Γi)α⊥ has full rank where γ⊥ and α⊥ are full rank K × (K − q0) matrices such that

γ′⊥γ = α′⊥α = 0;

(iv) the rank of [ Γ1 Γ2 ... Γp0 ] is r0 ≤ K;

(v) the rank of Γp0 is not zero;

(vi) E(ηt | Ft−1) = 0 and E(ηtη
′
t | Ft−1) = Ω positive definite where Ft−1 is the σ-field generated by

{ηt−1, ηt−2, . . .}, and E(η4it) <∞ for i = 1, 2, . . . ,K,

3Ploberger & Phillips (2003) generalised Rissanen’s result to show that even for trending time series, the distance
between any empirical model and the Pθ is larger or equal to 1

2
ln |Eθ(FIMM )| almost everywhere on the parameter space.

They use the outer-product formulation of the information matrix, which has the same expected value as the negative of
the second derivative under Pθ.

4In our simulations, we came across one case where the determinant was returned to be a small negative number even
though the matrix was symmetric positive definite. This happened both using GAUSS and also using MATLAB.
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and the maximum possible lag considered pmax ≥ p0, then the estimators of p, r and q obtained from

the two step procedure explained above are consistent.

Proof. See Appendix B.

5 Monte-Carlo design

To make the Monte-Carlo simulation manageable, we use a three-dimensional VAR. We consider VARs

in levels with lag lengths of 2 and 3, which translates to 1 and 2 lagged differences in the VECM. This

choice allows us to study the consequences of both under- and over-parameterisation of the estimated

VAR.

For each p0, r0 and q0 we draw many sets of parameter values from the parameter space of coin-

tegrated VARs with serial correlation common features that generate difference stationary data. In

order to ensure that the DGPs considered do not lie in a subset of the parameter space that implies

only very weak or only very strong propagation mechanisms we choose 50 DGPs with system R2s (as

defined in Vahid & Issler 2002) that range between 0.3 and 0.65, with a median between 0.4 and 0.5

and 50 DGPs with system R2s that range between 0.65 and 0.9, with a median between 0.7 and 0.8.

From each DGP, we generate 1,000 samples of 100, 200 and 400 observations (the actual generated

samples were longer, but the initial part of each generated sample is discarded to reduce the effect of

initial conditions). In summary, our results are based on 1,000 samples of 100 different DGPs — a

total of 100,000 different samples — for each of T = 100, 200 or 400 observations.

The Monte-Carlo procedure can be summarised as follows. Using each of the 100 DGPs, we

generate 1,000 samples (with 100, 200 and 400 observations). We record the lag length chosen by

traditional (full-rank) information criteria, labeled IC(p) for IC={AIC, HQ, SC}, and the corresponding

lag length chosen by alternative information criteria, labeled IC(p, r, q) for IC={AIC, HQ, SC, PIC,

HQ-PIC} where the last is the hybrid procedure we propose in Section 4.1.

We should note that although we present the results averaged over all 100 DGPs we have also

analysed the results for the DGPs with low and high R2s separately. We indeed found that any

advantage of model selection criteria with a relatively smaller (larger) penalty factor was accentuated

when only considering DGPs with relatively weaker (stronger) propagation mechanisms. In order to

save space we do not present these results here but they are available upon request.

For choices made using the traditional IC(p) criteria, we use Johansen’s (1988, 1991) trace test

at the 5% level of significance to select q, and then estimate a VECM with no short-run restrictions.

For choices made using IC(p, r, q), we use the two step procedure of Section 4.1 to obtain the triplet

(p, r, q), and then estimate the resulting VECM with SCCF restrictions using the algorithm of Section
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3. For each case we record the out-of-sample forecasting accuracy measures for up to 16 periods ahead.

We then compare the out-of-sample forecasting accuracy measures for these two types of VAR models.

5.1 Measuring forecast accuracy

We measure the accuracy of forecasts using the traditional trace of the mean-squared forecast error

matrix (TMSFE) and the determinant of the mean-squared forecast error matrix |MSFE| at different

horizons. We also compute Clements and Hendry’s (1993) generalized forecast error second moment

(GFESM). GFESM is the determinant of the expected value of the outer product of the vector of

stacked forecast errors of all future times up to the horizon of interest. For example, if forecasts up to

h quarters ahead are of interest, this measure will be:

GFESM =

∣∣∣∣∣∣∣∣∣E


ε̃t+1

ε̃t+2
...

ε̃t+h




ε̃t+1

ε̃t+2
...

ε̃t+h


′∣∣∣∣∣∣∣∣∣ ,

where ε̃t+h is the K-dimensional forecast error of our K-variable model at horizon h. This measure

is invariant to elementary operations that involve different variables (TMSFE is not invariant to such

transformations), and also to elementary operations that involve the same variable at different horizons

(neither TMSFE nor |MSFE| is invariant to such transformations). In our Monte-Carlo, the above

expectation is evaluated for every model, by averaging over replications.

There is one complication associated with simulating 100 different DGPs. Simple averaging across

different DGPs is not appropriate, because the forecast errors of different DGPs do not have identical

variance-covariance matrices. Lütkepohl (1985) normalises the forecast errors by their true variance-

covariance matrix in each case before aggregating. Unfortunately, this would be a very time consuming

procedure for a measure like GFESM, which involves stacked errors over many horizons. Instead, for

each information criterion, we calculate the percentage gain in forecasting measures, comparing the

full-rank models selected by IC(p), with the reduced-rank models chosen by IC(p, r, q). This procedure

is done at every iteration and for every DGP, and the final results are then averaged.

6 Monte-Carlo simulation results

6.1 Selection of lag, rank, and the number of cointegrating vectors

Simulation results are reported in “three-dimensional” frequency tables. The columns correspond to

the percentage of times the selected models had cointegrating rank smaller than the true rank (q < q0),

equal to the true rank (q = q0) and larger than the true rank (q > q0). The rows correspond to similar

information about the rank of short-run dynamics r. Information about the lag-length is provided
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within each cell, where the entry is disaggregated on the basis of p. The three numbers provided in

each cell, from left to right, correspond to percentages with lag lengths smaller than the true lag, equal

to the true lag and larger than the true lag. The ‘Total’ column on the right margin of each table

provides information about marginal frequencies of p and r only. The row titled ‘Total’ on the bottom

margin of each table provides information about the marginal frequencies of p and q only. Finally, the

bottom right cell provides marginal information about the lag-length choice only.

We report results of two sets of 100 DGPs. Table 1 summarises the model selection results for 100

DGPs that have one lag in differences with a short-run rank of one and cointegrating rank of two, i.e.,

(p0, r0, q0) = (1, 1, 2). Table 2 summarises the model selection results for 100 DGPs that have two lags

in differences with a short-run rank of one and cointegrating rank of one (p0, r0, q0) = (2, 1, 1). These

two groups of DGPs are contrasting in the sense that the second group of DGPs have more severe

restrictions in comparison to the first one.

The first three panels of the tables correspond to all model selection based on the traditional model

selection criteria. The additional bottom row for each of these three panels provides information about

the lag-length and the cointegrating rank, when the lag-length is chosen using the simple version of

that model selection criterion and the cointegrating rank is chosen using the Johansen procedure,

and in particular the sequential trace test with 5% critical values that are adjusted for sample size.

Comparing the rows labeled ‘AIC+J’, ‘HQ+J’ and ‘SC+J’, we conclude that the inference about q

is not sensitive to whether the selected lag is correct or not. In Table 1 all three criteria choose the

correct q approximately 54%, 59% and 59% of the time for sample sizes 100, 200 and 400, respectively.

In Table 2 all three criteria choose the correct q approximately 70%, 82% and 82% of the time for

sample sizes 100, 200 and 400, respectively.

From the first three panels of Table 1 we can clearly see that traditional model selection criteria do

not perform well in choosing p, r and q jointly in finite samples. The percentages of times the correct

model is chosen are only 22%, 26% and 29% with the AIC, 39%, 52% and 62% with HQ, and 42%,

63% and 79% with SC, for sample sizes of 100, 200 and 400, respectively. Note that when we compare

the marginal frequencies of (p, r), HQ is the most successful for choosing both p and r, a conclusion

that is consistent with results in Vahid & Issler (2002).

The main reason for not being able to determine the triplet (p, r, q) correctly is the failure of

these criteria to choose the correct q. Ploberger & Phillips (2003) show that the correct penalty for

free parameters in the long-run parameter matrix is larger than the penalty considered by traditional

model selection criteria. Accordingly, all three criteria are likely to over-estimate q in finite samples,

and of them SC is likely to appear relatively most successful because it assigns a larger penalty to all

free parameters, even though the penalty is still less than ideal. This is exactly what the simulations
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reveal.

The fourth panel of Table 1 includes results for the PIC. The percentages of times the correct model

is chosen increase to 52%, 77% and 92% for sample sizes of 100, 200 and 400, respectively. Comparing

the margins, it becomes clear that this increased success relative to HQ and SC is almost entirely due

to improved precision in the selection of q. The PIC chooses q correctly 76%, 91% and 97% of the time

for sample sizes 100, 200 and 400, respectively. Furthermore, for the selection of p and r only, PIC

does not improve upon HQ.

Similar conclusions can be reached from the results for the (2, 1, 1) DGPs presented in Table 2.

We note that in this case, even though the PIC improves on HQ and SC in choosing the number

of cointegrating vectors, it does not improve on HQ or SC in choosing the exact model, because it

severely underestimates p. This echoes the findings of Vahid & Issler (2002) in the stationary case that

the Schwarz criterion (recall that the PIC penalty is of the same order as the Schwarz penalty in the

stationary case) severely underestimates the lag length in small samples in reduced rank VARs.

Our Monte-Carlo results show that the advantage of PIC over HQ and SC is in the determination

of the cointegrating rank. Indeed, HQ seems to have an advantage over PIC in selecting the correct p

and r in small samples. These results coupled with the practical difficulties in computing the PIC we

outline in Section 4 motivated us to consider the two-step alternative procedure to improve the model

selection task.

The final panels in Tables 1 and 2 summarise the performance of our two-step procedure. In both

tables we can see that the hybrid HQ-PIC procedure improves on all other criteria in selecting the

exact model. The improvement is a consequence of the advantage of HQ in selecting p and r better,

and PIC in selecting q better.

Note that our hybrid procedure results in over-parameterised models more often than just using PIC

as the model selection criterion. We examined whether this trade-off has any significant consequences

for forecasting and found that it does not. In all simulation settings, models selected by the hybrid

procedure with HQ-PIC as the model selection criteria forecast better than models selected by PIC.

Again, we do not present these results here, but they are also available upon request.

6.2 Forecasts

Recall that the forecasting results are expressed as the percentage improvement in forecast accuracy

measures of possibly rank reduced models over the unrestricted VAR model in levels selected by SC.

Also, note that the object of interest in this forecasting exercise is assumed to be the first difference of

variables, although GFESM gives a measure of accuracy that is the same for levels or differences.

We label the models chosen by the hybrid procedure proposed in the previous section and estimated
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by the iterative process of Section 3 as VECM(HQ-PIC). We label the models estimated by the usual

Johansen method with AIC as the model section criterion for the lag order as VECM(AIC+J).

Table 3 presents the forecast accuracy improvements in a (1, 1, 2) setting. In terms of the trace

and determinant of the MSFE matrix, there is some improvement in forecasts over unrestricted VAR

models at all horizons. With only 100 observations, GFESM worsens for horizons 8 and longer. This

means that if the object of interest was some combination of differences across different horizons (for

example, the levels of all variables or the levels of some variables and first differences of others), there

may not have been any improvement in the MSFE matrix. With 200 or more observations, all forecast

accuracy measures show some improvement, with the more substantial improvements being for the

one-step-ahead forecasts. Also note that the forecasts of the models selected by the hybrid procedure

are almost always better than those produced by the model chosen by the AIC plus Johansen method,

which only pays attention to lag-order and long-run restrictions.

Table 4 presents the forecast accuracy improvements in a (2, 1, 1) setting. This set of DGPs have

more severe rank reductions than the (1, 1, 2) DGPs, and, as a result, the models selected by the

hybrid procedure show more substantial improvements in forecasting accuracy over the VAR in levels,

in particular for smaller sample sizes. Forecasts produced by the hybrid procedure are also substantially

better than forecasts produced by the AIC+Johansen method, which does not incorporate short-run

rank restrictions. Note that although the AIC+Johansen forecasts are not as good as the HQ-PIC

forecasts, they are substantially better than the forecasts from unrestricted VARs at short horizons.

Following a request from a referee in Tables 3 and 4 we have also presented Diebold & Mariano

(1995) tests for equal predictive accuracy between the rank reduced specifications and the unrestricted

VARs for the TMSFE. In general the results are as expected. Models that incorporate reduced rank

restrictions rarely forecast significantly worse than the unrestricted models. They either perform the

same or significantly better than the unrestricted VARs.

7 Empirical example

The techniques discussed in this paper are applied in two different forecasting exercises to two data sets.

The first data set contains Brazilian inflation, as measured by three different types of consumer-price

indices, available on a monthly basis from 1994:9 to 2009:11, with a span of more than 15 years (183

observations). It was extracted from IPEADATA – a public database with downloadable Brazilian data

(http://www.ipeadata.gov.br/). The second data set consists of real U.S. per-capita private output5,

personal consumption per-capita, and fixed investment per-capita, available on a quarterly basis from

5Private output is GNP minus federal government’s consumption and investment.
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1947:1 to 2009:3, with a span of more than 62 years (251 observations). It was extracted from FRED’s

database of the Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fred2/). Considering

that we will keep some observations for forecast evaluation (90 observations), the size of these data

bases are close to the number of simulated observations in the Monte-Carlo exercise for T = 100 and

T = 200 respectively.

7.1 Forecasting Brazilian Inflation

The Brazilian data set consists of three alternative measures of consumer price indices. The first is

the official consumer price index used in the Brazilian Inflation-Targeting Program. It is computed

by IBGE, the statistics bureau of the Brazilian government, labeled here as CPI-IBGE. The second

is the consumer price index computed by Getulio Vargas Foundation, a traditional private institution

which computes several Brazilian price indices since 1947, labeled here as CPI-FGV. The third is the

consumer price index computed by FIPE, an institute of the Department of Economics of the University

of São Paulo, labeled here as CPI-FIPE.

These three indices capture different aspects of Brazilian consumer-price inflation. First, they differ

in terms of geographical coverage. CPI-FGV is based on prices in 12 different metropolitan areas in

Brazil, 11 of which are also covered by CPI-IBGE6. On the other hand, CPI-FIPE only covers São

Paulo – the largest city in Brazil – also covered by the other two indices. Tracked consumption bundles

are also different across indices. CPI-FGV is based on the typical consumption bundles of consumers

with income between 1 and 33 minimum wages. CPI-IBGE covers consumption baskets of consumers

with income between 1 and 40 minimum wages, while CPI-FIPE focuses on consumers with income

between 1 and 20 minimum wages.

Although all three indices measure consumer-price inflation in Brazil, Granger-causality tests con-

firm the usefulness of conditioning on alternative indices to forecast any given index in the models

estimated here. We compare the forecasting performance of (i) the VAR in log-levels, with lag length

chosen by the standard Schwarz criterion; (ii) the VECM, using standard AIC for choosing the lag

length and Johansen’s test for choosing the cointegrating rank; and (iii) the reduced rank model, with

rank and lag length chosen simultaneously using the Hannan-Quinn criterion and cointegrating rank

chosen using PIC. All forecast comparisons are made using the first difference of the logarithms of the

price indices, i.e., price inflation.

For all three models, the estimation sample starts from 1994:9 through 2001:2, with 78 observations.

With these initial estimates, we compute the applicable choices of p, r, and q for each model and

forecast inflation up to 16 months ahead. Keeping the initial observation fixed (1994:9), we add one

6There are no metropolitan areas covered by CPI-IBGE that are not covered by CPI-FGV.
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observation at the end of the estimation sample, choose potentially different values for p, r, and q for

each model, and forecast inflation again up to 16 months ahead. This procedure is then repeated until

the final estimation sample reaches 1994:9 through 2008:7, with 167 observations. Then, we have a

total of 90 out-of-sample forecasts for each horizon (1 to 16 months ahead), which are used for forecast

evaluation. Thus, the estimation sample varies from 78 to 167 observations and mimics closely the

simulations labeled T = 100 in the Monte-Carlo exercise.

Results of the exercise described above are presented in Table 5. For all horizons, there are sub-

stantial forecasting gains of the VECM(HQ-PIC) over the VAR in levels: for example, for 12 months

(one year) ahead, TMSFE, |MSFE| and GFESM show gains of 33.6%, 38.4% and 120.3% respectively.

The VECM(AIC+J) forecasts are also better than the VAR in levels forecasts, but the improvements

are not as large. The comparison between VECM(HQ-PIC) and VECM(AIC+J) shows gains for the

former everywhere.

Table 5 also includes the results of Diebold-Mariano tests for equality of mean squared errors of

each pair of forecasts for each individual series for the reported horizons. These are reported using

three comma separated symbols (one for each series) in parentheses below the TMSFE values. Each

symbol indicates if the null hypothesis of the equality of mean squared forecast errors is rejected in

favor of a one sided alternative and if so the level of significance at which it is rejected. The results

indicate that in this application, the VECM(HQ-PIC) forecast of inflation based on every one of the

three series has significantly lower mean squared error than the corresponding forecast from the VAR

in log-levels. The test for the equality of the mean squared forecast errors of the VECM(HQ-PIC) and

the VECM(AIC+J) rejects equality in favor of better VECM(HQ-PIC) forecasts at horizons 1, 4 and

8. It should be noted that there is no case where either the VAR in log-levels or the VECM(AIC+J)

generate a significantly smaller MSE vis-à-vis the VECM(HQ-PIC) for any of the inflation series at

any horizon.

It is also worth reporting the choices of p, r, and q for the best models studied here as the estimation

sample increases from 1994:9-2001:2 all the way to 1994:9-2008:7. While the VECM(HQ-PIC) chose

p = 1, r = 1 or 2, and q = 0, most of the time (on the rare occasion it chose p = 3, q = 1), the

VECM(AIC+J) chose p = 1, q = 1, most of the time (on rare occasions it chose p = 5, q = 0 or

q = 3). Hence, the superior performance of the VECM(HQ-PIC) vis-à-vis the VECM(AIC+J) may be

due to either imposing a reduced-rank structure or to ignoring potential cointegration relationships.

This is especially true for the shorter horizons. If the coverage of the price indices were similar, then

one would expect a single common trend (i.e. two cointegrating vectors) in this system. However,

the definition and coverage of these indices are substantially different and our analysis shows that this

creates very persistent differences in these series and suggests that the users of these series must pay
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careful attention to their definitions and choose the appropriate one for their purpose. Even if one

believes that these persistent differences appear to be non-mean-reverting because of the short span

of the data and they will eventually die out, our analysis shows that for forecasting purposes these

differences are persistent enough that is better to model them as unit roots rather than stationary

processes7. This is consistent with the results of Stock (1996).

7.2 Forecasting U.S. Macroeconomic Aggregates

The data set consists of logarithms of real U.S. per-capita private output – y, personal consumption

per-capita – c, and fixed investment per-capita – i, extracted from FRED’s database on a quarterly

frequency8 from 1947:1 to 2009:3.

Again, we compare the forecasting performance of (i) the VAR in log-levels, with lag length chosen

by the standard Schwarz criterion; (ii) the VECM, using standard AIC for choosing the lag length

and Johansen’s test for choosing the cointegrating rank; and (iii) the reduced rank model, with rank

and lag length chosen simultaneously using the Hannan-Quinn criterion and cointegrating rank chosen

using PIC, estimated by the iterative process of Section 3. All forecast comparisons are made using

the first difference of the log-levels of the data, i.e., using ∆ log (yt), ∆ log (ct), and ∆ log (it). For all

three models, the first estimation sample covers the period 1947:1 to 1983:2, a total of 146 observa-

tions. As before, we keep expanding the estimation sample until it reaches 1947:1 to 2005:3, with 235

observations. This produces a total of 90 out-of-sample forecasts for each horizon that are used for

forecast evaluation. Since the estimation sample varies from 146 to 235 observations, it corresponds

closely to the simulations labeled T = 200 in the Monte-Carlo exercise.

Results of the exercise described above are presented in Table 6. For all horizons, there are consid-

erable forecasting gains for the VECM(HQ-PIC) over the VAR in levels: at 4 quarters (one year) ahead,

TMSFE, |MSFE| and GFESM show gains of 56.3%, 83.5% and 134.7% respectively. The forecasting

gains of the VECM(AIC+J) over the VAR in levels, though statistically significant, are not as large

especially for the short-run horizons. The comparison between VECM(HQ-PIC) and VECM(AIC+J)

shows gains for the former in one quarter to four quarters ahead forecasts. The Diebold-Mariano

tests for equality of the mean squared forecast errors for each of the three series provide evidence that

HQ-PIC forecasts have significantly smaller mean squared errors than the VECM(AIC+J) forecasts

7We imposed q = 2 and repeated the forecasting exercise. The resulting forecasts were not even as good as
VECM(AIC+J) forecasts. Detailed results are not reported here to save space, but are available to interested read-
ers.

8Using FRED’s mnemonics (2010) for the series, the precise definitions are: PCECC96 - consumption, FPIC96 -
investment, and (GNP96 - FGCEC96) - output. Population series mnemonics is POP, which is only available from 1952
on in FRED. To get a complete series starting in 1947:1 it was spliced with the same series available in DRI database,
whose mnemonics is GPOP.
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for horizons 1 and 4.

Finally, we investigate the final choices of p, r, and q as the estimation sample increases from 1947:1-

1983:2 to 1947:1-2005:3. For the VECM(HQ-PIC) they are: p = 1, r = 2, and q = 0, everywhere, while

the VECM(AIC+J) chose p = 1 half of time and p = 3 the other half and q = 0 half of the time and

q = 1 the other half. As in the previous example, the selected cointegrating ranks may not accord with

theoretical priors. A theoretical real business cycle model hypothesizes that the technology shocks is

the driver of the only common stochastic trend in all real variables and hence implies that y, c and

i have two cointegrating vectors. What we learn from the data though is that even if this theory is

correct, one or both of these cointegrating relationships must have such a high persistence (roots close

to unity) that for forecasting purposes it is best if they are modeled as unit roots. If we impose q = 2

the forecasts are even inferior to VECM(AIC+J) forecasts (detailed results not reported to save space).

8 Conclusion

Motivated by the results of Vahid & Issler (2002) on the success of the Hannan-Quinn criterion in

selecting the lag length and rank in stationary VARs, and the results of Ploberger & Phillips (2003)

and Chao & Phillips (1999) on the generalisation of Rissanen’s theorem to trending time series and the

success of PIC in selecting the cointegrating rank in VARs, we propose a combined HQ-PIC procedure

for the simultaneous choice of the lag-length and the ranks of the short-run and long-run parameter

matrices in a VECM and we prove its consistency. Our simulations show that this procedure is capable

of selecting the correct model more often than other alternatives such as pure PIC or SC.

In this paper we also present forecasting results that show that models selected using this hybrid

procedure produce better forecasts than unrestricted VARs selected by SC and cointegrated VAR

models whose lag length is chosen by the AIC and whose cointegrating rank is determined by the

Johansen procedure. We have chosen these two alternatives for forecast comparisons because we

believe that these are the model selection strategies that are most often used in the empirical literature.

However, we have considered several other alternative model selection strategies and the results are

qualitatively the same: the hybrid HQ-PIC procedure leads to models that generally forecast better

than VAR models selected using other procedures.

A conclusion we would like to highlight is the importance of short-run restrictions for forecasting.

We believe that there has been much emphasis in the literature on the effect of long-run cointegrat-

ing restrictions on forecasting. Given that long-run restrictions involve the rank of only one of the

parameter matrices of a VECM, and that inference on this matrix is difficult because it involves in-

ference about stochastic trends in variables, it is puzzling that the forecasting literature has paid so
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much attention to cointegrating restrictions and relatively little attention to lag-order and short-run

restrictions in a VECM. The present paper fills this gap and highlights the fact that the lag-order

and the rank of short-run parameter matrices are also important for forecasting. Our hybrid model

selection procedure and the accompanying simple iterative procedure for the estimation of a VECM

with long-run and short-run restrictions provide a reliable methodology for developing multivariate

autoregressive models that are useful for forecasting.

How often restrictions of the type considered in this paper are present in VAR approximations to

real life data generating processes is an empirical question. Macroeconomic models in which trends

and cycles in all variables are generated by a small number of dynamic factors fit in this category.

Also, empirical papers that study either regions of the same country or similar countries in the same

region often find these kinds of long-run and short-run restrictions. We illustrate the usefulness of the

model-selection strategy discussed above in two empirical applications: forecasting Brazilian inflation

and U.S. macroeconomic aggregates growth rates. We find gains of imposing short- and long-run

restrictions in VAR models, since the VECM(HQ-PIC) and the VECM(AIC+J) outperform the VAR in

levels everywhere. Tests of equal variance confirm that these gains are significant. Moreover, ignoring

short-run restrictions usually produce inferior forecasts with these data, since the VECM(HQ-PIC)

outperforms the VECM(AIC+J) almost everywhere, but these gains are not always significant in tests

of equal variance.

It is true that discovering the “true” model is a different objective from model selection for fore-

casting. However, in the context of partially non-stationary variables, there are no theoretical results

that lead us to a definite model selection strategy for forecasting. Using a two variable example, El-

liott (2006) shows that, ignoring estimation uncertainty, whether or not considering cointegration will

improve short-run or long-run forecasting depends on all parameters of the DGP, even the parameters

of the covariance matrix of the errors. In addition there is no theory that tells us whether finite sample

biases of parameter estimates will help or hinder forecasting in partially non-stationary VARs. Given

this state of knowledge, when one is given the task of selecting a single model for forecasting it is

reasonable to use a model selection criterion that is more likely to pick the “true” model and in this

paper we verify that VARs selected by our hybrid model selection strategy are likely to produce better

forecasts than unrestricted VARs and VARs that only incorporate cointegration restrictions.
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A The Fisher information matrix of the reduced rank VECM

Assuming that the first observation in the sample is labeled observation −p + 1 and that the sample

contains T + p observations, we write the K-variable reduced rank VECM

∆yt = γ′
(
Iq β′

)
yt−1 +

(
Ir
C ′

)
[D1∆yt−1 +D2∆yt−2 + · · ·+Dp∆yt−p] + µ+ et,

or in stacked form

∆Y = Y−1

(
Iq
β

)
γ +WD

(
Ir C

)
+ ιTµ

′ + E,

where

∆Y
T×K

=

 ∆y′1
...

∆y′T

 , Y−1
T×K

=

 y′0
...

y′T−1

 , E
T×K

=

 e′1
...
e′T


W

T×Kp
=

(
∆Y−1 · · · ∆Y−p

)
=

 ∆y′0 · · · ∆y′−p+1
...

...
...

∆y′T−1 · · · ∆y′T−p


D

Kp×r
=

 D′1
...
D′p

 ,

and ιT is a T × 1 vector of ones. When et are N (0,Ω) and serially uncorrelated, the log-likelihood

function, conditional on the first p observations being known, is:

ln l (θ, ω) = −KT
2

ln (2π)− T

2
ln |Ω| − 1

2

T∑
t=1

e′tΩ
−1et

= −KT
2

ln (2π)− T

2
ln |Ω| − 1

2
tr
(
EΩ−1E′

)
,

where

θ =


vec (β)
vec (γ)
vec (D)
vec (C)
µ


is a (K − q) q+Kq+Kpr+r (K − r)+K matrix of mean parameters, and ω = vech (Ω) is aK (K + 1) /2

vector of unique elements of the variance matrix. The differential of the log-likelihood is (see Magnus
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& Neudecker 1988)

d ln l (θ, ω) = −T
2
trΩ−1dΩ +

1

2
tr
(
Ω−1dΩΩ−1E′E

)
− 1

2
tr
(
Ω−1E′dE

)
− 1

2
tr
(
Ω−1dE′E

)
=

1

2
tr
(
Ω−1

(
E′E − TΩ

)
Ω−1dΩ

)
− tr

(
Ω−1E′dE

)
,

and the second differential is:

d2 ln l (θ, ω) = tr
(
dΩ−1

(
E′E − TΩ

)
Ω−1dΩ

)
+

1

2
tr
(
Ω−1

(
2E′dE − TdΩ

)
Ω−1dΩ

)
−tr

(
dΩ−1E′dE

)
− tr

(
Ω−1dE′dE

)
.

Since we eventually want to evaluate the Fisher information matrix at the maximum likelihood esti-

mator, and at the maximum likelihood estimator Ê′Ê − T Ω̂ = 0, and also Ω̂−1Ê′dE/dθ = 0 (these are

apparent from the first differentials), we can delete these terms from the second differential, and use

tr (AB) = vec (A′)′ vec (B) to obtain

d2 ln l (θ, ω) = −T
2
tr
(
Ω−1dΩΩ−1dΩ

)
− tr

(
Ω−1dE′dE

)
= −T

2
(dω)′D′K

(
Ω−1 ⊗ Ω−1

)
DKdω − (vec (dE))′

(
Ω−1 ⊗ IT

)
vec (dE) ,

where DK is the “duplication matrix”. From the model, we can see that

dE = −Y−1
(

0
dβ

)
γ − Y−1

(
Iq
β

)
dγ −WdD

(
Ir C

)
−WD

(
0 dC

)
− ιTdµ′,

and therefore

vec (dE) = −
[
γ′ ⊗ Y (2)

−1 IK ⊗ Y−1
(
Iq
β

) (
Ir
C ′

)
⊗W

(
0

IK−r

)
⊗WD IK ⊗ ιT

]
dθ.

Hence, the elements of the Fisher information matrix are:

FIM11 = γΩ−1γ′ ⊗ Y (2)′
−1 Y

(2)
−1 , F IM12 = γΩ−1 ⊗ Y (2)′

−1 Y−1

(
Iq
β

)
,

F IM13 = γΩ−1
(
Ir
C ′

)
⊗ Y (2)′

−1 W, FIM14 = γΩ−1
(

0
IK−r

)
⊗ Y (2)′

−1 WD

FIM15 = γΩ−1 ⊗ Y (2)′
−1 ιT

FIM22 = Ω−1 ⊗
(
Iq β′

)
Y ′−1Y−1

(
Iq
β

)
, F IM23 = Ω−1

(
Ir
C ′

)
⊗
(
Iq β′

)
Y ′−1W

FIM24 = Ω−1
(

0
IK−r

)
⊗
(
Iq β′

)
Y ′−1WD, FIM25 = Ω−1 ⊗

(
Iq β′

)
Y ′−1ιT

FIM33 =
(
Ir C

)
Ω−1

(
Ir
C ′

)
⊗W ′W, FIM34 =

(
Ir C

)
Ω−1

(
0

IK−r

)
⊗W ′WD

FIM35 =
(
Ir C

)
Ω−1 ⊗W ′ιT

FIM44 =
(

0 IK−r
)

Ω−1
(

0
IK−r

)
⊗D′W ′WD, FIM45 =

(
0 IK−r

)
Ω−1 ⊗D′W ′ιT

FIM55 = Ω−1 ⊗ ι′T ιT = Ω−1 × T
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B Proof of Theorem 2

The first three assumptions ensure that ∆ yt is covariance stationary and yt are cointegrated with coin-

tegrating rank q0. These together with assumption (vi) ensure that all sample means and covariances of

∆yt consistently estimate their population counterparts and the least squares estimator of parameters

is consistent. Assumptions (iv) and (v) state that the true rank is r0 and the true lag-length is p0 (or

the lag order of the implied VAR in levels is p0 + 1). For any (p, r) pair, the second step of the analysis

produces the least squares estimates of Γ1, . . . ,Γp with rank r when no restrictions are imposed on Π

(Anderson 1951). Reinsel (1997) contains many of the results that we use in this proof). Under the

assumption of normality, these are the ML estimates of Γ1, . . . ,Γp with rank r with Π unrestricted and

the resulting Ω̂p,r used in the HQ procedure is the corresponding ML estimate of Ω. Note that normal-

ity of the true errors is not needed for the proof. We use the results of Sims et al. (1990) who show that

in the above model the least squares estimates of Γ1, . . . ,Γp have the standard asymptotic properties

as in stationary VARs, in particular that they consistently estimate their population counterparts and

that their rate of convergence is the same as T−
1
2 . Let zt, zt−1, . . . , zt−p denote ∆yt,∆yt−1, ...,∆yt−p

after the influence of the constant and yt−1 is removed from them and let Z,Z−1, . . . , Z−p denote

T ×K matrices with z′t, z
′
t−1, . . . , z

′
t−p in their row t = 1, . . . , T (we assume that the sample starts from

t = −pmax+1), and let Wp = [Z−1
... · · ·

...Z−p] and Bp = [Γ1
... · · ·

...Γp]
′. The estimated model in the second

step can be written as:

Z = WpB̂p + Ûp

where Ûp is the T × K matrix of residuals when the lag length is p. In an unrestricted regression

ln | 1T Û
′
pÛp| = ln | 1T (Z ′Z − Z ′Wp(W

′
pWp)

−1W ′pZ)| = ln | 1T Z
′Z|+ ln |IK − (Z ′Z)−1Z ′Wp(W

′
pWp)

−1W ′pZ|

= ln | 1T Z
′Z|+

∑K
i=1 ln(1− λ̂2i (p)), where λ̂21(p) ≤ λ̂22(p) ≤ . . . ≤ λ̂2K(p), the eigenvalues of

(Z ′Z)−1Z ′Wp(W
′
pWp)

−1W ′pZ are the ordered sample partial canonical correlations between ∆yt and

∆yt−1, ...,∆yt−p after the influence of a constant and yt−1 has been removed. Under the restriction

that the rank of B is r, the log-determinant of the squared residuals matrix becomes ln | 1T Û
′
p,rÛp,r| =

ln | 1T Z
′Z| +

∑K
i=K−r+1 ln(1 − λ̂2i (p)). Further, note that Wp = [Wp−1

...Z−p] and from the geometry of

least squares we know

Z ′Wp(W
′
pWp)

−1W ′pZ = Z ′Wp−1(W
′
p−1Wp−1)

−1W ′p−1Z+Z ′Qp−1Z−p(Z
′
−pQp−1Z−p)

−1Z ′−pQp−1Z where

Qp−1 = IT −Wp−1(W
′
p−1Wp−1)

−1W ′p−1.

(i) Consider p = p0 and r = r0− 1 : ln | 1T Û
′
p0,r0−1Ûp0,r0−1| − ln | 1T Û

′
p0,r0Ûp0,r0 | = − ln(1− λ̂2K−r0+1(p0)).

λ̂2K−r0+1(p0) converges in probability to its population counterpart, the r0-th largest eigenvalue of

Σ−1z B′p0ΣwBp0 , where Σx denotes the population second moment of the vector x. This population

canonical correlation is strictly greater than zero because Bp0 has rank r0. Therefore
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p lim (ln | 1T Û
′
p0,r0−1Ûp0,r0−1| − ln | 1T Û

′
p0,r0Ûp0,r0 |) = − ln(1− λ2K−r0+1(p0)) > 0.

(ii) Consider p = p0 − 1 and r = r0 :

(Z ′Z)−1Z ′Wp0(W ′p0Wp0)−1W ′p0Z = (Z ′Z)−1Z ′Wp0−1(W
′
p0−1Wp0−1)

−1W ′p0−1Z

+(Z ′Z)−1Z ′Qp0−1Z−p0(Z ′−p0Qp0−1Z−p0)−1Z ′−p0Qp0−1Z.

Since the second matrix on the right side is positive semi-definite, it follows that λ̂2i (p0 − 1) ≤ λ̂2i (p0)

for all i = 1, . . . ,K.9 We know that the probability limits of the smallest K − r0 eigenvalues λ̂2i (p0)

are zero. Therefore, the probability limits of the smallest K − r0 eigenvalues λ̂2i (p0 − 1) must also

be zero. Moreover, the trace of the matrix on the left is equal to the sum of the traces of the two

matrices on the right of the equal sign. The probability limit of the last matrix on the right side is

Σ−1z Γ′p0Σz.wΓp0 where Σz.w = p lim( 1
T Z
′
−p0Qp0−1Z−p0), and since rank(Γp0) > 0 by assumption, the

probability limit of the trace of the second matrix on the right hand side will be strictly positive

(note that even when Γp0 is nilpotent (i.e. has all zero eigenvalues even though its rank is not zero),

Σ−1z Γ′p0Σz.wΓp0 will not be nil-potent). Therefore it must be that p lim λ̂2i (p0 − 1) < p lim λ̂2i (p0) for

at least one i = r0 + 1, . . . ,K. This implies that p lim (ln | 1T Û
′
p0−1,r0Ûp0−1,r0 | − ln | 1T Û

′
p0,r0Ûp0,r0 |) =∑K

i=K−r0+1(ln(1− λ2i (p0 − 1))− ln(1− λ2i (p0))) > 0.

(i) and (ii), together with the fact that |Û ′p1,r1Ûp1,r1 | ≥ |Û
′
p2,r2Ûp2,r2 | whenever p1 ≤ p2 and r1 ≤ r2

(i.e., for all nested models the less restrictive cannot fit worse) imply that the probability limit of

ln | 1T Û
′
p0,r0Ûp0,r0 | is strictly smaller than the probability limit of ln | 1T Û

′
p,rÛp,r| for all (p ≤ p0 and

r < r0) or (p < p0 and r ≤ r0). Although the penalty favours the smaller models, the reward for

parsimony increases at rate ln lnT while the reward for better fit increases at rate T and therefore

dominates. Hence, the probability of choosing a model with (p ≤ p0 and r < r0) or (p < p0 and r ≤ r0)

goes to zero asymptotically.

(i’) In (i), replace p = p0 with p = p̃ ≥ p0. The model now includes redundant lags whose true

coefficients are zero and these coefficients are consistently estimated. Moreover, adding these zero

parameters does not change the rank. Therefore all arguments in (i) apply to this case also, and

we can therefore deduce that the probability of under-estimating r with this procedure goes to zero

asymptotically.

(ii’) In (ii), replace r = r0 with r = r̃ ≥ r0. The model now does not impose all rank restrictions that

the true data generating process includes, but the extra eigenvalues will converge to their true value of

9Some textbooks define positive definiteness and associated inequalities concerning ordered eigenvalues for symmetric
matrices only. Note that since the eigenvalues of any square matrix A is the same as the eigenvalues of GAG−1 for
any invertible matrix G with the same dimensions as A (see Magnus & Neudecker 1988, Chapter 1) one can choose

G = (Z′Z)
1
2 and make all matrices on both sides of the inequality symmetric without changing any of their eigenvalues.

Indeed this is a useful transformation for calculating canonical correlations because computer procedures for computation
of eigenvalues of symmetric matrices are more accurate than those for general matrices.
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zero asymptotically and all arguments in (ii) apply to this case also. Therefore, we can conclude that

the probability of under-estimating p with this procedure goes to zero asymptotically.

(iii) Consider p = p̃ ≥ p0 and r = r̃ ≥ r0 with at least one of the inequalities strict. These are all models

that are larger than the true model and nest the true model. The probability limit of ln | 1T Û
′
p̃,r̃Ûp̃,r̃|

for these models is the same as the probability limit of ln | 1T Û
′
p0,r0Ûp0,r0 |. However, we know that

T (ln | 1T Û
′
p0,r0Ûp0,r0 |− ln | 1T Û

′
p̃,r̃Ûp̃,r̃|) is the likelihood ratio statistic of testing general linear restrictions

that reduce the p̃, r̃ model to the p0, r0 model. Since these restrictions are true, T (ln | 1T Û
′
p0,r0Ûp0,r0 | −

ln | 1T Û
′
p̃,r̃Ûp̃,r̃|) = Op (1) . While the reward for better fit from larger models is bounded in probability,

the penalty terms for extra parameters increases without bound. Hence, the probability of choosing a

larger model that nests the true model goes to zero asymptotically. This completes the proof that the

first step of the procedure consistently estimates p0 and r0.

For the consistency of the second step estimator of q0, we note that Chao & Phillips (1999) show that

the PIC can be written as the sum (Chao & Phillips 1999, express PIC as product of the likelihood and

penalty term, here we refer to the logarithmic transformation of the PIC expressed in their paper) of

two parts, one that comprises the log-likelihood of q given p and its associated penalty, and the other

that comprises the log-likelihood of p without any restrictions on q and a penalty term involving the

lag-length. With similar steps one can write the PIC in our case as the sum of one part related to q given

p and r and another that involves p and r. Hence, plugging in p and r that are estimated via another

consistent procedure does not alter the consistency of the estimator of q. The main reason that the

choice of p and r does not affect the consistency of q is that the smallest K−q0 sample squared canonical

correlations between ∆yt and yt−1 converge to zero in probability and the remaining q0 converge to

positive limits, regardless of any finite stationary elements that are partialed out. Therefore, for a given

(p, r) when q < q0, T times the difference in log-likelihood values dominates the penalty term, and

hence the probability of underpredicting q goes to zero and T → ∞. Also, when q > q0, T times the

difference in log-likelihood values remains bounded in probability, but the magnitude of the penalty for

lack of parsimony grows without bound as T →∞, therefore the probability of overestimating q goes

to zero asymptotically also. Note that the fact that the asymptotic distribution of the likelihood ratio

statistic is not χ2 or that it may depend on nuisance parameters does not matter. What is important

is that it is Op(1). Hence the second step produces a consistent estimator of q0, and this completes the

proof.

Remark 3 The above proof is not exclusive to HQ and applies to any model selection criterion in which

cT → ∞ and cT
T → 0 as T → ∞, where cT is the penalty for each additional parameter in the first

stage of the procedure. The consistency of model selection criteria with this property for determining p

28



in vector autoregressions has been established in Quinn (1980), and in autoregressions with unit roots

in Paulsen (1984) and Tsay (1984). Consistency of such criteria for selection of cointegrating rank q

and the lag order p has been established in Gonzalo & Pitarakis (1995) and Aznar & Salvador (2002).

Consistency of PIC for selection of cointegrating rank q and the lag order p has been established in

Chao & Phillips (1999). The contribution here is proving the consistency when r is added to the set of

parameters to be estimated, and showing that this can be achieved with a two-step procedure.

Remark 4 As with all models selected with any consistent model selection criterion, the warning of

Leeb & Potscher (2005) applies to models selected with our procedure as well in the sense that there is

no guarantee that any inference made based on asymptotic distributions conditional on p, q, r selected

by this procedure will necessarily be more accurate than that based on an unrestricted autoregression of

order pmax.

Remark 5 Let α̃1 be a full rank K × (K − r0) matrix such that α̃′1[ Γ1 Γ2 ... Γp0 ] = 0. Such a

matrix exists because rank [ Γ1 Γ2 ... Γp0 ] = r0 but it is not unique. We can augment α̃1 with r0

additional linearly independent vectors arranged as columns of matrix α̃2 to form a basis for Rn, and

to achieve uniqueness we can choose these matrices such that (α̃1
...α̃2)

′Ω(α̃1
...α̃2) = IK . The DGP can

be alternatively written as

α̃′1∆yt = c1 + Π(1)yt−1 + η(1),t

α̃′2∆yt = c2 + Π(2)yt−1 + Γ(2),1∆yt−1 + Γ(2),2∆yt−2 + · · ·+ Γ(2),p0∆yt−p0 + η(2),t

where for any vector or matrix X, X(i) = α̃′iX, i = 1, 2. While we have presented the model selection

criteria as penalised log-likelihoods and have referred to maximum likelihood estimators and likelihood

ratio tests in our proof to conform with the previous literature, all arguments could be phrased in the

context of GMM estimation of the above structural model and test statistics for testing overidentifying

restrictions in the first block of this structure (Anderson & Vahid 1998). Therefore, there is no need

for any assumption of normality at any stage.
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Table 3: Percentage improvement in forecast accuracy measures for possibly reduced rank models over
unrestricted VARs in a (1,1,2) setting.

Horizon T=100 T=200 T=400
(h) TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM

VECM(HQ-PIC) for all DGPs

1 1.4
(44,46,10)a

3.8 3.8 1.4
(49,49,2)

4.0 4.0 0.9
(53,47,0)

2.7 2.7

4 0.7
(23,77,0)

1.6 3.7 0.7
(46,54,0)

2.4 10.2 0.3
(27,73,0)

1.1 6.3

8 0.7
(19,80,1)

1.8 -7.2 0.1
(5,91,4)

0.1 8.0 0.1
(4,96,0)

0.5 6.8

12 0.2
(3,93,4)

0.5 -19.4 0.4
(14,86,0)

0.9 7.8 0.1
(4,96,0)

0.2 6.6

16 0.2
(5,94,1)

0.6 -31.3 0.4
(18,82,0)

1.0 3.7 0.1
(4,95,1)

0.2 7.2

VECM(AIC+J) for all DGPs

1 0.9
(28,63,9)

2.3 2.3 0.8
(30,67,3)

2.3 2.3 0.4
(27,71,2)

1.0 1.0

4 0.4
(14,86,0)

0.6 2.0 0.2
(13,86,1)

0.8 5.5 0.1
(8,92,0)

0.4 2.2

8 0.5
(21,78,1)

1.4 -5.5 0.0
(2,91,7)

-0.2 4.2 0.1
(2,98,0)

0.2 1.9

12 0.1
(5,92,3)

0.4 -12.5 0.2
(12,88,0)

0.5 4.1 0.0
(0,98,2)

-0.1 1.4

16 0.1
(5,92,3)

0.4 -20.4 0.3
(18,82,0)

0.7 1.5 0.0
(3,97,0)

0.0 1.8

VECM(HQ-PIC) are models selected by the model selection process proposed in Section 4.1 and estimated by

the algorithm proposed in Section 3. VECM(AIC+J) are estimated by the usual Johansen procedure with AIC

as the model selection criterion for the lag length.
a We perform Diebold & Mariano (1995) tests at the 5% level of significance for equal predictive accuracy

between the reduced rank models and unrestricted VARs. For cell (x,y,z), y denotes the percentage of DGPs for

which the Null of equal forecast accuracy is not rejected and entries x and z denote the percentage of DGPs for

which the Null is rejected with a positive statistic (i.e., the reduced rank model is significantly more accurate

than the unrestricted VAR) and a negative statistic (i.e., the reduced rank model is significantly less accurate

than the unrestricted VAR) respectively.
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Table 4: Percentage improvement in forecast accuracy measures for possibly reduced rank models over
unrestricted VARs in a (2,1,1) setting.

Horizon T=100 T=200 T=400
(h) TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM

VECM(HQ-PIC) for all DGPs

1 7.8
(87,13,0)a

21.8 21.8 4.5
(90,10,0)

12.9 12.9 2.5
(95,5,0)

7.5 7.5

4 2.2
(69,31,0)

8.1 37.8 2.0
(78,22,0)

5.2 30.6 0.9
(47,53,0)

2.3 17.5

8 1.0
(24,76,0)

2.7 38.5 0.6
(22,78,0)

2.3 34.1 0.6
(32,68,0)

2.2 25.7

12 0.4
(12,87,1)

0.8 29.8 0.8
(27,73,0)

2.4 36.8 0.9
(82,18,0)

2.9 29.5

16 0.8
(16,84,0)

1.8 25.5 0.3
(16,59,25)

0.3 32.8 0.7
(39,61,0)

2.4 32.7

VECM(AIC+J) for all DGPs

1 5.4
(81,19,0)

14.1 14.1 3.2
(81,19,0)

8.7 8.7 1.4
(72,28,0)

4.1 4.1

4 1.3
(29,71,0)

4.8 21.6 1.2
(61,39,0)

3.0 21.3 0.6
(35,65,0)

1.8 10.7

8 0.7
(15,85,0)

1.9 21.5 0.6
(23,77,0)

2.3 26.1 0.4
(14,86,0)

1.7 16.8

12 0.5
(11,89,0)

0.9 14.5 0.6
(19,81,0)

1.9 29.6 0.7
(65,35,0)

2.4 19.2

16 0.6
(13,87,0)

1.4 11.0 0.2
(16,84,0)

0.3 27.4 0.6
(38,62,0)

2.2 22.0

VECM(HQ-PIC) are models selected by the model selection process proposed in Section 4.1 and
estimated by the algorithm proposed in Section 3. VECM(AIC+J) are estimated by the usual
Johansen procedure with AIC as the model selection criterion for the lag length.
a Refer to note in Table 3.
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Table 5: Percentage improvement in forecast accuracy measures for reduced ranked models and unre-
stricted VARs for Brazilian inflation.

Horizon VECM(HQ-PIC) VECM(AIC+J) VECM(HQ-PIC)
versus versus versus

(h) VAR in levels VAR in levels VECM(AIC+J)
TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM

1 36.9 69.6 69.6 18.1 22.8 22.8 18.8 46.8 46.8
(**,**,**) ( -, *, -) ( *, *,**)

4 32.4 45.2 91.0 11.8 28.4 -10.6 20.6 16.8 101.6
(**,**,**) ( -,**, -) (**,**,**)

8 24.6 32.9 107.9 15.1 26.2 -11.8 9.5 6.7 119.6
( *,**,**) ( -,**,**) (**, *,**)

12 33.6 38.4 120.3 25.6 29.7 1.0 8.0 8.7 119.3
( *,**,**) ( *,**,**) ( -, -, -)

16 36.4 40.2 142.7 29.0 34.5 39.2 7.4 5.7 103.5
( -, *, *) (**,**, *) ( -, -, -)

VECM(HQ-PIC) is the model selected by the model selection process proposed in Section 4.1 and
estimated by the algorithm proposed in Section 3. VECM(AIC+J) is the model estimated by the
usual Johansen procedure with AIC as the model selection criterion for the lag length. See Section 7
for further details. The triplet (·, ·, ·) presents the results of tests for equal mean squared forecast errors
predicting ∆ ln (CPI-IBGEt), ∆ ln (CPI-FGVt), and ∆ ln (CPI-FIPEt) respectively. The symbols **, *
and - denote, respectively, significance at the 5% level, at the 10% level, and not significant at the 10%
level.
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Table 6: Percentage improvement in forecast accuracy measures for reduced ranked models and unre-
stricted VARs for U.S. macroeconomic aggregates.

Horizon VECM(HQ-PIC) VECM(AIC+J) VECM(HQ-PIC)
versus versus versus

(h) VAR in levels VAR in levels VECM(AIC+J)
TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM

1 35.1 60.4 60.4 16.2 49.7 49.7 18.9 10.7 10.7
(**,**,**) (**,**, *) ( -, *,**)

4 56.3 83.5 134.7 27.8 46.4 112.1 28.5 37.1 22.6
(**,**,**) (**,**, *) (**,**,**)

8 8.4 25.3 169.2 8.9 24.0 145.2 -0.5 1.3 24.0
(**,**, -) (**,**, -) ( -, -, -)

12 1.5 20.0 176.3 2.6 21.8 172.1 -1.1 -1.8 4.2
( *,**, -) ( *,**, -) ( -, -, -)

16 3.6 26.0 147.3 4.5 27.1 160.1 -0.9 -1.1 -12.8
(**,**, -) (**,**, -) ( -, -, -)

VECM(HQ-PIC) is the model selected by the model selection process proposed in Section 4.1 and
estimated by the algorithm proposed in Section 3. VECM(AIC+J) is the model estimated by the
usual Johansen procedure with AIC as the model selection criterion for the lag length. See Section 7
for further details. The triplet (·, ·, ·) presents the results of tests for equal mean squared forecast errors
predicting ∆ ln (yt), ∆ ln (ct), and ∆ ln (it) respectively. The symbols **, * and - denote, respectively,
significance at the 5% level, at the 10% level, and not significant at the 10% level.
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