32 research outputs found

    OFDM Radar Algorithms in Mobile Communication Networks

    Get PDF

    On Spectral Estimation and Bistatic Clutter Suppression in Radar Systems

    Get PDF
    Target detection serve as one of the primary objectives in a radar system. From observations, contaminated by receiver thermal noise and interference, the processor needs to determine between target absence or target presence in the current measurements. To enable target detection, the observations are filtered by a series of signal processing algorithms. The algorithms aim to extract information used in subsequent calculations from the observations. In this thesis and the appended papers, we investigate two techniques used for radar signal processing; spectral estimation and space-time adaptive processing.\ua0In this thesis, spectral estimation is considered for signals that can be well represented by a parametric model. The considered problem aims to estimate frequency components and their corresponding amplitudes and damping factors from noisy measurements. In a radar system, the problem of gridless angle-Doppler-range estimation can be formulated in this way. The main contribution of our work includes an investigation of the connection between constraints on rank and matrix structure with the accuracy of the estimates.Space-time adaptive processing is a technique used to mitigate the influence of interference and receiver thermal noise in airborne radar systems. To obtain a proper mitigation, an accurate estimate of the space-time covariance matrix in the currently investigated cell under test is required. Such an estimate is based on secondary data from adjacent range bins to the cell under test. In this work, we consider airborne bistatic radar systems. Such systems obtains non-stationary secondary data due to geometry-induced range variations in the angle-Doppler domain. Thus, the secondary data will not follow the same distribution as the observed snapshot in the cell under test. In this work, we present a method which estimates the space-time covariance matrix based upon a parametric model of the current radar scenario. The parameters defining the scenario are derived as a maximum likelihood estimate using the available secondary data. If used in a detector, this approach approximately corresponds to a generalized likelihood ratio test, as unknowns are replaced with their maximum likelihood estimates based on secondary data

    Investigation of Non-coherent Discrete Target Range Estimation Techniques for High-precision Location

    Get PDF
    Ranging is an essential and crucial task for radar systems. How to solve the range-detection problem effectively and precisely is massively important. Meanwhile, unambiguity and high resolution are the points of interest as well. Coherent and non-coherent techniques can be applied to achieve range estimation, and both of them have advantages and disadvantages. Coherent estimates offer higher precision but are more vulnerable to noise and clutter and phase wrap errors, particularly in a complex or harsh environment, while the non-coherent approaches are simpler but provide lower precision. With the purpose of mitigating inaccuracy and perturbation in range estimation, miscellaneous techniques are employed to achieve optimally precise detection. Numerous elegant processing solutions stemming from non-coherent estimate are now introduced into the coherent realm, and vice versa. This thesis describes two non-coherent ranging estimate techniques with novel algorithms to mitigate the instinct deficit of non-coherent ranging approaches. One technique is based on peak detection and realised by Kth-order Polynomial Interpolation, while another is based on Z-transform and realised by Most-likelihood Chirp Z-transform. A two-stage approach for the fine ranging estimate is applied to the Discrete Fourier transform domain of both algorithms. An N-point Discrete Fourier transform is implemented to attain a coarse estimation; an accurate process around the point of interest determined in the first stage is conducted. For KPI technique, it interpolates around the peak of Discrete Fourier transform profiles of the chirp signal to achieve accurate interpolation and optimum precision. For Most-likelihood Chirp Z-transform technique, the Chirp Z-transform accurately implements the periodogram where only a narrow band spectrum is processed. Furthermore, the concept of most-likelihood estimator is introduced to combine with Chirp Z-transform to acquire better ranging performance. Cramer-Rao lower bound is presented to evaluate the performance of these two techniques from the perspective of statistical signal processing. Mathematical derivation, simulation modelling, theoretical analysis and experimental validation are conducted to assess technique performance. Further research will be pushed forward to algorithm optimisation and system development of a location system using non-coherent techniques and make a comparison to a coherent approach

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    Multidimensional Frequency Estimation with Applications in Automotive Radar

    Get PDF
    This thesis considers multidimensional frequency estimation with a focus on computational efficiency and high-resolution capability. A novel framework on multidimensional high-resolution frequency estimation is developed and applied to increase the range, radial velocity, and angular resolution capcability of state-of-the-art automotive radars

    Adaptive Signal Processing Techniques and Realistic Propagation Modeling for Multiantenna Vital Sign Estimation

    Get PDF
    Tämän työn keskeisimpänä tavoitteena on ihmisen elintoimintojen tarkkailu ja estimointi käyttäen radiotaajuisia mittauksia ja adaptiivisia signaalinkäsittelymenetelmiä monen vastaanottimen kantoaaltotutkalla. Työssä esitellään erilaisia adaptiivisia menetelmiä, joiden avulla hengityksen ja sydämen värähtelyn aiheuttamaa micro-Doppler vaihemodulaatiota sisältävät eri vastaanottimien signaalit voidaan yhdistää. Työssä johdetaan lisäksi realistinen malli radiosignaalien etenemiselle ja heijastushäviöille, jota käytettiin moniantennitutkan simuloinnissa esiteltyjen menetelmien vertailemiseksi. Saatujen tulosten perusteella voidaan osoittaa, että adaptiiviset menetelmät parantavat langattoman elintoimintojen estimoinnin luotettavuutta, ja mahdollistavat monitoroinnin myös pienillä signaali-kohinasuhteen arvoilla.This thesis addresses the problem of vital sign estimation through the use of adaptive signal enhancement techniques with multiantenna continuous wave radar. The use of different adaptive processing techniques is proposed in a novel approach to combine signals from multiple receivers carrying the information of the cardiopulmonary micro-Doppler effect caused by breathing and heartbeat. The results are based on extensive simulations using a realistic signal propagation model derived in the thesis. It is shown that these techniques provide a significant increase in vital sign rate estimation accuracy, and enable monitoring at lower SNR conditions

    Digital Signal Processor Based Real-Time Phased Array Radar Backend System and Optimization Algorithms

    Get PDF
    This dissertation presents an implementation of multifunctional large-scale phased array radar based on the scalable DSP platform. The challenge of building large-scale phased array radar backend is how to address the compute-intensive operations and high data throughput requirement in both front-end and backend in real-time. In most of the applications, FPGA or VLSI hardware are typically used to solve those difficulties. However, with the help of the fast development of IC industry, using a parallel set of high-performing programmable chips can be an alternative. We present a hybrid high-performance backend system by using DSP as the core computing device and MTCA as the system frame. Thus, the mapping techniques for the front and backend signal processing algorithm based on DSP are discussed in depth. Beside high-efficiency computing device, the system architecture would be a major factor influencing the reliability and performance of the backend system. The reliability requires the system must incorporate the redundancy both in hardware and software. In this dissertation, we propose a parallel modular system based on MTCA chassis, which can be reliable, scalable, and fault-tolerant. Finally, we present an example of high performance phased array radar backend, in which there is the number of 220 DSPs, achieving 7000 GFLOPS calculation from 768 channels. This example shows the potential of using the combination of DSP and MTCA as the computing platform for the future multi-functional large-scale phased array radar

    A Survey of Dense Multipath and Its Impact on Wireless Systems

    Get PDF

    Deterministic Algorithms for Four-Dimensional Imaging in Colocated MIMO OFDM-Based Radar Systems

    Get PDF
    In this manuscript, the problem of detecting multiple targets and jointly estimating their spatial coordinates (namely, the range, the Doppler and the direction of arrival of their electromagnetic echoes) in a colocated multiple-input multiple-output radar system employing orthogonal frequency division multiplexing is investigated. It is well known its optimal solution, namely the joint maximum likelihood estimator of an unknown number of targets, is unfeasible because of its huge computational complexity. Moreover, until now, sub-optimal solutions have not been proposed in the technical literature. In this manuscript a novel approach to the development of reduced complexity solutions is illustrated. It is based on the idea of separating angle estimation from range-Doppler estimation, and of exploiting known algorithms for solving these two sub-problems. A detailed analysis of the accuracy and complexity of various detection and estimation methods based on this approach is provided. Our numerical results evidence that one of these methods is able to approach optimal performance in the maximum likelihood sense with a limited computational effort in different scenarios
    corecore