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Vorwort des Herausgebers

Ein Radarsender sendet eine elektromagnetische Welle aus, deren am zu untersu-
chenden Objekt entstehende Reflektion sodann vom Radarempfänger detektiert und
ausgewertet wird. Von einem Radargerät kann nicht nur das Vorhandensein eines
reflektierenden Objekts erkannt sondern es können auch dessen Abstand, Geschwin-
digkeit und Azimut gemessen werden. Natürlich erfasst ein Radargerät gleichzeitig
viele Objekte, die getrennt, und darüber hinaus Störungen, die durch die Signalverar-
beitung klassifiziert und unterdrückt werden sollen. Radargeräte wurden im großen
Stil zunächst für militärische Zwecke und danach in der zivilen Schifffahrt sowie
im Luftverkehr eingesetzt. Seit den siebziger Jahren des zwanzigsten Jahrhunderts
werden Radare für Anwendungen im Kraftfahrzeug untersucht. Aus modernen Kraft-
fahrzeugen sind Radarsensoren nicht mehr wegzudenken. Adaptives Abstandhalten,
automatisches Abbremsen bei Auffahrgefahr, Warnung vor Verkehrsteilnehmern im
toten Winkel des Rückspiegels sind typische Aufgaben. Der rasante Fortschritt der
Mikroelektronik sowie die Nutzung höherer Frequenzen haben das ihre dazu beige-
tragen, dass Radargeräte leicht, klein und preisgünstig geworden sind und in großen
Stückzahlen produziert werden. Sowohl im Automotive-Bereich als auch in der Au-
tomatisierungstechnik steht der ganz große Durchbruch der Radartechnik erst noch
bevor. Dabei werden nicht nur die Geräte (Hardware) sondern auch die Wellenfor-
men, die Detektionsalgorithmen, die Signalauswertung und die Nachverarbeitung
(Software) laufend weiterentwickelt.

Besonders komplex sowie algorithmisch und rechentechnisch anspruchsvoll erscheint
die Aufgabe eine gleichzeitige und hochauflösende Schätzung von Abstand, Geschwin-
digkeit und Azimut mehrerer Objekte in Echtzeit durchzuführen. Der Abstand eines
Objekts wird über die Laufzeit des Signals vom Radarsender zum Objekt und von
dort zurück zum Radarempfänger, seine Relativgeschwindigkeit über die Dopplerver-
schiebung des Empfangs- gegenüber dem Sendesignal bestimmt. Der Azimut ergibt
sich aus der Einfallsrichtung des am Objekt reflektierten Signals. Die oben formu-
lierte Aufgabe kann als dreidimensionales Spektralschätzproblem interpretiert und
einer Lösung zugeführt werden. Allerdings ist dabei auch auf die Praktikabilität und
Wirtschaftlichkeit des angewendeten Verfahrens zu achten. An dieser Stelle setzt die
von Florian Engels vorgelegte Dissertation Multidimensional Frequency Estimation
with Applications in Automotive Radar an. Sie beschreibt und bewertet ein praktisch
durchführbares, auf der mehrdimensionalen Fourieranalyse basierendes Verfahren zur
simultanen Echtzeit-Schätzung von Abstand, Geschwindigkeit und Azimut mehrerer
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Objekte und wendet die Ergebnisse zur deutlichen Verbesserung der Leistungsfä-
higkeit eines handelsüblichen, in großen Stückzahlen produzierten Kfz-Radarsensors
an.

Karlsruhe, im Februar 2016 Friedrich Jondral

VIII



Multidimensional Frequency Estimation with

Applications in Automotive Radar

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der Fakultät für

Elektrotechnik und Informationstechnik

des Karlsruher Instituts für Technologie

genehmigte

DISSERTATION

von

Florian Engels

geboren in

Wuppertal

Tag der mündlichen Prüfung: 2. Februar 2016

Hauptreferent: Prof. Dr. rer. nat. Friedrich K. Jondral

Korreferent: Prof. Dr.-Ing. Sören Hohmann





Danksagung

Die vorliegende Arbeit entstand parallel zu meiner beruflichen Tätigkeit bei der
ADC GmbH der Continental AG in Lindau am Bodensee. Da zu ihrem Gelingen ein
nicht unerheblicher Teil meiner Freizeit nötig war, möchte ich zunächst meiner Frau
Kathrin danken, dass sie dies mit getragen und mich in dieser nicht immer einfachen
Zeit unterstützt hat.

Besonders möchte ich mich bei Prof. Dr. rer. nat. Friedrich Jondral für die hervor-
ragende wissenschaftliche Betreung der Arbeit bedanken. Des Weiteren bedanke ich
mich bei Prof. Dr.-Ing. Sören Hohmann für die Übernahme des Korreferats und bei
Prof. Dr. rer. nat. Olaf Dössel, Prof. Dr.-Ing. Ellen Ivers-Tiffée und Prof. Dr.-Ing.
Thomas Zwick für die Mitwirkung in der Prüfungskommission.

Alle aktuellen und ehemaligen Kollegen denen ich hier danken möchte, werden ver-
stehen, dass ich an erster Stelle Dr. Markus Wintermantel für alle fachlichen Dis-
kussionen und Anregungen danke. Des Weiteren danke ich Dr. Mouhammad Alhu-
maidi, Dr. Fabian Diewald, Dr. Florian Fölster, Dr. Philipp Heidenreich, Arnold
Herb, Dr. Markus Jüngst, Dr. Martin Randler, Dr. Peter Seydel, David Stenmanns
und Stefan Vogler. Bei Roy Zergiebel bedanke ich mich herzlich für die tatkräftige
Unterstüzung bei den Radarmessungen die in dieser Arbeit verwendet werden.

XI





Abstract

This thesis considers multidimensional frequency estimation with a focus on compu-
tational efficiency and high-resolution capability. A novel framework on multidimen-
sional high-resolution frequency estimation is developed and applied to increase the
range, radial velocity, and angular resolution capcability of state-of-the-art automo-
tive radars.

In many practical applications, measurement data can be modelled by the superpo-
sition of multidimensional complex sinusoids, also called cisoids. For such a model,
an optimal approach for high-resolution frequency estimation is the multidimen-
sional nonlinear least squares (NLS) method, which obtains frequency estimates by
minimizing the sum of the squared model deviations with respect to the unknown
cisoid frequencies. However, due the dimensionality of that minimization, which
is determined by the number of frequency dimensions and the number of cisoids
in the model, the computational complexity of the NLS approach is in most cases
not feasible. Existing approaches for reducing computational complexity employ
pre-processing based on Fourier transformation. A straightforward approach is the
application of the NLS methods in the Fourier domain. This can reduce complexity
by restricting the minimization to a pre-defined frequency sub-band, which contains
a sub-set of cisoid frequencies. However, such an approach is only practical if the
number of relevant cisoids is smaller than the total number and their frequencies
are concentrated in a knwon frequency sub-band. For a large number of arbitrary
cisoid frequencies, estimates can be obtained by peak searching in the periodogram.
For well separated cisoids, this provides an approximation of optimal frequency esti-
mation. However, the frequency resolution achievable with periodogram-based esti-
mation is limited. To overcome these limitations, a framework on multidimensional
high-resolution frequency estimation is proposed. Fourier-transform pre-processing
is employed to select multiple local frequency sub-bands, which are either repre-
sented by a local single-cisoid model or a local two-cisoid model. The sub-bands are
obtained by the frequency neighborhoods of periodogram peaks. Local periodogram
maximization is used to estimate the frequencies of the single-cisoid model, whereas
local NLS-based frequency estimation is used for the two-cisoid model. To reduce
computational complexity, multidimensional NLS-based frequency estimation is de-
coupled in a sequence of one-dimensional (1-D) estimation problems. For decoupling,
one has to decide on the processing sequence. In one dimension, referred to as res-
olution dimension, a 1-D NLS-based frequency estimation for two cisoids has to be
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performed first. Subsequently, resolved frequencies in the resolution dimension are
used for signal component extraction, so that frequency estimation in the remaining
dimensions is simplified to two single-cisoid estimation problems. The success of the
decoupled approach depends critically on a sufficiently large frequency separation in
the resolution dimension. To ensure this, a criterion is proposed for selecting the
best resolution dimension adaptively. To further reduce computational complexity,
a novel frequency estimation, referred to as single-cisoid search, is proposed, which
can replace NLS-based estimation when the cisoid frequencies are distinct in at least
two dimensions.

Radar technology is used for target localization in adavnced driver assistance sys-
tems (ADAS) and is considered as one of the key technologies for developing ADAS
towards highly automated driving (HAD). State-of-the-art automotive radars obtain
range, radial velocity, and angle of relevant targets via three-dimensional (3-D) fre-
quency estimation. The frequency resolution which is achievable with conventional
radar processing is limited for given system parameters such as bandwidth, coherent
processing time, and antenna aperture. To meet critical ADAS and HAD use-cases,
increasing the resolution capability is crucial. To achieve this, the proposed frame-
work on multidimensional high-resolution frequency estimation is applied. The ef-
fectiveness of that approach is demonstrated with experimental data obtained with
a series production automotive radar sensor.
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Zusammenfassung

In dieser Dissertation werden mehrdimensionale Verfahren zur Frequenzschätzung
betrachtet, wobei besonders auf Recheneffizienz und hohe Auflösungsleistung einge-
gangen wird. Es wird ein neuartiges Verfahren zur entkoppelten Frequenzschätzung
entwickelt, dass angewendet wird, um die Entfernungs-, Radialgeschwindigkeits- und
Winkelauflösung von aktuellen Automobilradaren zu erhöhen.

Die Messdaten vieler praktischen Anwendungen lassen sich über die Überlagerung
von mehrdimensionalen komlexen Sinustermen, auch Cisoiden genannt, beschreiben.
Für solche Modelle ist eine optimale Frequenzschätzung über die Methode der kleins-
ten Quadrate gegeben, wobei hier berücksichtigt werden muss, dass die Frequenzpa-
rameter nichtlinear in das Modell eingehen. Dadurch wird eine hochdimensionale
Minimierung notwendig, deren Komplexität durch die Anzahl der Frequenzdimen-
sionen und durch die Modellordnung bestimmmt wird. Dadurch ist der optimale An-
satz für die meisten Anwendungen nicht praktikabel. Ansätze zur Reduizerung der
Rechenkomplexität basieren auf Fouriertransformation als Vorverarbeitungsschritt.
Ein naheliegender Ansatz ist die Anwendung der Methode der nichlinearen kleinsten
Quadrate, die im Fourierbereich angewendet wird. Dadurch kann eine Minimierung
auf ein Frequenzband beschränkt werden, dass eine reduzierte Anzahl von Cisoid-
frequenzen enthält. Damit dieser Ansatz prakitkabel ist muss die Anzahl relevan-
ter Cisoiden kleiner sein als die Gesamtanzahl. Gleichzeitig müssen die zugehörigen
Frequenzen in einem bekannten Frequenzband liegen. Für einen große Anzahl an
Cisoid-Frequenzen im gesamten Frequenzband kann Frequenzschätzung über eine
Maximumsuche im Periodogramm realisiert werden. Sind alle Cisosid-Frequenzen
hinreichend gut separiert wird hierdurch eine Näherung der optimalen Lösung er-
reicht. Allerdings ist die Auflösungsleistung, die mit dem Periodogramm-Ansatz
erreicht werden kann, beschränkt. Daher wird in dieser Arbeit ein neuartiger An-
satz zur hochauflösenden mehrdimensionalen Frequenzschätzung vorgeschlagen der
keine der beiden genannten Einschränkungen aufweist. Hier wird Fouriertransfor-
mation angewendet, um lokale Frequenzbereiche auszuwählen, die entweder durch
ein lokales Ein-Cisoid-Modell oder durch ein lokales Zwei-Cisoid-Modell beschrieben
werden können. Für den ersten Fall wird eine lokale Periodogramm-Maximierung
zur Frequenzschätzung verwendet, für den zweiten Fall ein NLS-basiertes Verfahren.
Letzteres wird rechengünstig realisiert, indem das mehrdmensionale Frequenzschätz-
problem in eine Folge von eindimensionalen Problemen zerlegt wird. Hierfür muss
eine Verarbeitungsreihenfolge festgelegt werden. Zunächst wird in einer Dimension,
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die als Auflösungsdimension bezeichent wird, eine eindimensionale NLS-basierte Fre-
quenzschätzung für das Zwei-Cisoid-Modell durchgeführt. Anschließend werden die
so erhaltenen Frequenzen in der Auflösungsdimension verwendet, um die zugehöri-
gen Signalkomponenten zu extrahieren. Dadurch wird die Frequenzschätzung in den
verbleibenden Dimensionen auf zwei Schätzprobleme reduziert, die durch ein einfa-
ches Ein-Cisoid-Modell bestimmt sind. Ein solcher Ansatze kann nur erfolgreich sein,
wenn eine hinreichende Frequenzseparation in der Auflösungsdimension gegeben ist.
Um dies sicherzustellen wird ein Kriterium vorgeschlagen, dass es erlaubt die Auflö-
sungsdimension datenbasiert zu bestimmen. Des Weiteren wird ein rechengünstiges
Verfahren zur Frequenzschätzung entwickelt und im entkoppelten Ansatz anstelle der
NLS Methode verwendet. Allerdings setzt dieses Verfahren unterschiedliche Cisoid-
Frequenzen in mindestens zwei Dimensionen voraus.

Radartechnik wird zur Zielortung in Fahrerassistenzsystemen verwendet und als
Schlüsseltechnologie für hochautonomes Fahren angesehen. Aktuelle Automobilra-
dare bestimmen die Entferung, die Radialgeschwindigkeit und den Winkel von rele-
vanten Zielen über dreidimensionale Frequenzschätzung. Die Auflösungsleistung die
mit konventioneller Radarsignalverarbeitung erzielt werden kann, wird durch System-
parameter wie Bandbreite, kohärente Messdauer oder Antennenapertur beschränkt.
Um kritische Szenarien zu beherrschen ist es zwinged erforderlich, die Auflösungs-
leistung zu erhöhen. Um dies zu erreichen wird das vorgeschlagene Verfahren zur
mehrdmensionalen hochauflösenden Frequenzschätzung angewendet und mit Mes-
sungen eines handelsüblichen Radarsensor verifiziert.
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1 Introduction

In this thesis we present a computationally efficient framework on multidimensional
frequency estimation with high-resolution capability. We consider applications in au-
tomotive radar and use the developed framework to enable high-resolution frequency
estimation in the range, radial velocity, and angular dimension of state-of-the-art
radar sensors. The introduction is structured as follows. In Section 1.1 we moti-
vate this work. Section 1.2 lists original contributions and Section 1.3 presents the
organization of this thesis.

1.1 Motivation

Multidimensional frequency estimation plays an important role in many fields of ap-
plication such as radar [Kle06], sonar [vT68b], wireless communication [Pes05], and
nuclear magnetic resonance (NMR) spectroscopy [LRL98]. For many applications,
high-resolution capability, computational efficiency, and memory efficiency are cru-
cial. An important example is automotive radar, which we consider in this thesis.

Radar technology is used for target localization in ADAS and is considered as one
of the key technologies for developing ADAS towards HAD. State-of-the-art automo-
tive radar sensors use the chirp-sequence modulation and antenna arrays to deter-
mine the range, radial velocity, and angle of targets via 3-D frequency estimation.
Computational efficiency and memory efficiency are key requirements for current
ADAS and will become even more important for HAD. To meet these requirements,
hardware-accelerated fast Fourier transform (FFT) processors are available, which
enable computationally efficient pre-processing based on Fourier transformation. Fur-
ther processing, e.g. frequency estimation, is based on pre-detected peaks in the
Fourier-domain data. Due to this, only a small subset of the complete data set has
to be stored and memory efficiency is achieved.

Conventional frequency estimation uses the frequencies of pre-detected peaks, which
is equivalent to the classical periodogram method. The achievable frequency resolu-
tion of the conventional approach is limited by given radar system parameters, such
as bandwidth, coherent processing time, and antenna aperture. To meet critical
use-cases and to enable recent advances in target tracking, it is crucial to increase
frequency resolution beyond the limits of conventional frequency estimation. This

1



1 Introduction

can not be achieved by changing radar system parameters due to limited computa-
tion time, small sensor size, or cost restrictions. Therefore, high-resolution frequency
estimation becomes necessary. Existing work focuses on high-resolution array pro-
cessing [Sch10, Hei12], where high-resolution techniques are applied in the so-called
spatial domain, that is the original domain of the angular dimension. However, we
point out that a much broader class of critical use-cases can be met by applying
high-resolution frequency estimation in either the range, the radial velocity, or the
angular dimension. To achieve this, the computationally efficient framework on mul-
tidimensional high-resolution frequency estimation, which is developed in this thesis,
can be incorporated in the processing sequence of state-of-the-art automotive radar
sensors.

1.2 Original contributions

We summarize the original contributions of this thesis. We consider multidimensional
frequency estimation with focus on computational efficiency and high-resolution ca-
pability. In particular, we consider the case, where the data is represented by a
superposition of complex sinusoids, also called cisoids, in multiple dimensions.

A framework on multidimensional frequency estimation

We propose a framework on multidimensional high-resolution frequency estima-
tion, which can achieve computational efficiency and memory efficiency and is
thus suited for real-time systems. Preprocessing based on Fourier transforma-
tion is employed to select frequency sub-bands, which are either represented by
a local single-cisoid model or a two-cisoid model and can be obtained as the fre-
quency neighborhoods of periodogram peaks. For the single-cisoid model, fre-
quency estimation is based on periodogram maximization, whereas for the two-
cisoid model, a decoupled high-resolution frequency estimation is employed.
We present a processing sequence based on decoupled Fourier-domain models,
which decide if the single-cisoid model or the two-cisoid model is more appro-
priate. If a decision in favor of the two-cisoid model is made, the optimal
processing sequence for decoupled frequency estimation is determined based
on a novel criterion. The proposed framework is also presented in [EHZ+17]
for automotive radar applications.

Frequency estimation based on a single-cisoid search

We propose a novel frequency estimation, referred to as single-cisoid search,
which can be used within the proposed frequency estimation framework for
reducing computational complexity. However, frequency separation in at least
two dimensions is required.
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1.3 Overview

Further, we consider applications in automotive radar, where 3-D frequency estima-
tion is used to obtain range, radial velocity, and angle of relevant targets. In critical
use-cases, closely spaced targets can not be resolved by conventional radar processing
and high-resolution methods are required.

High-resolution processing for automotive radar

We consider the developed framework on multidimensional high-resolution fre-
quency estimation to enhance the resolution capability of state-of-the-art auto-
motive radars. Due to the flexible decoupled approach of the proposed frame-
work high-resolution capability in the range, the radial velocity, or the angu-
lar dimension is obtained. We consider the single-cisoid search approach and
combine it with the original decoupled framework to achieve computational
efficiency and to cover a broad range of use-cases.

1.3 Overview

Here, we give an overview of this thesis. Chapter 2 introduces the data model in the
original domain as well as in the Fourier domain. We present the multidimensional
frequency estimation problem and discuss conventional approaches for computation-
ally efficient solutions. In Chapter 3, we develop a framework on multidimensional
high-resolution frequency estimation. The general approach is the combination of
periodogram-based frequency estimation and local multidimensional high-resolution
frequency estimation in a frequency sub-band, which is decoupled into a sequence of
1-D problems to achieve computational efficiency. In Chapter 4, we aim at further
reducing complexity and propose a novel computationally efficient frequency estima-
tion, referred to as single-cisoid search, which can be used in a decoupled approach
to multidimensional frequency estimation. We propose a bias correction method to
correct errors due to frequency discretization. In Chapter 5, we consider applications
in automotive radar. In Section 5.1, we give an overview of automotive radar ap-
plications, discuss briefly radar principles, and discuss state-of-the-art radar sensors
for which we derive the data model. In Section 5.2, we present conventional signal
processing for state-of-the-art radar sensors and discuss practical aspects of system
design in Section 5.3. In particular, we consider the system parameters of a series
production radar sensor. The main contribution of Chapter 5 is high-resolution pro-
cessing for automotive radars, which is presented in Section 5.4. Here we motivate
high-resolution frequency estimation by critical ADAS or HAD use-cases and pro-
pose the framework developed in Chapter 3 for high-resolution frequency estimation
in either the range, radial velocity, or angular dimension of state-of-the-art radar
sensors. In Section 5.4.3, we demonstrate the effectiveness of such an approach by
experimental data obtained with a series production radar sensor.
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2 Data model and problem formulation

In this chapter, we introduce the data model and discuss the multidimensional fre-
quency estimation problem. In particular, computationally efficient implementations
are considered and state-of-the-art approaches to reduce the computational com-
plexity of multidimensional frequency estimation are discussed. For convenience we
consider three-dimensional data. However, this constitutes no loss of generality as
the data model as well as the proposed approaches for frequency estimation can be
straightforwardly extended to an arbitrary number of data dimensions.

In Section 2.1 we consider the original-domain data model, discuss pre-processing
based on Fourier transformation, and develop the corresponding Fourier-domain data
model. Section 2.2, discusses multidimensional frequency estimation, where the focus
is on low computational complexity and high-resolution capability.

2.1 Data model

Consider a superposition of 3-D complex sinusoids, also called cisoids,

x(ls, ms, ns) =

Kc∑

k=1

ake
j(λkls+µkms+νkns) + ξ(ls,ms, ns), (2.1)

ls = 0, . . . , Ls − 1, ms = 0, . . . ,Ms − 1, ns = 0, . . . , Ns − 1,

where Ls, Ms, Ns denotes the sample support in each dimension, Kc denotes the
number of cisoids, and λk, µk, νk, ak denote normalized frequencies and complex
amplitude of cisoid k, respectively. The frequencies as well as the complex am-
plitudes are unknown but deterministic and ξ(ls,ms, ns) denotes circular complex
white Gaussian noise with covariance function

E
{
ξ(ls,ms, ns) ξ

∗(l̃s, m̃s, ñs)
}
= σ2 δls,l̃s δms,m̃s δns,ñs . (2.2)

Herein E{·} is the expected value and δ the Kronecker-Delta. Multidimensional
sum-of-cisoid models such as (2.1) apply for many practical applications, like radar
processing [Kle06, GMP12, Fri08], channel sounding for wireless communication sys-
tems [HBN98, RHST00], or multichannel nuclear magnetic resonance (NMR) spec-
troscopy [LRL98].

5



2 Data model and problem formulation

An important special case are so called frequency selective applications, which are
only concerned with cisoids lying in a predefined frequency sub-band. The motivation
for this can be for instance, that the sum of cisoid model may only apply in that sub-
band, or the number of cisoids in the complete frequency band is huge, so that a cisoid
sub-set has to be considered to reduce the computational complexity. Examples of
sub-band frequency estimation include interference cancellation in array processing
[ZL91a], NMR spectroscopy [PSH08, VSH+00], electroencephalogram (EEG) signal
processing, magnetoencephalogram (MEG) signal processing [RBVW06, RRH14],
audio processing [ZCD+09], and fault detection for induction machines [KHC07].

A natural pre-processing step for sub-band frequency estimation is the discrete time
Fourier transform (DTFT) of the data samples

X (λ, µ, ν)

=

Ls−1∑

ls=0

Ms−1∑

ms=0

Ns−1∑

ns=0

wλ(ls)wµ(ms)wν(ns) x(ls, ms, ns) e
−j(λls+µms+νns), (2.3)

where the frequencies λ ∈ (λa, λb), µ ∈ (µa, µb), ν ∈ (νa, νb), lie within a predefined
frequency sub-band, which is bounded by λa, λb, µa, µb, νa, and νb. The window
functions wλ(l), wµ(m), wν(n) are needed to attenuate out-of-band interference.
Typical window functions can be found in [Har78].

Substituting the original-domain model (2.1) in (2.3), yields the Fourier-domain data
model

X (λ, µ, ν) =

K∑

k=1

akWλ (λ− λk)Wµ (µ− µk)Wν (ν − νk) + Ξ(λ, µ, ν), (2.4)

{λ, λ1, . . . , λK} ∈ (λa, λb), {µ, µ1, . . . , µK} ∈ (µa, µb), {ν, ν1, . . . , νK} ∈ (νa, νb).

Herein, K ≤ Kc is the number of cisoids, whose frequencies lie in the predefined
frequency sub-band, and

Wλ (λ) =

Ls−1∑

ls=0

wλ(ls) e−jλls (2.5)

Wµ (µ) =

Ms−1∑

ms=0

wµ(ms)e
−jµms (2.6)

Wν (ν) =

Ns−1∑

ns=0

wν(ns) e
−jνns (2.7)

are the DTFT of the window functions wλ(l), wµ(m), wν(n), respectively. The
DTFT of the noise

Ξ (λ, µ, ν)

=

Ls−1∑

ls=0

Ms−1∑

ms=0

Ns−1∑

ns=0

wλ(ls)wµ(ms)wν(ns) ξ(ls,ms, ns) e
−j(λls+µms+νns) (2.8)
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2.1 Data model

is circular complex Gaussian, as the noise in the original-domain ξ is white, circular
complex Gaussian and the DTFT is a linear transformation. The covariance function
of (2.8) is obtained by direct calculation and by considering the covariance function
in (2.2)

E
{
Ξ (λj , µj , νj) Ξ

∗ (λk, µk, νk)
}
= σ2Cλ (λk − λj) Cµ (µk − µj) Cν (νk − νj) , (2.9)

where

Cλ (λ) =

Ls−1∑

ls=0

w2
λ(ls)e

jλls , (2.10)

Cµ (µ) =

Ms−1∑

ms=0

w2
µ(ms)e

jµms , (2.11)

Cν (ν) =

Ns−1∑

ns=0

w2
ν(ns)e

jνns . (2.12)

Observe from (2.9), that the noise in the Fourier domain is in contrast to the noise
in the original domain not white but colored.

The Fourier-domain representation of typical window functions, e.g as considered in
[Har78], is concentrated in the mainlobe, which is centered at zero. Consequently,
the shifted versions in (2.4) are concentrated around the respective cisoid frequencies.
As those lie in the predefined sub-band, all K cisoids are well represented in (2.4)
and the sub-band model is feasible.

Two important use-cases for the Fourier-domain model can be distinguished. The
first is reducing the computational complexity of frequency estimation in the original-
domain, which can be achieved by considering only K < Kc cisoids in a frequency
estimation based on model (2.4). The second use-case is that the original-domain
model (2.1) applies only locally in a predefined frequency sub-band. In that case,
model (2.4) with K = Kc can be used for frequency estimation.

Frequency grid

Calculating the DTFT on a normalized frequency grid enables practical frequency
estimation based on (2.3). To this end, the DTFT can be calculated via the discrete
Fourier transform (DFT), which employs an equidistant frequency grid

{
∆λl | l = 0, . . . , LDFT −1

}

{
∆µm |m = 0, . . . ,MDFT−1

}

{
∆νn |n = 0, . . . , NDFT −1

}

7



2 Data model and problem formulation

Herein, ∆λ = 2π/LDFT, ∆µ = 2π/MDFT, ∆ν = 2π/NDFT, is the frequency step size
and LDFT, MDFT, NDFT are arbitrary grid sizes. A common choice is LDFT = Ls,
MDFT = Ms, NDFT = Ns, which enables to use the computationally efficient FFT
algorithm for calculating (2.3) [CT65]. If a finer grid LDFT > Ls, MDFT > Ms,
NDFT > Ns is needed, the FFT algorithm can still be employed, but LDFT − Ls,
MDFT −Ms, NDFT −Ns, zeros have to be appended to the original-domain samples.
This is known as zero-padding and increases the computations required for the FFT
[OSB98].

For the sub-band Fourier-domain model (2.4), only a subset of DFT frequencies,
which lie in the sub-band, is needed

{
∆λl | l = la , . . . , lb

}
, la =

⌈
λa/∆λ

⌉
, lb =

⌊
λb/∆λ

⌋
(2.13)

{
∆µm |m = ma, . . . ,mb

}
, ma =

⌈
µa/∆µ

⌉
, mb =

⌊
µb/∆µ

⌋
(2.14)

{
∆νn |n = na , . . . , nb

}
, na =

⌈
νa/∆ν

⌉
, nb =

⌊
νb/∆ν

⌋
(2.15)

where ⌊·⌋ and ⌈·⌉ denote the floor and ceiling functions, respectively. If the cardinal-
ities of (2.13), (2.14), (2.15), L = lb− la+1, M = mb−ma+1, N = nb−na+1, are
much smaller than the complete grid sizes LDFT, MDFT, NDFT, the chirp-Z trans-
form [RSR69] can be used to efficiently calculate (2.3) for the subset of frequency
samples and thus avoid a complete FFT calculation.

For convenience we use the same functional notation for X(·) in the case of continuous
and discrete variables. Thus X(l,m, n) = X(∆λl,∆µm,∆νn) is (2.3) evaluated at
the corresponding DFT frequencies.

2.2 Problem formulation

The main objective of this thesis is the estimation of the cisoid frequencies in (2.1)
from either original-domain or Fourier-domain samples, in a computational and mem-
ory efficient way. This is a special case of multidimensional frequency estimation,
which is extensively covered in the literature [CS94, HN98, Pes05, NS10, PPG12].

An optimal approach to multidimensional frequency estimation is fitting the time-
domain model (2.1). However, this requires a computational demanding optimization
in 3Kc dimensions. In particular for large Kc, this is not practical. To circumvent
a high-dimensional optimization, subspace methods have been proposed. However,
these require an eigendecomposition of a LsMsNs-dimensional matrix and additional
pre-processing, as only a single observation of (2.1) is available due to measurement-
time restrictions. This is known as single-snapshot or coherent sources case in the
literature. The computational complexity of the eigendecomposition, which is deter-
mined by the sample support O(LsMsNs)

3 [GvL96], limits the practical relevance of
subspace approaches whenever computation time is crucial. This holds in particular

8



2.2 Problem formulation

for large a sample support. As the focus here is on computational efficiency, we do
not consider multidimensional frequency estimation in the original-domain.

Rather, we consider two state-of-the-art approaches for computationally efficient
multidimensional frequency estimation, which are both based on the Fourier-domain
model (2.4). The first, considered in Section 2.2.1, is based on NLS fitting of the sub-
band Fourier-domain model. Therefore it is only reasonable if a frequency sub-band
with a reduced number of cisoids K ≪ Kc can be identified. The second, discussed in
Section 2.2.2, is the classical periodogram approach, which works without a sub-band
restriction and can handle Kc cisoids in the complete frequency range. However, it
has no high-resolution capability, which is required for many practical applications.

In this thesis, we combine NLS-based frequency estimation in the Fourier-domain
with periodogram-based frequency estimation to overcome their respective limita-
tions. To this end, we develop a framework in Chapter 3.

2.2.1 Sub-band nonlinear least squares

The Fourier-domain model (2.4) can be straightforwardly applied in an NLS fre-
quency estimation. To achieve computational efficiency a frequency sub-band with
a reduced number of practically relevant cisoids has to be identified so that the
Fourier-domain model with K ≪ Kc can be used. Note that depending on the ap-
plication this might not be possible and thus the practicality of such an approach is
limited. We proceed as follows: we introduce necessary notation, derive the optimal
maximum likelihood (ML) estimator, and simplify it to obtain the NLS estimator,
which achieves almost the same performance in practice.

Consider the following vectorization of (2.4) evaluated on a frequency grid

[x]i = X (li,mi, ni) , (2.16)

where the indices

li = la +
i

MN
mod L, mi = ma +

i

N
mod M, ni = na + i mod N,

are such that (2.16) has a row-major order, which is a common sequential represen-
tation of multidimensional arrays [Knu97, Sec. 2.2.6]. Substituting (2.4) in (2.16),
yields the model

x = WK (λK ,µK ,νK) aK + ξ, (2.17)

where aK = [a1, . . . , aK ]T, [ξ]i = Ξ(∆λli,∆µmi,∆νni), λK = [λ1, . . . , λK ]T , µK =

[µ1, . . . , µK ]T, and νK = [ν1, . . . , νK ]T. Due to the row-major order of (2.16), the
model matrix in (2.17) is

WK (λK ,µK ,νK)

= [wλ (λ1)⊗wµ (µ1)⊗wν (ν1) , . . . ,wλ (λK)⊗wµ (µK)⊗wν (νK)]
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2 Data model and problem formulation

where ⊗ denotes the Kronecker product and

wλ (λ) = [Wλ(∆λla −λ), . . . ,Wλ(∆λlb −λ)]T (2.18)

wµ (µ) = [Wµ(∆µma−µ), . . . ,Wµ(∆µmb−µ)]T (2.19)

wν (ν) = [Wν (∆νna −ν), . . . ,Wν (∆νnb −ν)]T (2.20)

In a maximum likelihood estimation, the likelihood function of model (2.17) is max-
imized with respect to the unknown parameters λK , µK , νK , aK , and σ2. The
likelihood function is given by the conditional distribution of (2.17)

p
(
x | λK ,µK ,νK ,aK , σ2

)

=
1

(πσ2)LMNdet (C)
e−[x−WK (λK ,µK ,νK )aK ]HC−1[x−WK (λK ,µK ,νK )aK ]/σ2

(2.21)

where C = Cλ ⊗Cµ ⊗Cν and

[Cλ]i,j = Cλ (∆λ (j − i)) , [Cµ]i,j = Cµ (∆µ (j − i)) , [Cν ]i,j = Cν (∆ν (j − i)) .

Note that (2.21) follows directly from the circular complex Gaussian distribution of
the noise vector ξ and the covariance function in (2.9). Equivalent results can be
obtained by minimizing the negative log-likelihood function

− ln p
(
x | λK ,µK ,νK ,aK , σ2)

= const + LMN ln σ2

+
1

σ2
[x−WK (λK ,µK ,νK) aK ]H C

−1 [x−WK (λK ,µK ,νK)aK ] , (2.22)

which can be concentrated with respect to the noise variance. Equating the derivative
of (2.22) with respect to σ2 to zero yields

σ2 =
1

LMN
[x−WK (λK ,µK ,νK) aK ]H C

−1 [x−WK (λK ,µK ,νK)aK ] .

Using this in (2.22)

const + LMN ln
(
[x−WK (λK ,µK ,νK) aK ]H C

−1 [x−WK (λK ,µK ,νK) aK ]
︸ ︷︷ ︸

ML criterion function

)

allows to minimize the ML criterion function, which is independent of the noise
variance, with respect to λK , µK , νK , and aK .

To simplify ML frequency estimation further we approximate C ≈ I, so that the ML
criterion function reduces to the NLS criterion function

‖x−WK (λK ,µK ,νK) aK‖2 , (2.23)

which can be concentrated with respect to the cisoid amplitudes. To see this,
observe that for known λK , µK , νK the cisoid amplitudes can be obtained as
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2.2 Problem formulation

aK = W+
K (λK ,µK ,νK)x. Inserting this in (2.23) and after manipulations, yields

the NLS frequency estimator

λ̂K , µ̂K , ν̂K = arg max
λK ,µK ,νK

∥
∥WK (λK ,µK ,νK)W+

K (λK ,µK ,νK)x
∥
∥2. (2.24)

With (2.24), the number of real parameters in the optimization is reduced from 5K
for the ML estimation to 3K. The performance of NLS estimator is asymptotically
equivalent to the optimal ML estimator [SJL97].

Note, that model (2.17) could be used in a subspace approach. However, this requires
the noise vector to be white. To achieve this in (2.17) a frequency grid with LDFT =

Ls, MDFT = Ms, NDFT = Ns has to be used and window functions are restricted
to the rectangular window. Using such a frequency grid constitutes no practical
restriction, whereas the rectangular window is not feasible in a sub-band approach.
This is due to its high sidelobe level (SLL), which leads to a poor out-of-band cisoids
suppression and therefore to a violation of the white noise assumption. In principle,
window functions with a lower SLL could be used in combination with pre-whitening.
However, pre-whitening increases the effective SLL [vT02, Sec. 3.10] and thus leads
again to a poor out-of-band cisoids suppression. Therefore, we do not consider sub-
space approaches here.

2.2.2 Periodogram

If it is not possible to identify an application-relevant frequency sub-band, a common
approach to frequency estimation is based on the periodogram. The periodogram
was first introduced by Schuster in 1898 [Sch98] to reveal hidden periodicities in
time series. It constitutes a classical non-parametric spectral estimation method
[Tho82, Bri81] and is as such applied e.g. in spectral sensing for cognitive radios
[MLJ09]. For the model (2.1) and well separated cisoids it provides an approximation
to optimal frequency estimation in the original domain [SM05] and is thus widely
used in radar signal processing [Ric14]. The periodogram is simply the squared
magnitude of the DTFT in (2.3), considered for the complete frequency range

P (λ, µ, ν) = |X (λ, µ, ν)|2, λ ∈ (0, 2π], µ ∈ (0, 2π], ν ∈ (0, 2π]. (2.25)

The periodogram frequency estimates are then the frequencies corresponding to the
Kc largest peaks of (2.25). Note that in most applications Kc is not known and
has to be estimated. For example in radar signal processing, Kc is obtained prior to
parameter estimation by power detection [RSH10, Ch.15/16].

The main advantage of periodogram-based frequency estimation is computationally
efficiency, which is achieved by the FFT, as discussed in Section 2.1, followed by a
peak search. Its main drawback is limited resolution. Periodogram-based frequency
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estimation can resolve two cisoids only, if their frequency separation exceeds the
respective resolution limit

Fλ =
2π

Ls
, Fµ =

2π

Ms
, Fν =

2π

Ns
, (2.26)

in at least one dimension. Only if this holds for every possible cisoid pair, the peri-
odogram provides a good approximation of optimal frequency estimation [SM05].

Note that (2.26) are known as Fourier, Rayleigh, or periodogram resolution limits
[SM05]. The Fourier limits are equal to the mainlobe width (MLW) of the respective
rectangular window functions. For window functions with larger MLW the effective
resolution limits are larger than the Fourier limits [Har78].
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2.A Appendix

2.A Appendix

2.A.1 Window functions

Here we discuss properties and representations of window functions wλ(l), wµ(m),
wν(n), which are needed in the course of this thesis. A detailed discussion can be
found in [Har78].

In this thesis, we consider window functions, which are real, non-negative, symmetric
around (Ls − 1)/2, (Ms − 1)/2, (Ns − 1)/2, respectively, and normalized

Ls−1∑

ls=0

wλ(ls) =

Ms−1∑

ms=0

wµ(ms) =

Ns−1∑

ns=0

wν(ns) = 1.

The DTFT of such window functions as in (2.5), (2.6), (2.7) can be written as

Wλ (λ) = Ωλ (λ) e−j Ls−1
2

λ (2.27)

Wµ (µ) = Ωµ (µ) e−j Ms−1
2

µ (2.28)

Wν (ν) = Ων (ν) e
−j

Ns−1
2

ν (2.29)

where

Ωλ (λ) =

Ls−1∑

ls=0

wλ(ls) cos
(

λ
[

ls −Ls − 1

2

])

(2.30)

Ωµ (µ) =

Ms−1∑

ms=0

wµ(ms) cos
(

µ
[

ms−
Ms − 1

2

])

(2.31)

Ων (ν) =

Ns−1∑

ns=0

wν(ns) cos
(

ν
[

ns −Ns − 1

2

])

(2.32)

denote amplitude functions, which are real, symmetric, 2π periodic, and have a
global maximum at λ = 0, µ = 0, ν = 0, respectively. Due to the normalization of
the original-domain window function we have Ωλ(0) = Ωµ(0) = Ων(0) = 1.

We can derive (2.29) by writing

Wν (ν) = e−j
Ns−1

2
ν

Ns−1∑

ns=0

wν(ns)e
−jν(ns−

Ns−1
2 )

= e−j
Ns−1

2
ν
[

Ων (ν)− j

Ns−1∑

ns=0

wν(ns) sin
(

ν
[

ns −
Ns − 1

2

])

︸ ︷︷ ︸
=0

]

,
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where the last term is zero because wλ is by assumption symmetric around (Ns−1)/2

and the sine is an odd function. The same argument holds for (2.27), (2.28). The
symmetry, periodicity, and the global maximum position follow directly from (2.30),
(2.31), (2.32) as the cosine is even, 2π periodic, and has range (−1, 1).

Mainlobe width and sidelobe level

Two performance indicators of window functions are the MLW and the SLL. The
first determines the resolution performance [Har78] and the latter the out-of-band
interference suppression.

The MLW is defined as the smallest positive null of the Fourier-domain window
function. In particular

MLWλ, MLWµ, MLWν ,

are equal to the smallest positive null of (2.30), (2.31), (2.32), respectively. The SLL
is defined as

SLLλ = Ω2
λ (λSL) , SLLµ = Ω2

µ (µSL) , SLLν = Ω2
ν (νSL)

where λSL, µSL, νSL denote the position of the second largest peak of Ω2
λ(λ), Ω

2
µ(µ),

Ω2
ν(ν), respectively.

Figure 2.1 shows the MLW and the SLL for a rectangular window wλ(l) = 1. On
the left-hand side, the squared magnitude of the Fourier-domain window function
for the complete normalized frequency range is shown. On the right-hand side, the
region around zero is shown and the MLW and SLL are marked. For the rectangular
window we have [Har78]

MLWλ =
2π

Ls
, MLWµ =

2π

Ms
, MLWν =

2π

Ns
,

SLLλ = SLLµ = SLLν = 13 dB.
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−π 0 π

λ

0

−15

−30

Ω
2 λ

0 MLWλ

λ

SLLλ

Figure 2.1: Fourier-domain window function for the rectangular window (left) with
marked MLWλ and SLLλ (right).

Derivatives

The derivatives of the Fourier-domain window functions (2.5), (2.6), (2.7), are given
by

Ẇλ (λ) = −
Ls−1∑

ls=0

j lswλ(ls) e−jλls , (2.33)

Ẇµ (µ) = −
Ms−1∑

ms=0

j mswµ(ms) e
−jµms , (2.34)

Ẇν (ν) = −
Ns−1∑

ns=0

j nswν(ns) e−jνns , (2.35)

respectively. The derivatives of the window amplitude functions (2.30), (2.31), (2.32),
are

Ω̇λ (λ) = −
Ls−1∑

ls=0

wλ(ls)
(

ls −Ls − 1

2

)

sin
[

λ
(

ls −Ls − 1

2

)]

, (2.36)

Ω̇µ (µ) = −
Ms−1∑

ms=0

wµ(ms)
(

ms−
Ms − 1

2

)

sin
[

µ
(

ms−
Ms − 1

2

)]

, (2.37)

Ω̇ν (ν) = −
Ns−1∑

ns=0

wν(ns)
(

ns −Ns − 1

2

)

sin
[

ν
(

ns −Ns − 1

2

)]

, (2.38)

respectively. This follows from direct calculation.
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2 Data model and problem formulation

2.A.2 Accuracy and resolution

The accuracy of any unbiased estimator can be assessed by the Cramér Rao bound
(CRB), which represents a lower bound on the estimation error variance [vT68a].
For a given frequnecy sub-band we derive the CRB matrix for model (2.17).

Another crucial concept regarding frequency estimation is resolution. We adopt
a commonly used resolution definition and consider two cisoids resolved if we can
estimate their frequencies such that

√
(
λ̂1 − λ1

)2
+
(
µ̂1 − µ1

)2
+
(
ν̂1 − ν1

)2
<

δ

2
∧

√
(
λ̂2 − λ2

)2
+
(
µ̂2 − µ2

)2
+
(
ν̂2 − ν2

)2
<

δ

2
.

(2.39)

Herein, λ1, µ1, ν1, λ2, µ2, ν2, λ̂1, µ̂1, ν̂1, λ̂2, µ̂2, ν̂2, are the true and estimated
cisoid frequencies, respectively, and

δ =

√
(
λ2 − λ1

)2
+
(
µ2 − µ1

)2
+
(
ν2 − ν1

)2

is the frequency separation.

Cramér Rao bound

We derive the CRB for the sub-band, Fourier-domain model (2.17). To this end,
consider the parameter vector

[
Re {aKc} , Im {aKc} ,λKc ,µKc

,νKc

]T
,

representing all Kc cisoids. Note that only K of the Kc cisoids frequencies lie within
the sub-band Cisoids with frequencies outside the sub-band are considered as inter-
ference and will degrade the accuracy when estimating the K cisoid parameters of
interest via the sub-band approach.

Applying the results in [SL01, SJL97] to model (2.17) yields

CRB =
σ2

2
Re
{

G
H
C

−1
G
}−1

, (2.40)

where

G =
[
WKc(λKc ,µKc

,νKc ), jWKc (λKc ,µKc
,νKc), Dλ,Dµ,Dν

]

Dλ = [a1ẇλ (λ1)⊗wµ (µ1)⊗wν (ν1) , . . . , aKcẇλ (λKc)⊗wµ (µKc )⊗wν (νKc)]

Dµ = [a1wλ (λ1)⊗ ẇµ (µ1)⊗wν (ν1) , . . . , aKcwλ (λKc)⊗ ẇµ (µKc )⊗wν (νKc)]

Dν = [a1wλ (λ1)⊗wµ (µ1)⊗ ẇν (ν1) , . . . , aKcwλ (λKc)⊗wµ (µKc )⊗ ẇν (νKc)]
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2.A Appendix

Herein,

ẇλ (λ) = [Ẇλ(∆λla −λ), . . . , Ẇλ(∆λlb −λ)]T (2.41)

ẇµ (µ) = [Ẇµ(∆µma−µ), . . . , Ẇµ(∆µmb−µ)]T (2.42)

ẇν (ν) = [Ẇν (∆νna −ν), . . . , Ẇν (∆νnb −ν)]T (2.43)

gather the derivatives of the Fourier-domain window functions evaluated on the
frequency grid.

The CRB matrix (2.40) has the following block structure

CRB =












C̃RBr ∗ ∗ ∗ ∗
∗ C̃RBi ∗ ∗ ∗
∗ ∗ C̃RBλ ∗ ∗
∗ ∗ ∗ C̃RBµ ∗
∗ ∗ ∗ ∗ C̃RBν












,

where ∗ denotes sub matrices of no interest and C̃RBr,, C̃RBi,, C̃RBλ, C̃RBµ,

C̃RBν , the Kc ×Kc sub matrices associated with the respective cisoid parameter.

Without loss of generality we assume, that the K cisoids parameters of interest are
the first elements of aKc , λKc , µKc

, νKc , respectively. Selecting the upper left K×K

sub blocks yields the sub matrices corresponding to the K cisoids of interest

CRBr, CRBi, CRBλ, CRBµ, CRBν . (2.44)

The diagonal elements of each matrix represent lower bounds on the error variance
of the respective parameter estimates.
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3 A framework on multidimensional frequency

estimation

In this chapter we propose a framework on multidimensional frequency estimation,
where we focus on computational efficiency and high-resolution capability. The
framework is most advantageous for a large number of well separated cisoids and
only few closely spaced cisoid pairs. For such situations, the periodogram is able
to resolve most cisoids and high-resolution processing is only required for a small
number of unresolved cisoid pairs.

Section 3.1 states the principle of the proposed framework and introduces neces-
sary notation. Section 3.2 presents the proposed processing sequence in particular
decoupled frequency estimation with optimal selection of the so-called resolution
dimension. In Section 3.3, periodogram-based frequency estimation based on the
single-cisoid model is presented. In particular, correction of estimation errors due
to frequency discretization is considered. In Section 3.4.1, decoupled high-resolution
frequency estimation for the two-cisoid case is presented. We give an example in
Section 3.5 and present simulative results in Section 3.6.

3.1 Preliminaries

Consider the case, where the model in (2.1) comprises

• a large number of well separated cisoids in the complete frequency range and

• a few number of cisoid pairs with separations below the resolution limit of the
periodogram.

Practical examples are horizontal multipath scenarios in automotive radar and ver-
tical multipath scenarios in low angle radar tracking, considered in [Hei12, DH07],
respectively. For such scenarios, periodogram-based frequency estimation fails for
the closely spaced cisoids and it is not possible to predefine a suitable sub-band
for NLS-based frequency estimation. Therefore, both conventional approaches for
computationally efficient multidimensional frequency estimation can not be used di-
rectly.
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3 A framework on multidimensional frequency estimation

Here, we propose to apply sub-band frequency estimation locally in the vicinity of
periodogram peaks. For each peak, bounded by λa, λb, µa, µb, νa, νb , we consider
the Fourier-domain model in (2.4) with either K = 1, for well separated cisoids,

X (λ, µ, ν) = a0Wλ (λ− λ0)Wµ (µ− µ0)Wν (ν − ν0) + Ξ(λ, µ, ν), (3.1)

{λ, λ0} ∈ (λa, λb) , {µ, µ0} ∈ (µa, µb) , {ν, ν0} ∈ (νa, νb) ,

or with K = 2, for closely spaced cisoid pairs,

X (λ,µ, ν) =

2∑

k=1

akWλ (λ− λk)Wµ (µ− µk)Wν (ν − νk) + Ξ(λ, µ, ν), (3.2)

{λ, λ1, λ2} ∈ (λa, λb) , {µ, µ1, µ2} ∈ (µa, µb) , {ν, ν1, ν2} ∈ (νa, νb) .

Note that for model (3.2), the frequency separations

δλ = λ2 − λ1, δµ = µ2 − µ1, δν = ν2 − ν1, (3.3)

are below the resolution limits in all three dimensions simultaneously. The models
in (3.1) and (3.2) are appropriate as long as window functions with high sidelobe
attenuation, such as Chebychev windows [Dol46] are used. In this way, out-of-band
cisoids are strongly attenuated compared to the one or two cisoids of interest.

The frequencies of the single-cisoid model λ0, µ0, and ν0, can be straightforwardly
obtained by the frequencies of the periodogram peak

λ̂0, µ̂0, ν̂0 = arg max
λ,µ,ν

P (λ, µ, ν) , (3.4)

where the maximization is restricted to the peak neighborhood. For the special case
Kc = 1 and rectangular window functions it represents the classical periodogram
maximizer, which is in such a case optimal [SM05]. Another special case is Kc ≫ 1,
rectangular window functions, and well separated cisoids, that is all possible cisoid
pairs have a frequency separation above the resolution limit in at least one dimen-
sion. In that case, the frequencies of the Kc largest periodogram peaks provide an
approximation to the optimal solution if the periodogram is calculated on a DFT
frequency grid, with grid sizes equal to the corresponding sample support [SM05].
In practice, window functions with low SLL are required to mitigate mutual interfer-
ence or leakage. Thereby, the estimation error is increased and a practical trade-off
has to be found.

For the two-cisoid model (3.2), the periodogram fails due to its resolution limitation
and high-resolution methods, such as the NLS estimator (2.24) for K = 2 become
necessary

λ̂2, µ̂2, ν̂2 = arg max
λ2,µ2,ν2

∥
∥W2 (λ2,µ2,ν2)W

+
2 (λ2,µ2,ν2)x

∥
∥
2
. (3.5)

However, a direct implementation of (3.5) involves a joint optimization with respect
to six parameters, which is computationally demanding.
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3.1 Preliminaries

3.1.1 Decoupled frequency estimation

Optimal multidimensional frequency estimation requires a joint optimization with
respect to K frequencies in multiple dimensions. Thus the dimensionality of the
optimization problem is given by K times the number of frequency dimensions. A
common approach to reduce the computational complexity is to decouple multidi-
mensional frequency estimation into a sequence of 1-D frequency estimation prob-
lems, which can achieve almost the same estimation performance [VS98, SS98, Ath01,
LHSV95]. When decoupling the multidimensional frequency estimation, one has to
decide on the processing sequence. In one dimension, referred to as resolution dimen-
sion, a 1-D high-resolution frequency estimation for K cisoids has to be performed
first. In the remaining dimensions, the calculated frequency estimates can then be
used for signal component extraction, so that the remaining estimation problem is
further simplified to K single-cisoid frequency estimation problems.

Existing decoupled methods use a predefined resolution dimension and are based on
models in the original domain. Here, we consider a decoupled frequency estimation
in the Fourier-domain with optimal selection of the resolution dimension. This can
be based on the following vector models

zλ(µ, ν) =

K∑

k=1

αk(µ, ν)wλ(λk) + noise, (3.6)

zµ(λ, ν) =

K∑

k=1

αk(λ, ν)wµ(µk) + noise, (3.7)

zν(λ, µ) =

K∑

k=1

αk(λ, µ)wν(νk ) + noise, (3.8)

where wλ(λ), wµ(µ), wν(ν) are given in (2.18), (2.19), (2.20), respectively, and

αk(µ, ν) = akWµ(µ−µk)Wν(ν−νk ), (3.9)

αk(λ, ν) = akWλ(λ−λk)Wν(ν−νk ), (3.10)

αk(λ,µ) = akWλ(λ−λk)Wµ(µ−µk). (3.11)

Note that models (3.6), (3.7), and (3.8) are used when the resolution dimension is
the first, second, or third dimension, respectively.

If we use K = 1 or K = 2 in (3.6), (3.7), (3.8), and let λ ∈ (λa, λb), µ ∈ (µa, µb),
ν ∈ (νa, νb), local decoupled models for the single-cisoid or the two-cisoid case are
obtained.
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3 A framework on multidimensional frequency estimation

3.2 Processing sequence

Here we present a processing sequence, which is applied for each significant peak of
the periodogram and distinguishes between the local single-cisoid model and the local
two-cisoid model. For the single-cisoid model, computationally simple periodogram-
based frequency estimation, discussed in Section 3.3, is used, whereas for the two-
cisoid model, decoupled high-resolution frequency estimation, as discussed in Sec-
tion 3.4, is used. In Section 3.2.1, we propose a method to determine the best reso-
lution dimension for the decoupled frequency estimation adaptively. In Section 3.2.2
we discuss how the decision between the local single-cisoid and two-cisoid models
can be achieved by using local decoupled models.

3.2.1 Selection of the resolution dimension

The overall success of decoupled frequency estimation depends critically on resolved
estimates in the resolution dimension. It is well known that the resolution success
of 1-D high-resolution frequency estimation depends on the available signal-to-noise
ratio (SNR) and particularly on the frequency separation [vT02]. Therefore, the
correct selection of the resolution dimension is crucial for the decoupled approach,
where the best results are achieved when it is selected according to the largest fre-
quency separation. For this purpose, we propose to calculate the mean squared
errors (MSE) of the single-cisoid model fit for each dimension

MSE1,λ =
1

L
‖zλ(µ, ν)− α̂0(µ, ν)wλ(λ̂0)‖2, (3.12)

MSE1,µ =
1

M
‖zµ(λ, ν)− α̂0(λ, ν)wµ(µ̂0)‖2, (3.13)

MSE1,ν =
1

N
‖zν (λ, µ)− α̂0(λ, µ)wν(ν̂0)‖2. (3.14)

Herein, λ̂1, µ̂1, and ν̂1 are obtained according to (3.4) and

α̂0(µ, ν) = w
+
λ (λ̂0) zλ(µ, ν) (3.15)

α̂0(λ, ν) = w
+
µ (µ̂0) zµ(λ, ν) (3.16)

α̂0(λ, µ) = w
+
ν (ν̂0) zν(λ,µ) (3.17)

are the LS estimates of the corresponding amplitude terms. The resolution dimension
is now selected according to the largest value among (3.12), (3.13), and (3.14).

To motivate that approach, consider a two-cisoid model with no frequency separation
in one of the three dimensions, e.g. the last dimension of (2.4). The corresponding
decoupled model (3.8)

zν(λ, µ) = [α1(λ,µ) + α2(λ, µ)]wν(ν1) + noise,
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3.2 Processing sequence

is then an effective single-cisoid model. The corresponding MSEν will be on the
order of the noise power and thus small. The same holds for small but non-zero
frequency separations. The practicality of the MSE-based approach is demonstrated
in Section 3.6.1 by simulations.

3.2.2 Model selection

The optimal solution to decide between the single-cisoid and the two-cisoid model is
the generalized likelihood ratio test (GLRT). Here, the test statistic is given by the
ratio of the respective likelihood functions, which have been maximized with respect
to the unknown model parameters. In a simplified version of the GLRT, a decision
for the two-cisoid model is made if

MSE1

MSE2
> γ2 (3.18)

where MSE1 and MSE2 are the mean square fitting errors of the single-cisoid and
two-cisoid model in the resolution dimension, respectively. That is, MSE1 is given
by either (3.12), (3.13), or (3.14) and MSE2 is given by one of

MSE2,λ =
1

L
‖zλ(µ, ν)− α̂1(µ, ν)wλ(λ̂1)− α̂2(µ, ν)wλ(λ̂2)‖2, (3.19)

MSE2,µ =
1

M
‖zµ(λ, ν)− α̂1(λ, ν)wµ(µ̂1)− α̂2(λ, ν)wµ(µ̂2)‖2, (3.20)

MSE2,ν =
1

N
‖zν (λ, µ)− α̂1(λ,µ)wν(ν̂1)− α̂2(λ, µ)wν(ν̂2)‖2. (3.21)

Herein, λ̂1, λ̂2, µ̂1, µ̂2, ν̂1, ν̂2 are maximum likelihood estimates obtained for the
two-cisoid model, and

[
α̂1(µ, ν), α̂2(µ, ν)

]T
=
[
wλ(λ̂1),wλ(λ̂2)

]+
zλ(µ, ν), (3.22)

[
α̂1(λ, ν), α̂2(λ, ν)

]T
=
[
wµ(µ̂1),wµ(µ̂2)

]+
zµ(λ, ν), (3.23)

[
α̂1(λ, µ), α̂2(λ, µ)

]T
=
[
wν(ν̂1), wν(ν̂2)

]+
zν(λ, µ), (3.24)

are the corresponding amplitude estimates. The threshold γ2 can be obtained em-
pirically by fixing the false-alarm rate to a desired level, where false alarm refers to
erroneously deciding for the two-cisoid model when only a single-cisoid is present.

Calculating the GLRT test statistic requires the estimation of the two-cisoid model
parameters, which is computationally intensive even for the efficient decoupled ap-
proach described in Section 3.4. Therefore it should only be performed, when the
single-cisoid model is unlikely and a two-cisoid is indicated. This indication can
be based on a goodness-of-fit test of the single-cisoid model [Hei12], which is here
performed in the selected resolution dimesion

MSE1 > γ1.

The threshold γ1 depends on the noise power and the sample support in the resolution
dimension. It can be obtained empirically with the help of simulations.

23



3 A framework on multidimensional frequency estimation

Fit model for K = 1 Fit model for K = 1 Fit model for K = 1

Determine

resolution dimension

MSE1 > γ1

Fit model for K = 2

in resolution dimension

MSE1

MSE2

> γ2

Estimate frequencies

in remaining dimensions

zλ zµ zν

MSE1,λ

MSE1,µ

MSE1,ν

MSE1

no, retain K = 1

yes

MSE2

no, retain K = 1

yes, decide K = 2

Figure 3.1: Processing sequence with optimal selection of the resolution dimension.

3.2.3 Overview

Figure 3.1 gives an overview of the proposed processing sequence for multidimen-
sional decoupled high-resolution frequency estimation. The shown processing steps
are performed for each peak of the periodogram and the decoupled models in (3.6),
(3.7), and (3.8) are defined locally in the vicinity of each peak. The frequencies of
the single-cisoid and the two-cisoid model, required for calculating the corresponding
MSE values, are obtained as described in Section 3.3 and Section 3.4, respectively.
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3.3 Single-cisoid frequency estimation

3.3 Single-cisoid frequency estimation

The accuracy of periodogram-based frequency estimation according to (3.4) is deter-
mined by the step-size of the employed frequency grid. Fine step-sizes are often not
practical due to memory and processing power restrictions. Therefore we propose a
computational efficient implementation of (3.4), which achieves sub-grid accuracy.

To this end, consider

∆λl0, ∆µm0, ∆νn0, l0,m0, n0 = arg max
l,m,n

P (l,m, n) , (3.25)

with predefined frequency step-sizes ∆λ, ∆µ, ∆ν . The finite step-sizes introduce a
bias

βλ = ∆λl0 − λ̂1, βµ = ∆µm0 − µ̂1, βν = ∆νn0 − ν̂1, (3.26)

in the range of (−∆λ/2, ∆λ/2), (−∆µ/2, ∆µ/2), (−∆ν/2, ∆ν/2), respectively. The
maximal bias values correspond to the cases where the true frequencies lie exactly
in the middle of two adjacent grid values and the bias terms vanish if the true
frequencies coincide with a grid value. There exists a wealth of method for reducing
the grid induced bias terms in (3.26) [RV70, Gra83, Qui94, Qui97, Mac98, Can13].
However all of those methods restrict either the frequency grid step size or the choice
of window functions. Only the parabolic interpolation approach in [Ric14, Sec. 5.3.4]
is applicable for arbitrary step sizes and window functions. However, the remaining
bias after correction is large compared to the CRB, which we show in Section 3.6.2
by simulations.

3.3.1 Proposed approach

We propose a new periodogram-based frequency estimator for the single-cisoid model,
which corrects the frequency-grid induced bias (3.26) for arbitrary window functions
and grid-sizes. We begin with a derivation for the first frequency dimension and
extent the result to the remaining dimensions afterwards.

Consider the logarithmic ratio of the DFT-grid periodogram maximizer and the
larger one of the adjacent values

Rλ = log
P (l0,m0, n0)

max {P (l0 − 1,m0, n0) , P (l0 + 1,m0, n0)}
. (3.27)

Note that (3.27) is a bounded function of the bias Rλ = f(βλ) in the domain
(−∆λ/2, ∆λ/2). The inverse function f−1(Rλ) yields the absolute bias for a given
Rλ. If we consider that the true cisoid frequency lies between the grid point of the
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3 A framework on multidimensional frequency estimation

maximal periodogram value and its largest neighboring value, the following approach
could be used to obtain the bias

βλ =

{

+f−1(Rλ), P (l0,m0, n0 + 1) > P (l0,m0, n0 − 1)

−f−1(Rλ), P (l0,m0, n0 + 1) < P (l0,m0, n0 − 1)
.

However, the function f−1(Rλ) appears hard to obtain analytically for common
window functions and therefore we propose a method for constructing a look-up
table (LUT) for it.

To this end, consider the noiseless 1-D single-cisoid model with a predefined fre-
quency λ0, which we vary within half of the frequency step size ∆λl0 + u∆λ/(2U),
u = 0, . . . , U − 1, where U is a predefined LUT size. The corresponding DFT-grid
periodogram maximizer is l0 for all u and the continuous periodogram maximizer
is λ0. This yields bias values βλ = u∆λ/(2U), for which the corresponding peri-
odogram ratio as in (3.27) can be calculated. More precisely, the maximal DFT-grid
periodogram value at l0 and the largest neighboring value at l0+1 can be calculated.
Taking the logarithm and forming the ratio, yields

Rλ (u) = log

∣
∣
∣
∣
∣

Ls−1∑

ls=0

wλ(ls) e
j
∆λ
2U

lsu

∣
∣
∣
∣
∣

2

− log

∣
∣
∣
∣
∣

Ls−1∑

ls=0

wλ(ls) e
j
∆λ
2U

lsue−j∆λls

∣
∣
∣
∣
∣

2

.

In this way, pairs of bias u∆λ/(2U) and periodogram ratio values Rλ(u) are obtained.
To use these pairs as a LUT, a regular grid of periodogram ratio values Rλ =

0,∆R,λ, . . . , (U − 1)∆R,λ is required, where ∆R,λ = max Rλ(u)/(U − 1). Thereby,
the LUT index for a given value of Rλ can be obtained by simply dividing with
the step length ∆R,λ and rounding to the nearest integer value. To obtain such a
regular grid the corresponding bias values can be linearly interpolated. Gathering
these values yields the desired LUT

LUTλ(u) =
∆λ

2U

[

ũ+
∆R,λ u−Rλ (ũ)

Rλ (ũ+ 1)−Rλ (ũ)

]

, ũ = arg min
k

{∆R,λu−Rλ(k)} . (3.28)

Note that (3.28) is calculated off-line and stored. This enables the following bias
corrected estimator

λ̂1 =

{

∆λ l0 + LUTλ (⌊Rλ/∆R,λ⌉) , P (l0 + 1,m0, n0) > P (l0 − 1,m0, n0)

∆λ l0 − LUTλ (⌊Rλ/∆R,λ⌉) , P (l0 + 1,m0, n0) < P (l0 − 1,m0, n0)
. (3.29)

Note that (3.29) can be further refined by linear interpolation to compensate for
potentially small LUT sizes.

The same approach is straightforwardly extended to the remaining dimensions. The
respective LUTs are

LUTµ(u) =
∆µ

2U

[

ũ+
∆R,µ u−Rµ (ũ)

Rµ (ũ+ 1)−Rµ (ũ)

]

, ũ = arg min
k

{∆R,µu−Rµ(k)} , (3.30)

LUTν(u) =
∆ν

2U

[

ũ+
∆R,ν u−Rν (ũ)

Rν (ũ+ 1)−Rν (ũ)

]

, ũ = arg min
k

{∆R,νu−Rν(k)} . (3.31)
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3.4 Decoupled two-cisoid frequency estimation

Herein, ∆R,µ = max Rµ(u)/(U − 1), ∆R,ν = max Rν(u)/(U − 1),

Rµ (u) = log
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Rν (u) = log
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The bias corrected single-cisoid estimators are then

µ̂1 =

{

∆µ m0 + LUTµ (⌊Rµ/∆R,µ⌉) , P (l0,m0 + 1, n0) > P (l0,m0 − 1, n0)

∆µ m0 − LUTµ (⌊Rµ/∆R,µ⌉) , P (l0,m0 + 1, n0) < P (l0,m0 − 1, n0)
, (3.32)

ν̂1 =

{

∆ν n0 + LUTν (⌊Rν/∆R,ν ⌉) , P (l0,m0, n0 + 1) > P (l0,m0, n0 − 1)

∆ν n0 − LUTν (⌊Rν/∆R,ν ⌉) , P (l0,m0, n0 + 1) < P (l0,m0, n0 − 1)
, (3.33)

where

Rµ = log
P (l0,m0, n0)

max {P (l0,m0 − 1, n0) , P (l0, m0 + 1, n0)}
,

Rν = log
P (l0,m0, n0)

max {P (l0,m0, n0 − 1) , P (l0, m0, n0 + 1)} .

With (3.29), (3.32), and (3.33), the frequencies of a single-cisoid model can be ob-
tained with high accuracy based on only three local periodogram values per dimen-
sion. Compared to existing methods the frequency grid size as well as the window
functions can be chosen arbitrarily. The proposed method is computationally most
simple: it requires only the ratio of the periodogram peak value and its larger neigh-
bor to obtain the corresponding bias in a pre-calculated LUT.

3.4 Decoupled two-cisoid frequency estimation

Here, decoupled high-resolution frequency estimation for the local two-cisoid model
is discussed. Section 3.4.1 presents 1-D high-resolution frequency estimation based
on the local Fourier-domain model in the resolution dimension, given by one of the
models in (3.6), (3.7), or (3.8) for K = 2. Section 3.4.2 considers frequency estima-
tion in the remaining dimension based on the resolution dimension estimates. To
simplify the notation we restrict the discussion to the case, where the first frequency
dimension is the resolution dimension. The corresponding local model in (3.6) is for
K = 2 given by

zλ (µ, ν) = [wλ(λ1),wλ(λ2)]
︸ ︷︷ ︸

W(λ1,λ2)

[α1(µ, ν), α2(µ, ν)]
T + noise. (3.34)

For notational convenience we let zλ(m,n) and αk(m,n) denote (3.34) and (3.9)
evaluated on a frequency grid with step sizes ∆µ and ∆ν , respectively.
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3 A framework on multidimensional frequency estimation

3.4.1 Resolution dimension

Here, we discuss how the frequencies in the resolution dimension λ1 and λ2 can be ob-
tained by 1-D high-resolution methods. For a practical implementation, a frequency
discretization in all dimension is given and thus a set of local vector models zλ(m,n)

has to be considered, where m and n are restricted to the peak neighborhood.

We present two pre-processing steps for applying 1-D high-resolution methods. The
first uses only the vector corresponding to the largest periodogram peak. The second
averages over all data vectors zλ(m,n) in the vicinity of the peak. Both approaches
can be treated uniformly by introducing

R̂ =







zλ(m0, n0) z
H
λ (m0, n0), Pre-processing 1,

1

MN

M−1∑

m=0

N−1∑

n=0

zλ (m,n) zH
λ (m,n) , Pre-processing 2

(3.35)

where m0 and n0 are the peak indices. Note that (3.35) constitutes an estimate
of the so called data covariance matrix, which plays an important role in subspace
based frequency estimation as its eigenstructure contains complete information on
the cisoid frequencies [SM05]. We refrain from discussing (3.35) further and use it
only for notational convenience.

3.4.1.1 Sub-band frequency estimation

In principle, any 1-D high-resolution method can be used to estimate the cisoid
frequencies in the resolution dimension, as long as it is applicable in the Fourier
domain and allows for frequency band limitation. Thus either so called frequency se-
lective approaches such as in [TN88, SSSL04, MV01] can be used or beamspace array
processing methods can be employed, which are equivalent to 1-D Fourier-domain
frequency estimation for uniform linear arrays (ULA) [SM05]. Methods applicable
for ULAs include beamspace maximum likelihood [ZL91b, Zol88], beamspace multi-
ple signal classification (BS-MUSIC) [SA91], the beamspace root MUSIC technique
[ZKS93], or the beamspace version of estimation of signal parameters via rotational
invariance techniques (BS-ESPRIT) [ZHM96].

All of the array processing methods require an orthonormal beamspace transforma-
tion [WF94]. To see how this applies to the decoupled Fourier-domain model (3.34),
write

zλ (m,n) = (WsF)
H {[v(λ1),v(λ2)][α1(m,n), α2(m,n)]T + noise

}

︸ ︷︷ ︸
original-domain model

(3.36)
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3.4 Decoupled two-cisoid frequency estimation

where v(λ) = [1, ejλ, . . . , ejλ(Ls−1)]T and the elements of F ∈ CLs×L, Ws ∈ RLs×Ls ,
are given by

[F]ls,l = ej∆λ(la+l)ls ,
[
Ws

]

l,m
=

{

wλ(l) l = m

0 l 6= m
.

Herein, WsF is equivalent to a beamspace transformation, which is applied to a
decoupled model in the original domain. That transformation is orthonormal only
if

LDFT = Ls and wλ(l) =
√
Ls, l = 0, . . . , Ls − 1.

The DFT grid constraint is usually acceptable in practice as LDFT = Ls is in many
practical applications enforced by limited processing and memory resources. In con-
trast, the scaled rectangular window is not acceptable due to its high SLL and thus
weak out-of-band interference suppression. To apply the above methods for other
than the rectangular window we can apply orthonormalization [vT02]

zo (m,n) =
[

(FH
W

H
s WsF)

−
1
2

]H

zλ (m,n) . (3.37)

The downside of using (3.37) is an increased SLL in the Fourier-domain window
functions [vT02] and as a consequence a degraded out-of-band interference suppres-
sion. In particular subspace based methods such as BS-MUSIC and BS-ESPRIT
deteriorate due to out-of-band interference since they critically depend on a white
noise assumption.

Subspace based methods as well as the method proposed in [ZL91b] require multiple
data snapshots of non-coherent sources. If we still want to apply subspace based
methods for our data model, pre processing such as spatial smoothing becomes
necessary [SWK85]. For NLS, the white noise assumption assumption is not crucial
[SJL97]. Furthermore it is directly applicable to our model without the need of
additional pre processing such as the equivalent of spatial smoothing. Thus we
propose a direct calculation of the NLS criterion function on a coarse frequency grid,
which is followed by a Gauss-Newton-type method to refine the estimates.

Before discussing the proposed approach, we comment on the identifiability of the
two cisoid Fourier-domain problem, which impacts the minimal size of the frequency
sub-band. To uniquely identify two cisoids from zλ(m,n)

L+ rank {W(λ1, λ2)}
︸ ︷︷ ︸

=2

> 4 ⇒ L > 2

has to hold [WZ89]. Thus we require that at least three DFT frequencies lie in the
sub-band of interest. To see that W(λ1, λ2) has full rank 2 we write

W(λ1, λ2) =
(
WsF

)H
[v(λ1),v(λ2)]

as in (3.36). Both F and [v(λ1),v(λ2)] are Vandermond matrices and thus of rank
L and 2 respectively. The rank of Ws is Ls since it is square and diagonal. By
employing rank (XY) = min {rank (X) , rank (Y)} twice the proposition follows.
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3 A framework on multidimensional frequency estimation

3.4.1.2 Proposed approach

We propose a two step NLS-based frequency estimation in the resolution dimension.
Here, the NLS criterion function is maximized on a coarse frequency grid first. In
a second step, the coarse-grid estimates are refined using the Gauss Newton type
method proposed by Viberg et al. [VOK91], which is adapted to the decoupled
Fourier-domain model.

Coarse grid nonlinear least squares

We consider a direct evaluation of the NLS criterion function in the resolution di-
mension. The derivation of the 1-D NLS method is equivalent to the derivation in
Section 2.2.1 for the 3-D case. The only difference is how the remaining dimensions
are incorporated. To this end, consider two approaches, which lead to the following
NLS criterion function

c(λ1, λ2) =







∥
∥P(λ1, λ2) zλ (m0, n0)

∥
∥2, Pre-processing 1

1

MN

M−1∑

m=0

N−1∑

n=0

∥
∥P(λ1, λ2) zλ (m,n)

∥
∥2, Pre-processing 2

= Tr
{
P(λ1, λ2) R̂

}
, (3.38)

where P(λ1, λ2) = W(λ1, λ2)W
+(λ1, λ2) and Tr{·} denotes the trace operator. We

evaluate criterion function (3.38) on a few grid points around the peak frequencies

∆λ,NLS =
2π

LNLS
,
{
∆λ,NLS l

∣
∣ l = la,NLS, . . . , lb,NLS

}
,

where la,NLS = ⌈λa/∆λ,NLS⌉ and lb,NLS = ⌊λb/∆λ,NLS⌋. This yields the coarse-grid
NLS estimates

λ̂c,1 = ∆λ,NLS lc,1, λ̂c,2 = ∆λ,NLS lc,2,

lc,1, lc,2 = arg max
l1,l2

c(l1, l2), l1, l2 = la,NLS, . . . , lb,NLS,

where c(l1, l2) is the criterion function (3.38) evaluated at the grid frequencies rep-
resented by l1 and l2. The choice of the frequency step size determines the compu-
tational cost of evaluating (3.38), which is of order O[(lb,NLS − la,NLS + 1)2L2].

Gauss Newton method

The coarse-grid NLS frequency estimates can be used as initial estimate for Gauss-
Newton-type iterations, which have been proposed in [VOK91] for the array process-
ing problem. The technique can be straightforwardly adapted to the Fourier-domain
model. One iteration is

[
λ̂
(j+1)
1 , λ̂

(j+1)
2

]T
=
[
λ̂
(j)
1 , λ̂

(j)
2

]T −H
−1
(
λ̂
(j)
1 , λ̂

(j)
2

)
g
(
λ̂
(j)
1 , λ̂

(j)
2

)
, (3.39)
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3.4 Decoupled two-cisoid frequency estimation

where λ̂
(j)
1 and λ̂

(j)
2 denote the estimates in iteration j,

g(λ1, λ2) = −2Re
{

diag
{

W
+(λ1, λ2) R̂P⊥(λ1, λ2)Ẇ(λ1, λ2)

}}

H(λ1, λ2) =

2Re

{[

Ẇ
H(λ1, λ2)P⊥(λ1, λ2)Ẇ(λ1, λ2)

]

⊙
[

W
+(λ1, λ2) R̂

(
W

+(λ1, λ2)
)H
]T
}

denote the gradient and the approximate Hessian matrix of (3.38), respectively,

P⊥(λ1, λ2) = I−P(λ1, λ2), Ẇ(λ1, λ2) = [ẇλ (λ1) , ẇλ (λ2)] .

and ⊙ denotes the elementwise matrix product. The iterations are initialized with
the coarse grid estimates, that is λ̂

(0)
1 = λ̂c,1 and λ̂

(0)
2 = λ̂c,2.

Note that typically only a few iterations are required to reach a sufficient accuracy.
Thus the maximal number of iterations can be limited to ensure computational
efficiency. The computational cost of each iteration is of order O(KL2) [VOK91].

3.4.2 Remaining dimensions

The frequencies in the remaining dimensions can be estimated by exploiting the
structure of α1(µ, ν) and α2(µ, ν), given in (3.9). Considering the model in (3.6)
with known λ1 andλ2, estimates for α1(µ, ν) and α2(µ, ν), can be obtained using a
linear least squares approach. By substituting estimates λ̂1 and λ̂2, we obtain (3.22),
restated here for reference,

[
α̂1(µ, ν), α̂2(µ, ν)

]T
= W

+(λ̂1, λ̂2) zλ(µ, ν)

which is in turn used to estimate the frequencies in the remaining dimensions. In
two NLS optimizations for K = 1,

µ̂1, ν̂1 = arg max
µ,ν

|α1(µ, ν)|2, (3.40)

µ̂2, ν̂2 = arg max
µ,ν

|α2(µ, ν)|2, (3.41)

estimates for µ̂1, ν̂1, µ̂2, and ν̂2 are obtained. Given λ̂1 and λ̂2 are sufficiently close
to the respective true values, the calculated frequency estimates for the remaining
dimensions approximate the maximum likelihood estimates [Ath01].
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3 A framework on multidimensional frequency estimation

For a practical implementation, (3.22) is calculated on a frequency grid and (3.40)
and (3.41) can be obtained via the LUT table approach proposed in Section 3.3

µ̂k =

{

∆µmk + LUTµ (⌊Rµ,k/∆R,µ⌉) , |αk(mk + 1, nk)|2 > |αk(mk − 1, nk)|2

∆µmk − LUTµ (⌊Rµ,k/∆R,µ⌉) , |αk(mk + 1, nk)|2 < |αk(mk − 1, nk)|2

(3.42)

ν̂k =

{

∆νnk + LUTν (⌊Rν,k/∆R,ν ⌉) , |αk(mk, nk + 1)|2 > |αk(mk, nk − 1)|2

∆νnk − LUTν (⌊Rν,k/∆R,ν ⌉) , |αk(mk, nk + 1)|2 < |αk(mk, nk − 1)|2

(3.43)

Herein, mk, nk = arg max
m,n

|αk(m,n)|2 are the maximizing grid indices and

Rµ,k = log
|αk(mk, nk)|2

max {|αk(mk − 1, nk)|2, |αk(mk + 1, nk)|2}
,

Rν,k = log
|αk(mk, nk)|2

max {|αk(mk, nk − 1)|2, |αk(mk, nk + 1)|2} .

Note that the computational cost of the remaining dimension frequency estimator is
negligible compared to the NLS estimator in the resolution dimension.

3.5 Example

We consider an example for two cisoids with parameters

a1 = ej5.3, λ1 = π − 0.5δλ, µ1 = π − 0.5δµ, ν1 = π − 0.5δν ,

a2 = ej0.66, λ2 = π + 0.5δλ, µ2 = π + 0.5δµ, ν2 = π + 0.5δν ,

with frequency separations δλ = 0.5 Fλ,δµ = 0.3 Fµ, δν = 0.3 Fν and signal-to-noise-
ratios SNR1 = SNR2 = 0dB, where

SNRk =
|ak|2
σ2

(3.44)

The sample and frequency grid sizes are Ls = 256, Ms = 256, Ns = 4, LDFT = 256,
MDFT = 256, NDFT = 4, respectively. In the first two dimensions, a 40 dB Chebyshev
window is used and in the last dimension a rectangular window. We consider a
frequency sub-band around the periodogram peak

(π − 2Fλ, π + 2Fλ) × (π − 3Fµ, π + 3Fµ) × (π − 2Fν , π + 2Fν)

and first test if it is due to a single or two cisoids. To this end, we calculate (3.12),
(3.13), (3.14), yielding

MSEλ = −10 dB, MSEµ = −34 dB, MSEν = −24 dB.
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c(l1, l2)
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λ2

initial estimates

iterations

final estimates

Figure 3.2: Left: NLS criterion function evaluated on a 64 point frequency grid. The
position of its maximum is shown as triangle and is used as a starting
point for the Gauss-Newton type iterations. Right: improved estimates
per iteration in the vicinity of the coarse-grid result and final estimate
after three iterations.

The largest value, MSE1 = MSEλ = −10 dB, is used to test for the single-cisoid
model and to this end compare to γ1 = −50 dB. Note that this particular value
corresponds to a false alarm probability of 0.01 for the noise variance defined via
(3.44). As MSE1 clearly exceeds γ1 we reject the single-cisoid hypothesis and opt
for calculating the two-cisoid model. For the decoupled NLS method presented in
Section 3.4.1.2 we select the resolution dimension according to the largest MSE value
and thus the first dimension.

Having selected the resolution dimension we calculate the NLS criterion function
(3.38) on a coarse, predefined grid ∆λ,NLS = 2π/400 leading to 64 grid points in
selected sub-band, as shown on the left hand side of Figure 3.2. The coarse-grid NLS
estimate λ̂c,1 and λ̂c,2 are given by the position of the maximum, which is marked
with a triangle. For reference we show the true values of λ1 and λ2 as solid lines. The
estimation errors are 0.46Fλ and 0.32Fλ, for the first and second cisoid, respectively.
The coarse-grid NLS estimates serve now as a starting point for the Gauss-Newton
refinement. To show the improvement per iteration, the rectangular area indicated in
the left hand side plot is enlarged on the right hand side of Figure 3.2. Starting from
the coarse grid estimates (triangle) we show two intermediate estimates obtained as
in (3.39) (squares) and the final estimates (circle). After three iterations we have an

33



3 A framework on multidimensional frequency estimation

νa ν1 νb

µa

µ1

µb

|α̂1(m,n)|2

grid estimates

LUT refined estimates

νa ν2 νa

µa

µ2

µb

|α̂2(m,n)|2

Figure 3.3: Magnitude squared of the estimated cisoid amplitudesevaluated on the
DFT grid in the frequency sub-band. The true frequencies are shown
as horizontal/vertical lines for reference. The maximizing frequencies on
the DFT grid are shown as triangles and the LUT-refined estimates as
circles.

estimation error of 0.001Fλ for both estimates. Thus the coarse-grid estimates are
improved by two orders of magnitude by the Gauss-Newton method.

Based on the so obtained resolution-dimension estimates λ̂1 and λ̂1 we calculate
|α̂1(µ, ν)|2 and |α̂2(µ, ν)|2 according to (3.22), which are shown in Figure (3.3) on
a DFT grid. The frequencies of each maximum are indicated by triangles and the
LUT-refined estimates according to (3.42) and (3.43) are shown as circles. The
corresponding estimation errors are gathered in Table 3.1. Observe an improvement
of two orders of magnitude due to the LUT refinement.

3.6 Simulation Results

We show Monte-Carlo (MC) simulation results for our proposed frequency estimation
framework. In the simulations we considered two cisoids with parameters

a1 = 1, λ1 = λm − 0.5δλ, µ1 = µm − 0.5δµ, ν1 = νm − 0.5δν , (3.45)

a2 = ejϕ, λ2 = λm + 0.5δλ, µ2 = µm + 0.5δµ, ν2 = νm + 0.5δν , (3.46)
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Table 3.1: Example: frequency estimation errors for the remaining dimensions.

Estimation error DFT grid LUT-refined

|µ̂1 − µ1|/Fµ 0.13 0.007

|ν̂1 − ν1 |/Fν 0.1 0.002

|µ̂2 − µ2|/Fµ 0.16 0.0004

|ν̂2 − ν2 |/Fν 0.09 0.001

where

λm =
λ1 + λ2

2
, µm =

µ1 + µ2

2
, νm =

ν1 + ν2
2

, (3.47)

denote the two cisoids mid frequencies and δλ, δµ, and δν denote the frequency
separations. Optionally we consider a third, interfering, out-of-band cisoid with
parameters λi, µi, νi, and

a3 = SIR−1ejϕi , (3.48)

where SIR denotes the signal-to-interference ratio. We let the data sizes be

Ls = 256, Ms = 256, Ns = 4, LDFT = 256, MDFT = 256, NDFT = 8,

and use a 40 dB Chebyshev window in the first two and a rectangular window in the
last dimension. We consider a frequency sub-band

(π − 2Fλ, π + 2Fλ) × (π − 3Fµ, π + 3Fµ) × (π − 2Fν , π + 2Fν)

such that all relevant periodogram peaks will be included.

3.6.1 Resolution dimension selection

We asses the performance of resolution dimension identification based on the single-
cisoid model violation, which we proposed in Section 3.2.1. To this end we vary
the frequency separation in the first frequency dimension δλ from 50 % to 100 %
of the resolution limit and fix the frequency separations in the remaining dimen-
sions δµ and δν to 30% of the respective resolution limit. Note that the frequency
separation in the first dimension is at all times the largest and consequently the
first dimension should be selected as resolution dimension. We carry out 1000 MC
runs, where we draw the correlation phase ϕ uniformly from (0, 2π) and the mid fre-
quencies from (π −∆λ/2, π +∆λ/2), (π −∆µ/2, π +∆µ/2), (π −∆ν/2, π +∆ν/2),
respectively. As performance metric we consider the empirical probability of correct
resolution dimension selection, that is the number of MC runs in which the resolution
dimension was selected correctly over the total number of MC runs NMC.
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Figure 3.4: Probability of correctly selecting the dimension with largest frequency
separation as resolution dimension. The frequency separation in the first
dimension δλ is varied from 50% to 100 % of the corresponding resolution
limit and the separations in the remaining dimensions, δµ, δν , are fixed
to 30 % of the respective resolution limits.

Figure 3.4 shows the probability of correct resolution dimension selection over the
frequency separation in the first dimension for different SNR values. Observe that
for frequency separations above 60% of the resolution limit the probability of correct
resolution dimension selection is above 80 % for all SNR values.

3.6.2 Frequency estimation

We want to reveal the influence of the SNR, the frequency separation, and the
SIR, on the single-cisoid and the decoupled two-cisoid frequency estimator. For the
two-cisoid case we let the first dimension have the largest frequency separation and
assume, that it was correctly selected as resolution dimension. Further, we let the
grid size for the direct NLS search be

∆λ,NLS = 2π/400 ⇒ lb,NLS − la,NLS = 8,

so that the NLS criterion function has to be evaluated on 64 grid points.
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As performance metrics we consider the root mean square error (RMSE)

RMSEλ,k =

√
√
√
√ 1

Nr

Nr∑

c=1

(
λ̂k,c − λk

)2
, (3.49)

RMSEµ,k =

√
√
√
√ 1

Nr

Nr∑

c=1

(
µ̂k,c − µk

)2
, (3.50)

RMSEν,k =

√
√
√
√ 1

Nr

Nr∑

c=1

(
ν̂k,c − νk

)2
, (3.51)

and the empirical probability of resolution

pr =
Nr

NMC
. (3.52)

Herein, λ̂k,c, µ̂k,c, ν̂k,c denote the k-th frequency estimates in the c-th MC run, Nr

the number of MC runs for which the two cisoids are successfully resolved, and NMC

denotes the total number of MC runs. To obtain Nr we consider the resolution
definition (2.39). Note that we treat the non resolved cases as outliers and exclude
them from the calculation of (3.49), (3.50), (3.51). To asses the simulation results
we will compare the RMSE values with the corresponding CRB

CRBλ,k =
√

[CRBλ]k,k, (3.53)

CRBµ,k =
√

[CRBµ]k,k, (3.54)

CRBν,k =
√

[CRBν ]k,k, (3.55)

where CRBλ, CRBµ, CRBν are given in (2.44).

We carried out 5000 MC runs, where we draw correlation phase ϕ and the out-of-
band cisoids phase ϕi uniformly from (0, 2π). The mid frequencies are uniformly
drawn from

{

(π −∆λ/2, π +∆λ/2) , single-cisoid case

(π −∆λ,NLS/2, π +∆λ,NLS/2) , two-cisoid case

in the first dimension and from (π −∆µ/2, π +∆µ/2), (π −∆ν/2, π +∆ν/2), in the
remaining dimensions. We show only simulation points for which the probability of
resolution as given in (3.52) is above 90 %.
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Figure 3.5: RMSE of single-cisoid frequency estimators for varying SNR. Com-
pared are the conventional, frequency grid, periodogram maximizer,
the parabolic interpolation approach, and the newly proposed LUT ap-
proach.

3.6.2.1 Noise influence

We want to reveal the noise influence on the performance of out frequency estimation
framework. We consider the single as well as the two-cisoid cases. For the former
we let a2 = a3 = 0 and compare the conventional, frequency-grid, periodogram max-
imizer, the parabolic interpolation approach, and the newly proposed LUT-refined
approach of Section 3.3. Figure 3.5 shows the RMSE normalized to the resolution
limit in the first frequency dimension for varying SNR. As the results are very similar
in the other dimensions we omit the corresponding RMSE values.

To reveal the noise influence on decoupled frequency estimation in the two-cisoid
case, we vary the SNR given in (3.44). The frequency separation in the resolution
dimension is fixed to 50 % of the resolution limit and to 30 % of the respective
resolution limit in the remaining dimensions. Further we let a3 = 0, that means we
consider no interfering out-of-band cisoid. Figure 3.6 shows the RMSE normalized to
the respective resolution limits in one subplot per frequency dimension. For reference
the CRB is shown for each frequency dimension. We compare the performance of
the two pre-processing approaches according to (3.35) and consider the effect of
orthogonalization as in (3.37). Observe that all approaches yield an RMSE close to
the CRB.
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3.6.2.2 Frequency separation

For assessing the influence of frequency separation we consider the separation in
the resolution dimension and the separation in the remaining dimension, in one
simulation each. For both cases we let a3 = 0 and SNR = 0dB.

In the first simulation, the frequency separation in the resolution dimension is varied
and the frequency separations in the remaining dimensions are fixed to 30% of
the respective resolution limit. The upper, middle, and lower plots of Figure 3.7
show the normalized RMSE and CRB for the first, second, and third frequency
dimension, respectively. Observe that all pre-processing methods show a RMSE close
to the CRB, in particular for increasing frequency separation. For small frequency
separation, averaging over the non resolution dimensions (pre-processing 2) yields a
slightly lower RMSE, compared to the maximum based pre-processing 1.

In the second simulation, the frequency separation in the resolution dimension is
fixed to 50 % of the resolution limit and the frequency separations in the remaining
dimension are varied equally, that is δµ = δν . Figure 3.8 shows the RMSE for the
first, second, and third frequency dimension together with the respective CRB. We
can observe a performance close to the CRB for pre-processing 2 and an increasing
RMSE for pre-processing 1 and larger frequency separations. This can be explained
by the occurrence of multiple periodogram peaks for increasing frequency separation
in the remaining dimensions. This results in an attenuation of one of the cisoids when
using the maximal peak only, that is pre-processing 1, and in turn to a degraded
estimation performance of the corresponding frequencies. In contrast, pre-processing
2 is based on averaging in the remaining dimensions and thus considers multiple
peaks inherently.

3.6.2.3 Interfering cisoids

To assess the influence of out-of-band interference on decoupled frequency estimation,
we consider one out-of-band cisoid with frequencies

λi = λm + 3Fλ, µi = µm + 5Fµ, νi = νm + 5Fν ,

and vary the SIR. The frequency separations of the two cisoids of interest are fixed
to 50 % of the resolution limit in the resolution dimension and to 30% of the re-
spective resolution limit in the remaining dimensions. The SNR is 0 dB. Figure 3.9
shows the RMSE for the first, second, and third frequency dimension together with
the respective CRB. Observe the degraded performance for the orthogonalization
pre-processing according to (3.37) for low SIR values. This is expected from the
discussion in Section 3.4.1.1 as the orthogonalization decreases the out-of-band in-
terference suppression. For SIR above -20 dB the noise influence starts to dominate
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and the orthogonalization pre-processing outperforms the estimates without orthog-
onalization slightly.
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Figure 3.6: RMSE of the proposed decoupled two-cisoid frequency estimation for
varying SNR. Compared are the two different pre-processing approaches
according to (3.35) and the effects of orthogonalization. The RMSE is
close to the CRB for all pre-processing approaches.
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Figure 3.7: RMSE of the proposed decoupled two-cisoid frequency estimation for
varying frequency separation in the resolution dimension. Compared are
the two different pre-processing approaches according to (3.35) and the
effects of orthogonalization. The RMSE is close to the CRB for all pre-
processing approaches.
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Figure 3.8: RMSE of the proposed decoupled two-cisoid frequency estimation for
varying frequency separation in the remaining dimensions. Compared are
the two different pre-processing approaches according to (3.35) and the
effects of orthogonalization. For larger frequency separations, averaging
in the remaining dimensions (pre-processing 2) is beneficial.
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Figure 3.9: RMSE of the proposed decoupled two-cisoid frequency estimation for
varying SIR. Compared are the two different pre-processing approaches
according to (3.35) and the effects of orthogonalization. For low SIR
values the effects of degraded out-of-band interference suppression due
to orthogonalization can be observed.
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3.A Appendix

3.A.1 Parabolic periodogram peak interpolation

Parabolic interpolation of the periodogram peak position is a popular approach for
increasing the accuracy of periodogram-based frequency estimation [JK07]. The
correction terms use two neighboring values of the periodogram peak position and
are derived in [Ric14, Sec. 5.3.4].

The refined periodogram-based frequency estimates are given by

λ̂0 = ∆λl0 +
∆λ

2

P (l0 − 1,m0, n0)− P (l0 + 1, m0, n0)

P (l0 + 1, m0, n0) + P (l0 − 1,m0, n0)− 2P (l0,m0, n0)
,

µ̂0 = ∆µm0+
∆µ

2

P (l0,m0 − 1, n0)− P (l0,m0 + 1, n0)

P (l0,m0 + 1, n0) + P (l0,m0 − 1, n0)− 2P (l0,m0, n0)
,

ν̂0 = ∆νn0 +
∆ν

2

P (l0,m0, n0 − 1)− P (l0,m0, n0 + 1)

P (l0,m0, n0 + 1) + P (l0,m0, n0 − 1) − 2P (l0,m0, n0)
,

where l0, m0, and n0 are the peak indices. Note, that the achievable accuracy of the
refined estimates varies for different window functions.
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search

The main computational burden of the framework on multidimensional frequency
estimation, developed in Chapter 3, is 1-D NLS-based frequency estimation for the
two-cisoid model. Here, we present the single-cisoid search method as a computa-
tional simpler alternative to NLS-based frequency estimation. We give an overview
in Section 4.1 and develop the single-cisoid search method in Section 4.2. We consider
an optional bias correction step in Section 4.3 and give an example in Section 4.4.
Section 4.5 presents simulation results to show the effectiveness of the proposed
approach.

4.1 Overview

Consider the framework on multidimensional frequency estimation developed in
Chapter 3. The computational complexity of the processing sequence shown in
Figure 3.1 is determined by fitting the two-cisoid model in the resolution dimen-
sion, which involves the calculation of NLS-based frequency estimates, as discussed
in Section 3.4.1.2. Here, we consider a computationally simpler approach, which
we call single-cisoid search. It is based on identifying multiple remaining-dimension
frequencies, for which the resolution dimension is well represented by a single-cisoid
model. For distinct cisoid frequencies in at least two dimensions, the corresponding
frequencies represent estimates of either the first or the second cisoid-frequency in
the resolution dimension. The computational efficiency of that approach stems from
the fact that the frequencies in the resolution dimension can be estimated by the
periodogram.

Figure 4.1 gives an overview how the single-cisoid search approach can be used within
the framework on multidimensional frequency estimation. The first processing steps,
that is fitting of the single-cisoid models, determining the resolution dimension, and
two-cisoid indication, are retained as in the original processing sequence in Fig-
ure 3.1. For the two-cisoid model, NLS-based frequency estimation in the resolution
dimension is replaced by the single-cisoid search, which is developed in Section 4.2.
Model selection and estimation of the frequencies in the remaining dimensions are
performed as in the original processing sequence. The final frequency estimates can
be refined by a bias correction step, which is presented in Section 4.2.
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MSE1,λ
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MSE1
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yes

MSE2

no, retain K = 1

yes, decide K = 2

Figure 4.1: Processing sequence employing the single-cisoid search method for fre-
quency estimation in the resolution dimension.
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4.2 Proposed approach

Consider the two-cisoid model (3.2), which can be written as

X (λ, µ, ν) = α1 (λ, µ)Wν (ν − ν1) + α2 (λ, µ)Wν (ν − ν2) + Ξ (λ, µ, ν) , (4.1)

where α1(λ, µ) and α2(λ, µ) are defined in (3.9). For distinct cisoid frequencies in
the first or the second dimension the magnitudes |α1(λ, µ)| and |α2(λ, µ)| vary as
functions of λ and µ. We refer to the cisoid with larger magnitude as stronger cisoid
and to the one with smaller magnitude as weaker cisoid. To emphasize this, model
(4.1) can be written as

X (λ, µ, ν) = αs (λ, µ)Wν (ν − νs)
︸ ︷︷ ︸

stronger cisoid

+αw (λ, µ)Wν (ν − νw)
︸ ︷︷ ︸

weaker cisoid

+Ξ (λ, µ, ν) , (4.2)

where the roles of the stronger and weaker cisoid are complementary, that is for
αs(λ, µ) = α1(λ, µ) and νs = ν1 we have αw(λ, µ) = α2(λ, µ) and νw = ν2 and vice
versa.

Based on (4.2), the idea behind the proposed approach can be stated as follows:
search frequencies λ and µ for which the weaker cisoid can be neglected |αw(λ, µ)| ≈ 0

and the stronger cisoids magnitude is sufficiently large |αs(λ, µ)| ≫ 0. For such
frequencies, approximate (4.2) by a single-cisoid model

X (λ, µ, ν) ≈ αs (λ, µ)Wν (ν − νs) + Ξ (λ, µ, ν) (4.3)

and estimate its frequency νs by the periodogram maximizer

ν̂s(λ, µ) = arg max
ν

P (λ, µ, ν). (4.4)

From all frequencies obtained according to (4.4), select one estimate of ν1 and another
one of ν2. If the last dimension is considered as resolution dimension in a decoupled
multidimensional frequency estimation, the remaining dimension frequencies can be
obtained as in Section 3.4.2. Note, that in the remainder of this chapter the last
dimension is considered as resolution dimension for notational convenience.

To turn this approach in a practical frequency estimator, valid single-cisoid approx-
imations according (4.3) have to be identified. To this end, a criterion is presented
in Section 4.2.1. Further, estimates for ν1 and ν2 have to be selected from (4.4).
Based on that criterion, the single-cisoid search algorithm for estimating the cisoid
frequencies in the resolution dimension is developed in Section 4.2.2.
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4.2.1 Single-cisoid criterion

A suitable test to decide if the resolution dimension is well represented by a single-
cisoid model is

ρ(λ, µ) < γρ. (4.5)

Here, the single-cisoid model is considered appropriate if the power ratio of the
weaker and the stronger cisoid

ρ (λ,µ) =
|αw (λ, µ)|2
|αs (λ, µ)|2 (4.6)

falls below threshold γρ. An estimator of (4.6) is derived next and practical threshold
setting is considered in Section 4.2.2.1.

The power of the weaker cisoid can be obtained by subtracting the estimated stronger-
cisoid model

α̂s (λ, µ)Wν (ν − ν̂s(λ, µ))

from the model in (4.2), where α̂s (λ, µ) = X (λ, µ, ν̂s). For small estimation errors,
the power of the residual is determined by the power of the weaker cisoid

∫ νb

νa

|X (λ, µ, ν)− α̂s (λ, µ)Wν (ν − ν̂s(λ, µ))|2 dν

≈ |αw (λ, µ)|2
∫ νb

νa

|Wν (ν − νw)|2 dν

≈ |αw (λ, µ)|2
∫ νb

νa

|Wν (ν − (νa + νb)/2)|2 dν

︸ ︷︷ ︸
Λ

where the second approximation is valid if the mainlobe of Wν (ν − νw) lies in (νa, νb).
The nominator in (4.6) can thus be obtained by the scaled average power of the
residual and the denominator by the amplitude in the estimated stronger-cisoid
model, that is by |α̂s (λ, µ)|2. Using this in (4.6) yields

ρ̂ (λ, µ) =
1

|α̂s (λ, µ)|2
︸ ︷︷ ︸
stronger cisoid

1

Λ

∫ νb

νa

|X (λ, µ, ν)− α̂s (λ, µ)Wν (ν − ν̂s(λ, µ))|2dν
︸ ︷︷ ︸

weaker cisoid

. (4.7)

For discrete frequencies, (4.7) can be calculated based on the trapezoidal rule for
integral approximation [AS64]

ρ̂ (l,m) =
‖zν(l,m)− α̂s(l,m)wν(ν̂s(l,m))‖2

Λ|α̂s (l,m)|2 , (4.8)
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where zν(l,m) is model (3.8) evaluated on the frequency grid, wν(ν) is given in
(2.20), ν̂s(l,m) is the discrete version of the periodogram maximizer (4.4), and

α̂s (l,m) = w
+
ν (ν̂s(l,m))zν(l,m). (4.9)

The discrete periodogram maximizer can be refined using the LUT approach pre-
sented in Section 3.3

ν̂s(l,m)

=

{

∆νns + LUTν(⌊R(l,m)/∆R,ν⌉), P (l,m, ns + 1) > P (l,m, ns − 1)

∆νns − LUTν(⌊R(l,m)/∆R,ν⌉), P (l,m, ns + 1) < P (l,m, ns − 1)
(4.10)

where ns is the discrete periodogram maximizer in the resolution dimension and

R(l,m) = log
P (l,m, ns)

max{P (l,m, ns − 1), P (l,m, ns + 1)} .

4.2.2 Single-cisoid search

Here we derive the single-cisoid search algorithm for estimating the resolution dimen-
sion frequencies of the two-cisoid model. The algorithm can be outlined as follows:
use the estimated power ratio (4.8) in the test (4.5) to identify remaining-dimension
frequencies, for which the resolution dimension is well represented by a single-cisoid
model. For such frequencies, estimate the frequencies in the resolution dimension by
the corresponding periodogram maximizer. Out of the so obtained estimates, select
two for estimating ν1 and ν2.

Details of the single-cisoid search are given in Algorithm 4.1 and can be subdivided
in two main parts. The first comprises pre-processing, which calculates the stronger-
cisoid frequencies (4.10) and the power ratios (4.8) in the resolution dimension for
all frequencies in the remaining dimensions. This includes the intermediate steps of
calculating the corresponding amplitudes as in (4.9) and subtracting the single-cisoid
model from the data. The second part constitutes the main single-cisoid search al-
gorithm, which initially sorts the power ratio values and stores the corresponding
indices li,mi, i = 1, . . . , LM . This step can be motivated as follows. Recall, that
the power ratio serves as goodness-of-fit criterion for the single-cisoid model and
can thus be interpreted as a quality criterion for the corresponding frequency esti-
mates in the resolution dimension. Thus, the estimates ν̂s(li,mi), i = 1, . . . , LM

are approximately ordered according to estimation error. In particular, ν̂(l1,m1) is
expected to have the smallest estimation error. Therefore it is selected as first candi-
date for a valid single-cisoid estimate and the corresponding power ratio ρ̂(l1, m1) is
used in the single-cisoid test (4.5). If the single-cisoid hypothesis is rejected no valid
single-cisoid model can be identified. Consequently the number of selected cisoids is
set to zero and the algorithm terminates. If the single-cisoid hypothesis is accepted,
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Algorithm 4.1: Single-cisoid search with pre-processing.

Input: Fourier-domain samples zν(l,m), l = la, . . . , lb, m = ma, . . . ,mb

Result: Number of selected cisoids K̂. Selected frequencies ν̂1 and ν̂2.
begin Preprocessing

for l=la,. . . ,lb, m=ma,. . . ,mb do
Calculate stronger cisoid frequency ν̂s (l,m) according to (4.10).
Calculate corresponding amplitude α̂s (l,m) = w+

ν (ν̂s(l,m))zν(l,m).
Calculate the power ratio

ρ̂ (l, m) = ‖zν(l,m)− α̂s(l,m)wν(ν̂s(l,m))‖2/(Λ|α̂s (l, m)|2).
begin Single-cisoid search

Sort according to power ratio, yielding li,mi, i = 1, . . . , LM

such that ρ̂(li, mi) > ρ̂(li+1,mi+1).
if ρ̂ (l1,m1) > γρ then

No valid single-cisoid model found. Set K̂ = 0.
else

Single-cisoid model is valid. Set ν̂1 = ν̂s (l1, m1) and K̂ = 1.
for i = 2, . . . LM and ρ̂ (li,mi) < γρ do

if [ν̂s(li,mi)− ν̂1]
2 > γν then

Current frequency is sufficiently separated from ν̂1.

Set ν̂2 = ν̂s (li,mi) and K̂ = 2. Terminate algorithm.

an estimate of ν1 is found and the output values are set accordingly. To obtain the
frequency of the second cisoid, the remaining frequency estimates are considered and
the corresponding power ratios are used in the test (4.5). To avoid yet another esti-
mate of ν1, a sufficiently large separation to the already selected estimate is required.
To this end, consider the following test

[ν̂s(l,m)− ν̂1]
2 > γν , (4.11)

where ν̂1 is the estimate corresponding to the smallest power ratio and γν is a suitable
threshold value. If (4.11) holds for the current frequency estimate the second esti-
mate ν̂2 is found, the output values are set accordingly, and the algorithm terminates.
A practical approach to set the threshold γν is presented in Section 4.2.2.1.

4.2.2.1 Practical threshold setting

Algorithm 4.1 comprises two subsequent hypothesis test for varying frequencies rep-
resented by l and m. The first, tests if the single-cisoid approximation (4.3) is valid
for given l and m. If that test decides for a valid single-cisoid model, the corre-
sponding estimates have to be associated to either ν1 or ν2. To this end, a second
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test is used, which decides if a given estimate corresponds to the same cisoid fre-
quency as the one selected according to the smallest available power ratio. The
employed test statistics are the power ratio ρ̂s(l,m) and the squared frequency sep-
aration [ν̂s(l,m)− ν̂1]

2 for the first and second test, respectively. Suitable threshold
values γρ and γν can be determined as follows: obtain the empirical probability of
false-alarm for given threshold values by simulations, that is generate a single-cisoid
model with arbitrary ν1 and predefined SNR. Vary the threshold values as long as
a desired false-alarm probability is reached. For calculating the second test statistic
use the squared estimation error of the single-cisoid frequency estimate. With that
approach the probability of false-alarm for the first test is the probability of rejecting
the single-cisoid hypothesis. For the second test, it is the probability of rejecting the
hypothesis that the estimation error is due to a single-cisoid model plus noise.

The result of the described approach is a set of threshold values for given SNR val-
ues. To apply these thresholds in Algorithm 4.1, the effective SNR in the resolution
dimension has to be obtained. To this end, the estimated stronger-cisoid amplitude
(4.9) can be used together with the effective noise power in the resolution dimen-
sion. The latter can be estimated by calculating the average power in the resolution
dimension for remaining-dimension frequencies without cisoids.

4.2.3 Adaption of resolution dimension selection

In Chapter 3 the dimension with the largest frequency separation is used as resolution
dimension. This is motivated by the subsequent 1-D high- resolution frequency
estimation, which benefits from a large frequency separation. In contrast the method
proposed in Section 4.2 effectively exploits a frequency separation in the remaining
dimensions. To see this, consider the power ratio (4.6), substitute the definition of
the cisoid amplitudes (3.11), and distinguish the cases where either the first or the
second cisoid dominates

ρ (λ, µ) =
|αw (λ, µ)|2
|αs (λ, µ)|2

=







|a2|2
|a1|2

Ω2
λ (λ− λ2) Ω

2
µ (µ− µ2)

Ω2
λ (λ− λ1) Ω2

µ (µ− µ1)
, |α1 (λ, µ)|2 > |α2 (λ, µ)|2

|a1|2
|a2|2

Ω2
λ (λ− λ1) Ω

2
µ (µ− µ1)

Ω2
λ (λ− λ2) Ω2

µ (µ− µ2)
, |α1 (λ, µ)|2 < |α2 (λ, µ)|2

For no frequency separation, that is λ1 = λ2 and µ1 = µ2, the power ratio is
|a1|2/|a2|2 and thus constant with respect to λ and µ. As a consequence the single-
cisoid search approach breaks down as no frequencies λ and µ lead to an effective
single-cisoid model according to (4.3). For separation in at least one of the remaining
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dimensions, that is λ1 6= λ2 or µ1 6= µ2, the power ratio is zero at frequencies
satisfying













Ω2
λ(λ− λ2) = 0, λ1 6= λ2, µ1 = µ2

Ω2
µ(µ− µ2) = 0, λ1 = λ2, µ1 6= µ2

Ω2
λ(λ− λ2)Ω

2
µ(µ− µ2) = 0, λ1 6= λ2, µ1 6= µ2

|α1 (λ, µ)|2 > |α2 (λ, µ)|2







Ω2
λ(λ− λ1) = 0, λ1 6= λ2, µ1 = µ2

Ω2
µ(µ− µ1) = 0, λ1 = λ2, µ1 6= µ2

Ω2
λ(λ− λ1)Ω

2
µ(µ− µ1) = 0, λ1 6= λ2, µ1 6= µ2

|α1 (λ, µ)|2 < |α2 (λ, µ)|2

For such frequencies, the resolution dimension is represented by a single-cisoid model
and Algorithm 4.1 can work successfully. To ensure frequency separation in the
remaining dimensions, we adapt the logic for resolution dimension selection presented
in Section 4.2.3, such that the resolution dimension is selected according to the
smallest value among (3.12), (3.13), and (3.14).

4.3 Bias reduction

For discrete frequencies, Algorithm 4.1 might not find frequencies in the remaining
dimensions, for which the power ratio is exactly zero. This introduces a bias for the
frequency estimates in the resolution dimension, which are obtained via periodogram
maximization. This bias is propagated in a decoupled frequency estimation to the
estimates in the remaining dimensions. Here, we propose a method to correct the
bias terms in the resolution dimension as well as in the remaining dimensions.

Resolution dimension

Let l1, m1, l2, and m2, represent the frequencies in the remaining dimensions, which
correspond to the frequency estimates in the resolution dimension, ν̂1 and ν̂2, ob-
tained with Algorithm 4.1. Recall that the estimates ν̂1 and ν̂2 are obtained by
periodogram maximization in the resolution dimension, based on a single-cisoid ap-
proximation according to (4.3). For discrete frequencies the respective weaker cisoid
can have non-zero magnitude and thus perturbed single-cisoid models have to be
considered

X(∆λl1,∆µm1, ν) = α1(∆λl1,∆µm1)
︸ ︷︷ ︸

αs,1

Wν(ν − ν1) + α2(∆λl1,∆µm1)
︸ ︷︷ ︸

αw,1

Wν(ν − ν2)

X(∆λl2,∆µm2, ν) = α1(∆λl2,∆µm2)
︸ ︷︷ ︸

αw,2

Wν(ν − ν1) + α2(∆λl2,∆µm2)
︸ ︷︷ ︸

αs,2

Wν(ν − ν2)
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where the noise term has been dropped and |αs,1| ≫ |αw,1| and |αs,2| ≫ |αw,2|.
However, the magnitudes of the respective weaker cisoids are non-zero and therefore
disturb the periodogram maximizer. To see this, consider the periodogram corre-
sponding to the first perturbed resolution-dimension model

P (∆λl1,∆µm1, ν) (4.12)

= |αs,1|2Ω2
ν(ν − ν1)

︸ ︷︷ ︸
stronger cisoid

+ |αw,1|2Ω2
ν(ν − ν2)

︸ ︷︷ ︸
weaker cisoid

+2 cos(∠αw,1/αs,1 + δν(Ns − 1)/2)|αs,1||αw,1|Ων (ν − ν1) Ων (ν − ν2)
︸ ︷︷ ︸

cross term

,

The periodogram can be subdivided into three terms: a stronger cisoid term, a
weaker cisoid term, and a cross term. If the weaker cisoids magnitude is exactly
zero, only the stronger-cisoid determines the peak position of (4.12), which is in
that case at ν1 and consequently ν̂1 is unbiased. If the weaker cisoid has a non-zero
magnitude, the weaker cisoid term and the cross term influence the peak position of
the periodogram and introduce a bias in ν̂1. The same argument holds for the second
resolution-dimension estimate ν̂2. Estimators of the bias terms in the resolution
dimension are derived in Appendix 4.A.1 and are given by

β̂ν,1 =

[
|α̂w,1|2
|α̂s,1 |2

+
|α̂w,1|
|α̂s,1 |

cos(∠α̂w,1/α̂s,1 − δ̂ν(Ns − 1)/2)

]
Ω̇ν

(
δ̂ν
)

Ω̈ν (0)
(4.13)

β̂ν,2 = −
[
|α̂w,2|2
|α̂s,2 |2

+
|α̂w,2|
|α̂s,2 |

cos(∠α̂w,2/α̂s,2 + δ̂ν(Ns − 1)/2)

]
Ω̇ν

(
δ̂ν
)

Ω̈ν (0)
(4.14)

where δ̂ν = ν̂2 − ν̂1 and

α̂s,1 = â1 Wλ

(
∆λl1 − λ̂1

)
Wµ

(
∆µm1 − µ̂1

)

α̂w,1 = â2 Wλ

(
∆λl1 − λ̂2

)
Wµ

(
∆µm1 − µ̂2

)

α̂s,2 = â2 Wλ

(
∆λl2 − λ̂2

)
Wµ

(
∆µm2 − µ̂2

)

α̂w,2 = â1 Wλ

(
∆λl2 − λ̂1

)
Wµ

(
∆µm2 − µ̂1

)

Herein,

â1 = [wλ(λ̂1)⊗wµ(µ̂1)]
+
α1

â2 = [wλ(λ̂2)⊗wµ(µ̂2)]
+
α2

where [α1]i = α̂1(la + i/M mod L, ma + i mod M) and [α2]i = α̂2(la + i/M

mod L, ma + i mod M).
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4 Frequency estimation based on a single-cisoid search

Remaining dimensions

To see how the bias of the estimates in the resolution dimension is propagated in the
decoupled approach, consider the estimates in the remaining dimensions

λ̂1, µ̂1 = arg max
λ,µ

|α̂1(λ, µ)|2 (4.15)

λ̂2, µ̂2 = arg max
λ,µ

|α̂2(λ, µ)|2 (4.16)

where α̂1(λ,µ) and α̂2(λ, µ) are given in (3.24), which we restate here for reference

[α̂1(λ,µ), α̂2(λ, µ)]
T = [wν(ν̂1)wν(ν̂2)]

+
zν(λ,µ).

Substituting the noiseless decoupled model according to (3.8)

zν(λ, µ) = [wν(ν1)wν(ν2)][α1(λ, µ), α2(λ, µ)]
T

and considering the explicit form of the pseudoinverse for 2× 2 matrices, yields

[α̂1(λ, µ), α̂2(λ, µ)]
T = [wν(ν̂1)wν(ν̂2)]

+[wν(ν1)wν(ν2)][α1(λ, µ), α2(λ, µ)]
T

=
1

d

[

s1 r1

r2 s2

]

[α1(λ, µ), α2(λ, µ)]
T

where

s1 = [wH
ν (ν̂2)wν(ν̂2)w

H
ν (ν̂1)−w

H
ν (ν̂1)wν(ν̂2)w

H
ν (ν̂2)]wν(ν1), (4.17)

r1 = [wH
ν (ν̂2)wν(ν̂2)w

H
ν (ν̂1)−w

H
ν (ν̂1)wν(ν̂2)w

H
ν (ν̂2)]wν(ν2), (4.18)

s2 = [wH
ν (ν̂1)wν(ν̂1)w

H
ν (ν̂2)−w

H
ν (ν̂2)wν(ν̂1)w

H
ν (ν̂1)]wν(ν2), (4.19)

r2 = [wH
ν (ν̂1)wν(ν̂1)w

H
ν (ν̂2)−w

H
ν (ν̂2)wν(ν̂1)w

H
ν (ν̂1)]wν(ν1), (4.20)

and d is a non-zero scalar, which depends on ν̂1 and ν̂2 and is here of no further
interest. Consider the estimates in the remaining dimensions (4.15) corresponding to
the first estimate in the resolution dimension ν̂1, which are obtained by maximizing

|α̂1(λ,µ)|2 = (4.21)

|s1|2
|d|2 |α1(λ, µ)|2

︸ ︷︷ ︸
wanted

+
|r1|2
|d|2 |α2(λ,µ)|2 + 2 cos (φ1)

|s1||r1|
|d|2 |α1(λ, µ)||α2(λ, µ)|

︸ ︷︷ ︸
error term

,

where φ1 = ∠r1/s1+ϕ+δλ(Ls−1)/2+δµ(Ms−1)/2. The first term in (4.21), has its
maximal peak at λ1 and µ1, that is at the actual cisoid frequencies. The second, error
term in (4.21) scales with |r1| and leads to a peak shift. In this way, the bias in the
resolution dimension is propagated to the remaining dimensions, as r1 depends on
the resolution dimension bias. The same argument holds for |α2(λ, µ)|2. Estimators
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4.3 Bias reduction

of the bias terms in the remaining dimensions are derived in Appendix 4.A.1 and
are given by

β̂λ,1 =

[ |r̂1|2
|ŝ1|2

|â2|2
|â1|2

Ω2
µ

(
δ̂µ
)
+

|r̂1|
|ŝ1|

|â2|
|â1|

Ωµ

(
δ̂µ
)
cos
(
φ̂1

)
]
Ω̇λ

(
δ̂λ
)

Ω̈λ

(
0
) , (4.22)

β̂λ,2 = −
[
|r̂2|2
|ŝ2|2

|â1|2
|â2|2

Ω2
µ

(
δ̂µ
)
+

|r̂2|
|ŝ2|

|â1|
|â2|

Ωµ

(
δ̂µ
)
cos
(
φ̂2

)
]
Ω̇λ

(
δ̂λ
)

Ω̈λ

(
0
) , (4.23)

β̂µ,1 =

[
|r̂1|2
|ŝ1|2

|â2|2
|â1|2

Ω2
λ

(
δ̂λ
)
+

|r̂1|
|ŝ1|

|â2|
|â1|

Ωλ

(
δ̂λ
)
cos
(
φ̂1

)
]
Ω̇µ

(
δ̂µ
)

Ω̈µ

(
0
) , (4.24)

β̂µ,2 = −
[
|r̂2|2
|ŝ2|2

|â1|2
|â2|2

Ω2
λ

(
δ̂λ
)
+

|r̂2|
|ŝ2|

|â1|
|â2|

Ωλ

(
δ̂λ
)
cos
(
φ̂2

)
]
Ω̇µ

(
δ̂µ
)

Ω̈µ

(
0
) , (4.25)

where δ̂λ = λ̂2 − λ̂1, δ̂µ = µ̂2 − µ̂1,

φ̂1 = ∠r̂1/ŝ1 + ∠â2/â1 + δ̂µ(Ms − 1)/2 + δ̂λ(Ls − 1)/2,

φ̂2 = ∠r̂2/ŝ2 + ∠â2/â1 − δ̂µ(Ms − 1)/2− δ̂λ(Ls − 1)/2,

and ŝ1, r̂1, ŝ2, and r̂2, are obtained by substituting ν1 = ν̂1− β̂ν,1 and ν2 = ν̂2− β̂ν,2

in (4.17), (4.18), (4.19), and (4.20), respectively.

4.3.1 Window functions with broad zeros

Another approach for bias reduction are special window functions. To derive such
window functions reconsider that the resolution-dimension estimates are biased be-
cause the peak position of the periodogram is influenced by a weaker-cisoid and a
cross term, as in (4.12). Both terms scale with

|αw,1|2 = |α2(∆λl1,∆µm1)|2 = |a2|2 Ω2
λ(∆λl1 − λ2) Ω2

µ(∆µm1 − µ2),

|αw,1| = |α2(∆λl1,∆µm1)| = |a2| |Ωλ(∆λl1 − λ2)||Ωµ(∆µm1 − µ2)|,

respectively. Due to the frequency discretization, Ωλ(∆λl1−λ2) 6= 0 and Ωµ(∆µm1−
µ2) 6= 0, and ∆λl1 and ∆µm1 are rather close to frequencies λz and µz, for which
Ωλ(λz −λ2) = 0 and Ωµ(µz −µ2) = 0. The values of |αw,1|2 and |αw,1| are therefore
determined by Ω2

λ(λ−λ2), Ω2
µ(µ−µ2), |Ωλ(λ−λ2)|, and |Ωµ(µ−µ2)| in the vicinity

of λz and µz, respectively. From the Taylor expansions around λz and µz

Ω2
λ(λ) = Ω̇2

λ (λz)[λ− λz]
2+O(|λ− λz |3)

Ω2
µ(µ) = Ω̇2

µ (µz)[µ− µz]
2+O(|µ− µz |3)

|Ωλ(λ)| = 2Ω̇λ (λz)[λ− λz] +O(|λ− λz |2)
|Ωµ(µ)| = 2Ω̇µ (µz)[µ− µz] +O(|µ− µz |2)
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4 Frequency estimation based on a single-cisoid search

we see that the magnitude of the weaker cisoid term and the cross term in (4.12) can
be reduced by altering the window functions such that Ω̇λ (λz) = 0 and Ω̇µ (µz) = 0.
To obtain such window functions, consider the first frequency dimension and write

Ωλ (λ) = w
T
s a (λ) , Ω̇λ (λ) = w

T
s ȧ (λ) ,

where ws, a (λ), and ȧ (λ), are RL vectors with elements given by

[ws]l = wλ(l),

[a (λ)]l = cos

(

λ

[

l − Ls − 1

2

])

,

[ȧ (λ)]l = sin

(

λ

[

l − Ls − 1

2

])

,

[
Ls − 1

2
− l

]

respectively. Let ws denote the original window sequence and wz the desired se-
quence for which Ω̇λ (λz) = 0. The following optimization problem can be formu-
lated: minimize the squared error of the amplitude functions

∫ ∣
∣
∣w

T
s a (λ)−w

T
z a (λ)

∣
∣
∣

2

dλ,

subject to
w

T
s [a (λz) , ȧ (λz)] = 0.

The solution is [vT02, Ch. 3.7]

w
T
z = w

T
s

[
IL − [a (λz) , ȧ (λz)] [a (λz) , ȧ (λz)]

+] .

For a practical approach, λz has to be determined. To this end, note that for
frequency separations below the resolution limit, λz coincides with one of the two
zeros closest to λ2 and therefore λz = λ2±MLWλ. Substituting MLWλ for λz yields
the desired window sequence for the first frequency dimension

w
T
z = w

T
s

[
IL − [a (MLWλ) , ȧ (MLWλ)] [a (MLWλ) , ȧ (MLWλ)]

+] .

The same approach can be straightforwardly extended to the second and third fre-
quency dimension.

4.4 Example

Here we present an example of frequency estimation based on the single-cisoid search
as described in Algorithm 4.1. We consider two cisoids with the following parame-
ters

a1 = ej5.851, λ1 = π − 0.5δλ, µ1 = π − 0.5δµ, ν1 = π − 0.5δν ,

a2 = ej2.004, λ2 = π + 0.5δλ, µ2 = π + 0.5δµ, ν2 = π + 0.5δν ,
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4.5 Simulation Results

where the frequency separation is δλ = 0.5Fλ, δµ = 0.75Fµ, δν = 0.5Fν and SNR1 =

SNR2 = 0dB. The sample support is Ls = 256, Ms = 256, Ns = 4, respectively, and
the sizes for calculating the DFT are LDFT = 256, MDFT = 256, NDFT = 8. In the
first two dimensions a 40 dB Chebyshev window is used and in the last dimension a
rectangular window. The frequency sub-band is set to

(π − Fλ, π + Fλ) × (π − Fµ, π + Fµ) × (π − 2Fν , π + 2Fν).

The focus is on Algorithm 4.1 and the bias correction presented in Section 4.2.1. We
assume that the last dimension was selected as resolution dimension and that the
first test in the flowchart shown in Figure 4.1 correctly rejects the single-cisoid model
and that the second test correctly decides for the two-cisoid model.

Algorithm 4.1 begins with the calculation of the frequency estimates in the resolution
dimension, the corresponding amplitude, and the power ratio for each frequency in
the selected sub-band. Figure 4.2 (a, left) shows the calculated power ratio, where
only values within the considered frequency sub-band are color-coded. Figure 4.2 (a,
right) shows the calculated power ratio values, which fall below the threshold γρ in
the test (4.5). Note that we used a false-alarm probability of 90 % to set the threshold
γρ = 0.33/SNRr, where SNRr is the effective SNR in the resolution dimension.
Figure 4.2 (b) shows the frequency estimates obtained via (4.10), which correspond to
the power ratio values shown in Figure 4.2 (a). The true cisoid frequencies are shown
as vertical lines for reference. Note that only estimates for which the corresponding
power ratio is below γρ are considered in Algorithm 4.1. Consequently, the estimates
corresponding to the two smallest power ratio values are used in the test (4.11), where
we used a false-alarm probability of 99 % to set the threshold γν = 0.66/SNRr. As
the separation of both estimates exceeds γν , they are finally selected as estimates
for ν1 and ν2.

Based on the selected frequency estimates in the resolution dimension the frequen-
cies in the remaining dimensions are obtained as presented in Section 3.4.2. The
estimation errors for all frequency dimensions are gathered in Table 4.1. Using the
bias correction approach, presented in Section 4.2.1, the estimation errors can be
reduced by one order of magnitude.

4.5 Simulation Results

In this section, the influence of SNR, frequency separation, and interfering out-of-
band cisoids are assessed via MC simulations and compared to the CRB. We use
the same parametrization as in Section 3.6, that is the two cisoids are modeled via
the correlation phase ϕ, the mid frequencies λm, µm, and νm, and the frequency
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Figure 4.2: (a) Estimated power ratio in the selected frequency sub-band (left) and
the selected remaining dimension frequencies obtained by Algorithm 4.1
(right). (b) Estimated frequencies in the resolution dimension and cor-
responding power ratios for the selected frequency sub-band. The value
pairs selected by Algorithm 4.1 are marked.

separations δλ, δµ, and δν as in (3.45) and (3.46), respectively. An optional out-of-
band cisoid is modelled via (3.48). The data sizes are

Ls = 256, Ms = 256, Ns = 4, LDFT = 256, MDFT = 256, NDFT = 8,

and the employed window functions are 40 dB Chebyshev windows in the first two di-
mensions and a rectangular window in the last dimension. The considered frequency
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4.5 Simulation Results

Table 4.1: Example: frequency estimation errors.

Estimation error Algorithm 4.1 + bias correction

|λ̂1 − λ1|/Fλ 0.0043 0.0002

|µ̂1 − µ1|/Fµ 0.0054 0.0002

|ν̂1 − ν1 |/Fµ 0.0139 0.0035

|λ̂2 − λ2|/Fλ 0.0037 0.0006

|µ̂2 − µ2|/Fµ 0.0054 0.0002

|ν̂2 − ν2 |/Fν 0.0106 0.0002

sub-band is

(π − 2Fλ, π + 2Fλ) × (π − 3Fµ, π + 3Fµ) × (π − 2Fν , π + 2Fν).

In each MC run the correlation phase ϕ is drawn uniformly from (0, 2π). To allow
for a fair assessment of frequency grid effects, the mid frequencies are also uniformly
drawn from

(π −∆λ/2, π +∆λ/2) , (π −∆µ/2, π +∆µ/2) , (π −∆ν/2, π +∆ν/2) ,

respectively. The RMSE values according to (3.49), (3.50), and (3.51) are used as
performance metric. Additionally the empirical probability of resolution pr according
to (3.52) is calculated and used to exclude simulation points for which pr > 90%

from the results. To asses the estimation performance we compare the RMSEs to
the corresponding CRBs (3.53), (3.54), and (3.55).

We used false-alarm probabilities of 90 % and 99% to set the threshold values to
γρ = 0.33/SNRr and γν = 0.66/SNRr, respectively, where SNRr is the effective
SNR in the resolution dimension. In the simulations we calculate SNRr based on
the estimated power of the stronger cisoid and on the effective noise variance in the
resolution dimension according to (2.9)

σ2 Cλ(0)Cµ(0).

Note, that in practice, the effective noise variance has to be estimated.

For comparison the conventional periodogram estimator is calculated according to
Section 2.2.2. To this end, the two largest periodogram peaks in the sub-band are
considered and the LUT-based approach presented in Section 3.3 is used for both
peaks.
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Figure 4.3: Probability of resolution of the single-cisoid search algorithm and the con-
ventional periodogram for varying frequency separation in the remaining
dimensions.

4.5.1 Noise influence

To assess the SNR influence on the single-cisoid search algorithm fix the frequency
separation to

δλ = 0.5Fλ, δµ = 0.75Fµ, δν = 0.5Fν

and vary SNR = SNR1 = SNR2 according to (3.44) per MC run. Further let
a3 = 0, that means no out-of-band interference is considered. Figure 4.4 shows the
RMSE per frequency dimension for Algorithm 4.1. Additionally the result of the bias
correction step developed Section 4.3 and the respective CRB is shown. Note that
the RMSE values as well as the CRBs are normalized to the corresponding resolution
limit. Observe a performance close to the CRB and a slightly lower RMSE for the
additional bias correction. Note that the conventional periodogram method was only
able to resolve the two cisoids in under 50 % of the MC runs and thus no simulation
points are shown in Figure 4.4.

4.5.2 Frequency separation

To asses the influence of frequency separation on the single-cisoid search approach,
consider a high SNR case with no out-of-band interference, that is SNR = SNR1 =

SNR2 = 10dB and a3 = 0.
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4.5 Simulation Results

In a first simulation we consider frequency separation in the remaining dimensions.
To this end, the separation in the resolution dimension is fixed to 50% of the re-
spective resolution limit and the separations in the remaining dimensions, normal-
ized to the respective resolution limit, are varied equally, that is δλ/Fλ = δµ/Fµ.
Figure 4.5 shows the normalized RMSE of Algorithm 4.1 and of additional bias
correction according to Section 4.3. In addition, the respective RMSEs are shown
if the Chebychev windows employed in the remaining dimensions are modified as
proposed in Section 4.3.1. The first observation is that the RMSE decreases with
separation in the remaining dimensions, which was expected from the discussion in
Section 4.2.3. Observe further a clear improvement due to bias correction and also
a strong improvement due to the modified window functions. Note that the em-
pirical resolution probabilities of the conventional periodogram estimator was below
90% for all separations and consequently the corresponding RMSE is omitted in Fig-
ure 4.5. Therefore we show the empirical resolution probabilities of Algorithm 4.1
and the conventional periodogram method in Figure 4.3. Observe that the reso-
lution probability is below 90% for all separations, whereas it is almost 100 % for
Algorithm 4.1.

In another simulation, the influence of frequency separation in the resolution dimen-
sion is analyzed. To this end, the separations in the remaining dimensions are fixed
to 50 % of the respective resolution limit and the separation in the resolution di-
mension is varied. As in the first simulation we let SNR = SNR1 = SNR2 = 10 dB

and a3 = 0. The RMSE of Algorithm 4.1 and the additional bias correction did
not change with respect to the values found in Section 4.5.1. Therefore we con-
clude that the separation in the resolution influence has only a minor influence on
Algorithm 4.1.

4.5.3 Interfering cisoids

To assess the influence of out-of-band interference on the single-cisoid search ap-
proach we consider an additional out-of-band cisoid with frequencies

λi = λm + 5Fλ, µi = µm + 5Fµ, νi = νm + 3Fν .

In the simulations, the frequency separation of the two cisoids of interest are set to
δλ = 0.5Fλ, δµ = 0.75Fµ, and δν = 0.5Fν , respectively. Further the SNR is fixed
to 10 dB and the SIR as in (3.48) is varied. The RMSE of Algorithm 4.1 and the
additional bias correction are shown in Figure 4.6. Comparing the values to the
ones obtained without interfering cisoid in Figure 4.4 we conclude that out-of-band
interference has only a minor influence on Algorithm 4.1.
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Figure 4.4: RMSE of the proposed single-cisoid search approach and bias correction
for varying SNR.
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Figure 4.5: RMSE of the proposed single-cisoid search approach and bias correction
for varying frequency separation in the remaining dimensions.
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Figure 4.6: RMSE of the proposed single-cisoid search approach and bias correction-
for varying SIR.
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4.A Appendix

4.A Appendix

4.A.1 Derivation of bias correction terms

Resolution dimension

We derive a small error approximation of the bias for the resolution dimension esti-
mates. To this end, consider the derivative of (4.12) with respect to ν

∂

∂ν
P (∆λl1,∆µm1, ν) =

∂

∂ν
|αs,1|2Ω2

ν (ν − ν1) + e (ν) (4.26)

where

e (ν) = 2|αw,1|2Ω̇ν (ν − ν2) + 2 cos(∠αw,1/αs,1 + δν(Ns − 1)/2)|αs,1||αw,1|
·
[

Ω̇ν (ν − ν1)Ων (ν − ν2) + Ων (ν − ν1) Ω̇ν (ν − ν2)
]

denotes an error term. For |αs,1| ≫ |αw,1|, the error term and the derivative of
|αs,1|2Ω2

ν (ν − ν1) can be approximated by a zeroth-order Taylor expansion

e (ν) ≈ −2
[
|αw,1|2 + cos(∠αw,1/αs,1 + δν(Ns − 1)/2)|αs,1||αw,1|

]
Ω̇ν (δν) (4.27)

and a first-order Taylor expansion

∂

∂ν
|αs,1|2Ω2

ν (ν − ν1) ≈ 2|αs,1|2Ω̈ν (0) (ν − ν1) (4.28)

around ν1, respectively. Substituting (4.28) and (4.27) in (4.26) and letting ν = ν̂1
yields

ν̂1 − ν1 =

[
|αw,1|2
|αs,1|2

+ cos(∠αw,1/αs,1 + δν(Ns − 1)/2)
|αw,1|
|αs,1|

]
Ω̇ν (δν)

Ω̈ν (0)
, (4.29)

as the derivative of the periodogram is zero at its maximizing frequency ν̂1. The
same approach can be used for the second resolution dimension estimate, which
yields

ν̂2 − ν2 = −
[ |αw,2|2
|αs,2|2

+ cos(∠αw,2/αs,2 − δν(Ns − 1)/2)
|αw,2 |
|αs,2|

]
Ω̇ν (δν)

Ω̈ν (0)
. (4.30)

Substituting

α̂s,1 = â1 Wλ

(
∆λl1 − λ̂1

)
Wµ

(
∆µm1 − µ̂1

)
,

α̂w,1 = â2 Wλ

(
∆λl1 − λ̂2

)
Wµ

(
∆µm1 − µ̂2

)
,

α̂s,2 = â2 Wλ

(
∆λl2 − λ̂2

)
Wµ

(
∆µm2 − µ̂2

)
,

α̂w,2 = â1 Wλ

(
∆λl2 − λ̂1

)
Wµ

(
∆µm2 − µ̂1

)
,

λ̂1, λ̂2, µ̂1, µ̂2, δ̂ν = ν̂2 − ν̂1, â1, and â2 for the true values, yields estimators of the
bias terms.
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Remaining dimensions

Here, small-error approximations of the bias in the remaining dimensions are derived.
To this end, consider the partial derivatives of (4.21) with respect to λ and µ

∂

∂λ
|α̂1(λ, µ)|2 =

1

|d|2
[

|s1|2
∂

∂λ
|α1(λ, µ)|2 + eλ (λ, µ)

]

, (4.31)

∂

∂µ
|α̂1(λ, µ)|2 =

1

|d|2
[

|s1|2 ∂

∂µ
|α1(λ, µ)|2 + eµ (λ, µ)

]

, (4.32)

where

eλ (λ, µ) = |r1|2|a2|2Ω̇2
λ (λ− λ2) Ω

2
µ (µ− µ2)

+ 2|a1||a2||s1||r1| cos (φ1)Ωµ (µ− µ1)Ωµ (µ− µ2)

·
[

Ω̇λ (λ− λ1) Ωλ (λ− λ2) + Ωλ (λ− λ1) Ω̇λ (λ− λ2)
]

,

eµ (λ, µ) = |r1|2|a2|2Ω2
λ (λ− λ2) Ω̇

2
µ (µ− µ2)

+ 2|a1||a2||s1||r1| cos (φ1)Ωλ (λ− λ1) Ωλ (λ− λ2)

·
[

Ω̇µ (µ− µ1)Ωµ (µ− µ2) + Ωµ (µ− µ1) Ω̇µ (µ− µ2)
]

,

denote respective error terms. For |s1| ≫ |r1|, the error terms and the partial
derivatives of |α1(λ, µ)|2 can be approximated by a zeroth-order Taylor expansion
around λ1, µ1

eλ (λ, µ) ≈ −2
[

|r1|2|a2|2Ω2
µ (δµ) + |a1||a2||s1||r1|Ωµ (δµ) cos (φ1)

]

Ω̇λ (δλ) , (4.33)

eµ (λ, µ) ≈ −2
[

|r1|2|a2|2Ω2
λ (δλ) + |a1||a2||s1||r1|Ωλ (δλ) cos (φ1)

]

Ω̇µ (δµ) , (4.34)

and by a first-order Taylor expansion around λ1, µ1

∂

∂λ
|α1(λ, µ)|2 ≈ 2|a1|2Ω̈λ (0) (λ− λ1), (4.35)

∂

∂µ
|α1(λ, µ)|2 ≈ 2|a1|2Ω̈µ (0) (µ− µ1), (4.36)

respectively. Substituting (4.33), (4.35) and (4.34), (4.36) in (4.31), (4.32), respec-
tively, and considering that the periodograms partial derivatives of |α̂1(λ, µ)|2 are
zero at λ̂1 and µ̂1, respectively, yields

λ̂1 − λ1
︸ ︷︷ ︸

βλ,1

=

[
|r1|2
|s1|2

|a2|2
|a1|2

Ω2
µ

(
δµ
)
+

|r1|
|s1|

|a2|
|a1|

Ωµ

(
δµ
)
cos
(
φ1

)
]
Ω̇λ

(
δλ
)

Ω̈λ

(
0
) , (4.37)

µ̂1 − µ1
︸ ︷︷ ︸

βµ,1

=

[
|r1|2
|s1|2

|a2|2
|a1|2

Ω2
λ

(
δλ
)
+

|r1|
|s1|

|a2|
|a1|

Ωλ

(
δλ
)
cos
(
φ1

)
]
Ω̇µ

(
δµ
)

Ω̈µ

(
0
) . (4.38)
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Bias terms for the second cisoid are obtained analogously

λ̂2 − λ2
︸ ︷︷ ︸

βλ,2

= −
[
|r2|2
|s2|2

|a1|2
|a2|2

Ω2
µ

(
δµ
)
+

|r2|
|s2|

|a1|
|a2|

Ωµ

(
δµ
)
cos
(
φ2

)
]
Ω̇λ

(
δλ
)

Ω̈λ

(
0
) , (4.39)

µ̂2 − µ2
︸ ︷︷ ︸

βµ,2

= −
[
|r2|2
|s2|2

|a1|2
|a2|2

Ω2
λ

(
δλ
)
+

|r2|
|s2|

|a1|
|a2|

Ωλ

(
δλ
)
cos
(
φ2

)
]
Ω̇µ

(
δµ
)

Ω̈µ

(
0
) . (4.40)

where φ2 = ∠r2 − ∠s2 − ϕ− δλ(Ls − 1)/2− δµ(Ms − 1)/2. Substituting

ν1 = ν̂1 − β̂ν,1, ν2 = ν̂2 − β̂ν,2,

in (4.17), (4.18), (4.19), (4.20), yields estimates of s1, r1, s2, and r2, respectively.
Substituting these and estimates of a1, a2, δρ, and δµ in (4.37), (4.38), (4.39), and
(4.40), respectively, yields estimators of the bias terms.
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In this chapter, we consider applications of multidimensional frequency estimation
in automotive radar and focus on computational efficiency, memory efficiency, and
high-resolution capability. The framework on multidimensional frequency estima-
tion, developed in Chapter 3, is applied and the single-cisoid search frequency esti-
mation, presented in Chapter 4, is used to reduce computational complexity. The
effectiveness of this approach is demonstrated using measurements obtained with a
series-production automotive radar.

The remainder of this chapter is organized as follows. In Section 5.1, an overview of
automotive radar applications is given, classical radar processing steps are sketched,
state-of-the-art automotive radar sensors are discussed, and a corresponding data
model is derived. In Section 5.2, conventional automotive signal processing is consid-
ered, which achieves computational and memory efficiency but lacks high-resolution
capability. Radar system design aspects are discussed in Section 5.3, where the focus
is on trading off resolution for ambiguity. Section 5.4 constitutes the main contri-
bution of this chapter, that is adding high-resolution capability to the conventional
processing considered in Section 5.2.

5.1 Preliminaries

5.1.1 Automotive radar background

Radar is one of the main technologies for target localization in ADAS [BDF+14]
and has some unique advantages compared to lidar and camera technologies. Radar
works reliably in bad weather and lighting conditions, provides direct measurements
of range, radial velocity, and direction of multiple targets, and has a high range
coverage of more than 200 m. Current radar-based ADAS are adaptive cruise con-
trol (ACC) [Win12], lane change assist (LCA) [BMS12], forward collision avoidance
(FCA) [Mau12], and evasion assist [DDF+12]. One of the most dynamic topics in
the automotive industry is the development of ADAS towards HAD, for which radar
is considered as one of the key technologies [DAB+14, DAK+15, WM14].

Classical radar pre-processing consists of matched filtering, Doppler processing, and
digital beamforming. State-of-the-art automotive radars employ stretch processing
and uniform linear arrays (ULA), so that classical pre-processing can be replaced
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by a 3-D Fourier transformation. Further processing steps are power detection, pa-
rameter estimation, clustering of detections, target tracking, and, optionally, target
classification, road estimation, or occupancy-grid-map methods to determine the sta-
tionary environment of the radar. The focus here is on target parameter estimation
in particular with high-resolution capability. The remaining processing steps are
discussed extensively in the literature. Target tracking and clustering is discussed in
[Büh08, GSDB07, HSSS12, HLS12], target classification in [Heu13], road estimation
in [GHFS14], and occupancy grid map methods in [LHG11, LSG12].

Current limitations with respect to requirements of the automotive industry are lim-
ited spatial and radial velocity resolution in particular for HAD [MBF+13, DKH+15].
Range resolution is typically limited by bandwidth, radial velocity resolution by co-
herent processing time, and angular resolution by antenna aperture and number of
receive (Rx) channels. For ADAS and HAD, increasing bandwidth, coherent process-
ing time, antenna aperture and number of Rx channels is often not practical due to
cost, size, and processing time constraints. To nevertheless meet resolution require-
ments, high-resolution frequency estimation can be used. Existing approaches for
automotive radar consider high-resolution techniques in the spatial dimension, that
is the original domain of the angular dimension. In [Sch10] a comparative study of
such techniques is provided for frequency modulated continues wave (FMCW) radars,
whereas in [Hei12] computationally efficient high-resolution methods for state-of-the-
art chirp-sequence radars are considered.

5.1.2 Radar principles

Radars transmit electromagnetic (EM) waves via a transmit (Tx) antenna and receive
target echoes back via an Rx antenna to determine relevant targets. The temporal
variation of the transmitted wave is called waveform and is generated by exciting a
Tx antenna with a time varying current or voltage, which is here collectively referred
to as signal. Tx signals used in radar are bandpass signals, which are effectively
bandlimited around a carrier frequency fc and can be expressed as

s(t) = ae(t) cos[2πϕ(t)],

where ae(t) > 0 is the envelope, ϕ(t) = fct + ϕm(t) the instantaneous phase, and
ϕm(t) the instantaneous phase modulation. An important signal representation is

s(t) = Re{s̃(t)ej2πfct}, s̃(t) = ae(t)e
j2πϕm(t)

where s̃(t) is the complex envelope of the Tx signal. Examples of bandpass signals
are continuous wave signals cos[2πfct] and unmodulated pulses Π[t/tp] cos[2πfct],
where tp is the pulse duration and Π[·] is the rectangular function.

Exciting an antenna with a bandpass signal creates a propagating EM wave. If the
antenna characteristics do not change significantly around the carrier frequency, the
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corresponding waveform is determined by the bandpass signal. Consider, that the
Tx wave hits a point target at position p, which scatters the waves energy spherically.
If the scattering process is frequency independent around the carrier frequency, the
waveform of the scattered wave is the Tx signal shifted by the so-called propagation
delay |p − pTx|/c, where pTx is the Tx antenna position and c the propagation
velocity. The amplitude and polarization of the scattered wave are on the one hand
determined by the incoming wave, that is by the gain, directivity, and polarization
of the Tx antenna and a spherical spreading factor 1/|p− pTx|. On the other hand,
by the scattering characteristics of the point target, which are described by the
polarization scattering matrix [KST93].

The scattered wave can be received by the Rx antenna of the radar. The field at the
Rx antenna position pRx is the scattered field at the point target position with an
additional propagation delay |p− pRx|/c and spherical spreading 1/|p− pRx|. The
Rx antenna transforms that field back to a signal

sRx(t) =
As

|p− pTx||p− pRx|
s
(

t− |p− pTx|
c

− |p− pRx|
c

− φs

2πfc

)

, (5.1)

where the amplitude As and phase φs depend on the scattering characteristics of the
point target and on the gain, directivity, and polarization of the Tx and Rx antennas.
For r = |p| ≫ |pTx| and r ≫ |pRx|, (5.1) can be simplified by using the so-called
far-field approximation

|p− pTx| = r − d
T
pTx +O

( |pTx|
r

)

≈
{

r, for amplitude terms

r − dTpTx, for delay terms
(5.2)

|p− pRx| = r − d
T
pRx +O

( |pRx|
r

)

≈
{

r, for amplitude terms

r − dTpRx, for delay terms
(5.3)

Substituting (5.2) and (5.3) in (5.1) yields

sRx(t) = As(t− τ ),

where τ = (2r − dTpRx)/c and A = As/r
2. Note that we neglected delay terms,

which are much smaller than 2r/c and not needed for the further discussion. For
the practically relevant case of relative motion between target and radar, consider a
purely radial target motion r(t) = r + vt. Depending on the sign of v, this leads to
a stretched or compressed Rx signal

sRx(t) =
As

(r + vt)2
s
([

1− 2v

c

]

︸ ︷︷ ︸
β

[

t− 1

c− 2v
(2r − d

T
pRx)

])

≈ As(β[t− τ ]).
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To extract range r, radial velocity v, and direction d from that Rx signal, consider
multiple, spatially distributed Rx antennas, which are collectively referred to as Rx
antenna array. Each Rx antenna signal is processed in a separate IQ demodulator,
which yields the complex envelope of the Rx signal of antenna n

A s̃(t− 2r/c) e−j4πκvt ej2πκdTpn , (5.4)

where pn is the antenna position, κ = fc/c is the wavenumber, and a factor e−j4πκr

is included in A. Due to the structure of (5.4), range r and radial velocity v can
be obtained by feeding (5.4) in a matched filter bank per Rx channel [LE04]. Based
on the matched filter bank outputs, target direction d can be obtained via spatial
filtering [VVB88]. This is also known as beamforming, which consists of finding the
unknown target direction as the maximizer of

1

Ns

∣
∣
∣
∣
∣

Ns−1∑

n=0

x(n)e−j2πκdTpn

∣
∣
∣
∣
∣

2

, (5.5)

where x(n) is the output of matched filter bank n. A practically important array ge-
ometry is the ULA, which consists of equally spaced and linearly aligned Rx antennas.
Considering the coordinate system in Figure 5.1, the position of ULA antenna n is
pn = [0, dn, 0]T, where d is the antenna spacing. For target positions approximately
in the xy-plane, the target direction can be approximated as d ≈ [0, sin(φ), 0]T,
which yields dTpn = sin(φ)dn for the ULA. Substituting this in (5.5), shows that
the beamformer criterion is the periodogram evaluated for the spatial frequency ν

1

Ns

∣
∣
∣
∣
∣

Ns−1∑

n=0

x(n)e−jνn

∣
∣
∣
∣
∣

2

, ν = 2πκd sin(φ). (5.6)

More generally, direction finding is equivalent to spatial frequency estimation if an
ULA is employed [vT02].

Resolution for beamforming is determined by the mainlobe width of the so-called
beampattern, which is obtained by substituting x(n) = 1 in (5.5) and evaluating
it for all possible directions. Higher directional resolution can be achieved by ad-
vanced array processing [KV96]. Range and radial velocity resolution obtained with
matched filtering is determined by the employed Tx signal [LE04]. For the basic
unmodulated pulse the range resolution is ctp/2 and the radial velocity resolution
1/(2κtp). Key concepts for increasing range and radial velocity resolution with re-
spect to the unmodulated pulse, are pulse compression and coherent pulse trains,
respectively [Rih69]. Pulse compression increases range resolution by modulating
the instantaneous signal phase while keeping the pulse duration fixed. An important
example is the linear frequency modulated (LFM) pulse, for which the instantaneous
frequency is varied linearly during the pulse duration, where the bandwidth B is cov-
ered. For large time-bandwidth products Btp ≫ 1, the achievable range resolution
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z

y

x

φ

θ r

v d

d

p

p0 p1 pNs−1pTx

Figure 5.1: Coordinate system with ULA antennas and point target parameters.

for a LFM pulse is c/(2B). Coherent pulse trains comprise Ms identical pulses trans-
mitted at multiples of the pulse repetition time tr > tp and thus achieve a radial
velocity resolution of 1/(2κMstr) A common approach for implementing a matched
filter bank for a coherent pulse train, is a zero-velocity filter per pulse, followed by
an FFT over all filter outputs [LE04].

The combination of LFM pulse compression with coherent pulse trains

Ms−1∑

m=0

Π

[
t− trm

tp

]

cos [2πϕ (t− trm)] , ϕ (t) = fct+
B

2tp
t2, (5.7)

constitutes one of the most popular waveforms in airborne radar [LE04] and is also
known as chirp sequence in automotive radar [Kro14]. The Rx signal for the chirp
sequence is

s
(n)
Rx (t) =

Ms−1∑

m=0

Π

[

β
t− trm− τm,n

tp

]

cos [2πϕ (β[t− trm− τm,n])] , (5.8)

where the instantaneous phase ϕ(t) is given in (5.7),

τm,n = (2r + 2vtrm− d
T
pn)/c (5.9)

and β = 1− 2v/c.
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5.1.3 State-of-the-art automotive radar

State-of-the-art automotive radars use ULAs and chirp-sequence modulation [RA13,
Kro14, Win15] to determine relevant targets and provide range, radial velocity, and
direction resolution capability. A popular and much simpler alternative to chirp-
sequence modulation is FMCW modulation. However, due to strongly coupled range
and radial velocity measurements, FMCW modulation provides only range resolution
capability [Win07] and is thus not considered here.

Chirp-sequence receivers used in automotive radar differ from the classical matched-
filter receiver discussed in the previous section [Win15]. To understand this, recall
that matched-filter range resolution is inversely proportional to bandwidth for a
chirp or LFM pulse. To meet range-resolution requirements, bandwidth values from
200 MHz up to 2GHz are used in automotive radar. The corresponding sampling
rates lead to a dynamic range, power consumption, and cost of employed analog-
to-digital converters, which are not practical. To cope with high-bandwidth values,
stretch processing directly mixes the Rx antenna signal with the Tx signal in the
high-frequency domain. After filtering, the resulting baseband signal has a constant
frequency, proportional to range, which can be extracted via frequency estimation
techniques. The required sampling rate is thus drastically reduced, while the avail-
able range resolution is the same as for matched filtering [KB13]. Stretch processing
was first proposed in [Cap71] and is since then popular for high-range-resolution
applications such as synthetic aperture radar, where it is also known as dechirp-on-
receive processing.

5.1.3.1 Data model

Here, the data model for a multi-channel, chirp-sequence stretch receiver shown in
Figure 5.2 is derived. The chirp sequence in (5.7) is generated by a controlled high-
frequency oscillator and transmitted via the Tx antenna. The signal at Rx antenna
n is given in (5.8) and is mixed with the Tx signal. The resulting baseband signal
has a constant frequency and is sampled synchronized to the Tx signal. Gathering
the samples for all Rx channels and chirps yields a 3-D data set for which a model
is derived next.

Consider the mixer output signal first, that is the product of the Rx and Tx signal.
It can be split in the baseband signal

s
(n)
B (t) =

Ms−1∑

m=0

Π

[
t− trm− τ0

tp − τ0

]

A cos [2πϕ (β [t− trm− τm,n])− 2πϕ (t− trm)]

(5.10)
and a high frequency signal which is removed by filtering, as shown in Figure 5.2.
Note that a delay τ0 is introduced to ensure a complete overlap of the Tx and Rx
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control
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(n)
Rx (t)

s
(n)
B (t)

︸ ︷︷ ︸

x (ls,ms, ns)

Figure 5.2: Multi-channel stretch receiver for a chirp sequence radar. Each Rx chan-
nel consists of a mixer, a filter, and an amplifier. Sampling the so ob-
tained baseband signal synchronized to the Tx chirp sequence yields a
3-D set of samples.

signal and that the gain of the amplifiers and a factor of 1/2 are absorbed in A. The
phase of the baseband signal is

ϕ (β [t− trm− τm,n])− ϕ (t− trm)

=
B

2tp

(
β2 − 1

)
(t− trm)2 −

[
2v

c
fc +

Bβ

tp
τm,n

]

(t− trm)− fcτm,n +
B

2tp
τ 2
m,n

≈ −B

tp
τm,n(t− trm)− fcτm,n +

B

2tp
τ 2
m,n

≈ −B

tp
τm,n(t− trm)− fcτm,n

≈ −B

tp

2r

c
t− 2κvtrm− κdT

pn − 2κr

Herein the first approximation is justified due to c ≫ v or equivalently β ≈ 1, the
second is based on τm,nfc ≫ τ 2

m,nB/(2tp), and the last on 2r ≫ 2vtrm and the
far-field assumption. Substituting this in (5.10) and considering dTpn = sin(φ)dn
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for the ULA yields

s
(n)
B (t) ≈

Ms−1∑

m=0

Π

[
t− trm− τ0

tp − τ0

]

A cos

[
4πB

tpc
r(t− trm) + µm+ νn+ ϕ

]

,

where µ = 4πκtrv is the normalized frequency associated with radial velocity, ν is
the spatial frequency given in (5.6), and ϕ = 4πκr is a range dependent phase term.
Sampling the baseband signal per pulse and arranging the samples in a 3-D array
yields

x (ls,ms, ns) = s
(ns)
B (tsls + trms + τ0)

= A cos (λ ls + µms + ν ns + ϕ) , (5.11)

where ls = 0, . . . Ls−1, ms = 0, . . .Ms−1, ns = 0, . . . Ns−1, ts is the sampling time
per pulse, λ = 4πBer/(cLs) is the normalized frequency corresponding to range,

Be = B
[

1− τ0
tp

]

(5.12)

is the effective bandwidth during the sampling interval tp − τ0 = Lsts, and a factor
4πBrτ0/(tpc) has been absorbed in ϕ. The model in (5.11) represents a 3-D sinusoid,
whose frequencies λ, µ, and ν are determined by range, radial velocity, and direction,
respectively, where the latter is represented by the sine of the azimuth angle φ.

The model in (5.11) can be generalized by considering multiple targets and additive
noise introduced in the radar receiver [Yeo08]

x (ls,ms, ns) =

Kc∑

k=1

Ak cos (λk ls + µk ms + νk ns + ϕk) + ξr (ls,ms, ns) . (5.13)

Herein, Kc is the number of point targets, Ak is the amplitude, ϕk = 4πκrk +

4πBτ0rk/(tpc) the phase, and

λk =
4πBe

cLs
rk, µk = 4πκtrvk, νk = 2πκd sin (φk) , (5.14)

are the normalized frequencies associated with range rk, radial velocity vk, and angle
φk of point target k. The noise term ξr(ls,ms, ns) is real valued and modelled as
white and Gaussian distributed.

The model in (5.13) shows that range, radial velocity, and direction of multiple
point targets can be obtained via 3-D frequency estimation, that is by estimating
the frequencies in (5.14) from the 3-D samples in (5.13).
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5.2 Processing sequence

This section discusses how range, radial velocity, and direction of multiple point
targets can be obtained from the data samples (5.13) via 3-D frequency estimation.
We present a practical processing sequence, which is in particular advantageous
with respect to computational complexity and storage space, two key requirements
in automotive radar.

Preprocessing is based on 3-D discrete-time Fourier transformation

X (λ, µ, ν)

=

Ls−1∑

ls=0

Ms−1∑

ms=0

Ns−1∑

ns=0

wλ(ls)wµ(ms)wν(ns) x (ls,ms, ns) e
−j(λ ls+µms+ν ns), (5.15)

where wλ(ls), wµ(ms), wν(ns) are window functions in the range, radial velocity, and
angular dimension, respectively. A frequency discretization is given by the DFT,
which is obtained by letting λ = 2π/Ls, l = 0, . . . , Ls − 1, µ = 2π/Ms, m =

0, . . . ,ms − 1, ν = 2π/Ns, n = 0, . . . , Ns − 1, in (5.15), respectively. In practice,
DFT calculation can be carried out by hardware-accelerated processors, which pro-
vide computationally efficient FFT implementations [SW14, NRY15, MSKB15]. To
reduce the required storage space, relevant processing cells are selected via peak
searching in the DFT-grid periodogram

P (l,m, n) =

∣
∣
∣
∣
X

(
2π

Ls
l,

2π

Ms
m,

2π

Ns
n

)∣
∣
∣
∣

2

(5.16)

and stored for further processing. Note that compared to storing the complete
FFT data set, the memory requirements are thus substantially reduced. Relevant
processing cells are subsequently used for frequency estimation, which yields the
corresponding target parameters, range, radial velocity, and angle, via (5.14)

r̂k =
cLs λ̂k

4πBe
, v̂k =

µ̂k

4πtrκ
, φ̂k = arcsin

(
ν̂k

2πdκ

)

, (5.17)

where λ̂k, µ̂k, and ν̂k, are the frequencies estimated from peak k. In practice, fre-
quency estimation and all subsequent processing steps, such as clustering and target
tracking, can be implemented on a general-purpose (GP) processor. In this way, the
next sample acquisition, 3-D FFT calculation, and peak detection can be carried out
in parallel to processing the currently detected peaks.

Figure 5.3 summarizes the main steps of the presented processing sequence and shows
their distribution on the FFT and GP processor. In the following, peak detection
and conventional, periodogram-based frequency estimation are discussed in detail in
Section 5.2.1 and Section 5.2.2, respectively.
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Figure 5.3: Practical processing sequence for state-of-the-art radars. Computational
efficiency is achieved by using hardware-accelerated FFT processors and
memory efficiency by storing only the neighborhood of detected peaks.

5.2.1 Peak detection

Periodogram peaks are obtained by searching local maxima of (5.16), that is values
larger than their directly adjacent values. Computationally efficient implementation
are again achieved via FFT processors, which also provide hardware-accelerated in-
structions for local maxima extraction [NRY15]. Relevant peaks are selected via
power detection, that is by testing peak power values for being significantly larger
than the noise power. To this end, an optimal threshold is ln(PF ) σ

2, where ln(·)
is the natural logarithm, PF is a desired false alarm probability and σ2 is the
noise power after Fourier transformation. For a derivation of that threshold see
Appendix 5.A.1. To avoid false detections due to sidelobes of particularly strong
peaks, a modified threshold value can be used

max

{

ln(PF ) σ
2, max

l

P (l,mk, nk)

SLLλ
, max

m

P (lk,m,nk)

SLLµ
, max

n

P (lk,mk, n)

SLLν

}

,

where lk, mk, nk denote peak indices and SLLλ, SLLµ, and SLLν are defined in
Appendix 2.A.1. To cope with time varying noise statistics, constant false alarm
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rate (CFAR) techniques can be used, which estimate the noise power from the peri-
odogram. An overview of different CFAR techniques is given in [RSH10, Ch. 16]. In
particular, order-statistic CFAR techniques [Roh83] can be efficiently implemented
[Win06]. To allow for local-interpolation refined periodogram methods, as discussed
in Section 5.2.2, and for high-resolution frequency estimation, as presented in Sec-
tion 5.4, not only the peak processing cells, but additional neighboring cells are
stored.

5.2.2 Conventional parameter estimation

Conventionally, target parameters are obtained as the frequencies of detected peaks
in (5.17), which is equivalent to the periodogram frequency estimator discussed in
Section 2.2.2. Coarse frequency grids used in automotive radar lead to large estima-
tion errors whenever the true frequencies do not coincide with a grid value. Local
interpolation techniques, e.g. the popular parabolic interpolation discussed in Ap-
pendix 3.A.1 or the novel LUT approach developed in Section 3.3, use periodogram
values in the peak neighborhood to reduce these errors.

The main advantage of periodogram-based target parameter estimation is low compu-
tational complexity, while its main drawback is limited resolution. The periodogram
resolution limits (2.26) are straightforwardly translated to corresponding range, ra-
dial velocity, and angle resolution limits c

2Be
, 1

2Mstrκ
, arcsin 1

Nsdκ
, respectively. Note

that range resolution is determined by the effective bandwidth Be, radial velocity
resolution by the coherent processing time Mstr, that is the overall duration of the
chirp sequence, and angular resolution by the array aperture Nsd.

Practical system design, discussed in Section 5.3, chooses the effective bandwidth Be,
the number of chirps Ms, the pulse repetition time tr, the number of Rx channels
Ns, and the ULA antenna spacing d such that in most practical use-cases targets
are separated by more than the resolution limit in either range, radial velocity, or
angle. As an example consider stationary targets, e.g. guardrail poles or traffic
signs, in a highway scene as shown at the left-hand side of Figure 5.4. Here, the
majority of relevant targets can be resolved with conventional periodogram-based
processing, when practical system parameters as in Table 5.2 are considered. For
example, typical guardrail pole spacings exceed the range resolution limit of 0.75 m
given in Table 5.2. On the right-hand side of Figure 5.4, the range and radial velocity
frequencies of detected peaks are shown. Even for such a light traffic scenario, the
number of peaks is large, more than 400, which supports the focus on computational
efficiency in signal processing for automotive radars.
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Figure 5.4: Data example obtained with a series production automotive radar in a
light traffic scene (a). The large number of peaks (b) which have to be
processed, support the focus on computational efficiency in automotive
radar signal processing.

5.3 Practical system design

The main objectives in radar system design are high sensitivity and high resolution,
where the focus here is on the latter. Recall that range resolution is determined
by bandwidth Be, radial velocity resolution by coherent processing time Mstr, and
angular resolution by aperture Nsd. The number of pulses Ms and Rx channels
Ns is in practice determined by memory limitations and hardware cost, respectively.
Therefore, bandwidth Be, pulse repetition time tr, and antenna spacing d remain
as actual design parameters. Choosing Be, tr, and d is a trade-off between reso-
lution and ambiguities due to the mapping of range, radial velocity, and angle to
normalized frequencies in (5.11). This can be seen in Table 5.1, where the resolution
limits are shown together with the corresponding unambiguous intervals, obtained
by substituting 2π for λ and ±π for µ and ν in (5.14). Observe that increasing Be,
tr, and d increases resolution but decreases the unambiguous intervals.

Strategies to handle velocity ambiguity include variation of pulse repetition time
between subsequent coherent processing intervals (CPI) [LE04, Sec. 8.3] and tracking
of multiple velocity hypothesis [LHT+13]. Angular ambiguity can be resolved by
adding an additional antenna pair with half wavelength spacing. The unambiguous
angle obtained from the phase difference of such an antenna pair is then used to
determine the correct angular hypothesis of the ULA based measurement. This is a
common approach in multiple baseline interferometry [JR81].
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Table 5.1: Resolution limits and unambiguous intervals.

range radial velocity angle

Resolution limit c
2Be

1
2Mstrκ

arcsin 1
Nsdκ

Unambiguous interval
(
0, cLs

2Be

) (
−1
4κtr

, 1
4κtr

) (
arcsin −1

2κd
, arcsin 1

2κd

)

5.3.1 Series-production radar sensor

Here, a series-production automotive radar designed for ADAS applications such as
FCA or ACC is considered. It employs state-of-the-art concepts, as discussed in
Section 5.1.3, that is chirp-sequence modulation, stretch processing, and an ULA.
Table 5.2 gathers relevant system parameters, resolution limits, as well as unam-
biguous parameter intervals. In the range and radial velocity dimensions, window
functions with low SLL are used to prevent target masking. This will degrade the
resolution capability predicted by the limits shown in Table 5.2 [Har78]. The un-
ambiguous range of 384 m is larger than the maximal range of 250 m required for
ADAS applications and therefore range ambiguities constitute no practical problem.
In contrast, the unambiguous radial velocity and angle intervals are too small for
typical ADAS use-cases, e.g. detection of stationary targets when the ego-vehicle is
travelling with more than 30 m/s or detection of crossing targets at large angles.

To cope with velocity ambiguities, the pulse repetition time is varied on a CPI
basis. Detections from subsequent CPIs are associated in range and angle and the
corresponding velocity hypothesis are matched for both pulse repetition times. For
details of that approach see [LE04, Sec. 8.3]. Angular ambiguities are resolved using
the phase difference of an antenna pair, which provides unambiguous angle estimates
within the field of view of the sensor. To this end, a particularly space-efficient array
layout is used, which is shown in Figure 5.5. It consists of five microstrip patch
array antennas (see Appendix 5.A.2 for details on microstrip antennas), where the
first three comprise two serial-fed columns and the last two a single column. Each
column comprises seven patches to obtain high elevation directivity. The spacing of
the two single-column antennas equals the column spacing of the first three antennas.
Their geometric center lies on the same grid, with spacing d = 12.7mm, as the
first three double-column antennas. Summing the Rx channels of the single-column
antennas, yields an effective ULA, which can provide unambiguous angles within
(−9 ◦, 9 ◦). Due to the smaller spacing of the single-column antennas, their phase
difference provides unambiguous angles within a much larger interval of (−67 ◦, 67 ◦).
This can be exploited to resolve the ambiguity of ULA-based estimates, by matching
all possible angular hypothesis with the phase-difference-based estimates.
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Table 5.2: System parameters for a series-production automotive radar.

Parameter Symbol Value

Center frequency fc 76.15 GHz

Number of samples per pulse Ls 512

Number of pulses Ms 256

Number of ULA antennas Ns 4

Sampling time ts 100 ns

Pulse repetition time tr 90µs

Antenna spacing d 12.74 mm

Effective bandwidth Be 200 MHz

Window function (range) wλ Chebyshev 60 dB SLL

Window function (radial velocity) wµ Chebyshev 40 dB SLL

Window function (angle) wν rectangular

Resolution limit (range) 0.75 m

Resolution limit (radial velocity) 0.08 m/s

Resolution limit (angle) 4.4 ◦

Unambiguous interval (range) (0, 384m)

Unambiguous interval (radial velocity) (−11m/s, 11m/s)

Unambiguous interval (angle) (−9 ◦, 9 ◦)

To implement such an approach, the processing sequence shown in Figure 5.3 is
extended as shown in Figure 5.6. The 3-D FFT is now calculated in three steps,
starting with a 2-D FFT in the range and radial velocity dimension. Subsequently
channels three and four are summed and a 1-D FFT in the angular dimension is
calculated. The result of the range-velocity FFT for channels three and four previous
to the summation is stored for each detected peak and can be used on the GP
processor to resolve the angular ambiguity of the ULA-based estimates.

The angular resolution capability of the discussed automotive radar needs to be
assessed carefully. The natural approach of using the angular resolution limit in
Table 5.1 falls short because of two reasons. First, angle estimation based on only
two antennas fails for more than one target [vT02] and consequently the ambiguity of
the ULA-based angle estimates can not be resolved by the above approach. Second,
the effective angular separation is obtained after mapping angles to the unambiguous
interval of the ULA. This means, angular separations above the resolution limit
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Figure 5.5: Rx antenna array with five channels, where the first three consist of
double-column patch antennas and the last two of single-column ones.
Summing channels three and four yields an effective ULA which can
be used in conventional DFT-based processing. The ambiguity of ULA-
based angle estimates can be resolved using the phase difference of chan-
nels three and four.

can fall below the resolution limit when mapped to (−9 ◦, 9 ◦). Note that for large
distances targets with angles outside (−9 ◦, 9 ◦) are unlikely and only the central
angular hypothesis needs to be considered.

5.4 High-resolution processing

In critical ADAS or HAD use-cases, e.g. as discussed in Section 5.4.1, relevant target
pairs with range, radial velocity, and angular separations simultaneously below the
corresponding resolution limits are possible. For practical automotive radars, e.g.
as presented in Section 5.3, those can not be resolved by conventional periodogram-
based processing and high-resolution methods become necessary. Other works in
automotive radar focus on high-resolution methods in the spatial dimension, that is
the original domain of the angular dimension [Sch10, Hei12]. However, we point out
that, in critical use-cases, as discussed in Section 5.4.1, it can be advantageous to
apply high-resolution methods also in the range and radial velocity dimension.

To this end, we apply the framework on multidimensional frequency estimation de-
veloped in Chapter 3, which we also consider in [EHZ+17]. This is discussed in Sec-
tion 5.4.2, where Section 5.4.2.1 considers the single-cisoid search method, presented
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Figure 5.6: Extension of the processing sequence shown in Figure 5.3 for the antenna
array shown in Figure 5.5. An effective ULA is obtained by summing
channels three and four previous to calculating the angular FFT. Ambi-
guities of the ULA-based estimates can be resolved by using the phase
difference of channels three and four after calculating the range-velocity
FFT.

in Chapter 4, for further reducing computational complexity. The effectiveness of
the proposed approaches is demonstrated in Section 5.4.3 using experimental results
obtained with a series production automotive radar. For reference, high-resolution
parameter estimation in the spatial dimension is outlined in Appendix 5.A.4.

5.4.1 Use cases

We motivate multidimensional high-resolution frequency estimation for automotive
radar applications by considering two important use cases. First, scenarios involving
specular multipath propagation are considered. Here, so-called mirror targets occur,
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Figure 5.7: Specular multipath example leading to two targets in a practically rel-
evant scenario for ACC or FCA (a) and corresponding normalized fre-
quency separation (b). For the mapping of range, radial velocity, and an-
gle to normalized frequencies, the radar system parameters in Table 5.2
are used.

which can have similar range, radial velocity, and angle as the corresponding actual
targets. If mirror and actual targets are not resolved, merged peak detections occur,
which can trigger erroneous system reactions, such as unjustified emergency braking.
Second, scattering center extraction is considered, that is resolving different parts
of the same large target such as a car. This enables target classification or even
determining the shape and orientation of targets.

87



5 Automotive radar

5.4.1.1 Specular multipath

Specular multipath propagation is the phenomenon of receiving target echoes not
only directly, but also indirectly via specular reflection at other targets. This gives
rise to mirror targets, which can be obtained geometrically by mirroring the actual
target in the surface leading to the specular reflection. Practical examples are target
cars mirrored in the road surface, guardrails, tunnel walls, or road works borders.

A typical scenario is shown in Figure 5.7 (a). Here, the subject, that is the radar-
equipped vehicle, is travelling on the passing lane of a two-lane highway and is in the
process of overtaking a slower target vehicle on the rightmost lane. The two driving
directions are separated by a middle guardrail, which gives rise to specular multipath
propagation. The direct and indirect propagation paths are shown as dashed lines
and the position of the mirror target is indicated.

For calculating the range, radial velocity, and angular separations between the origi-
nal target and the mirror target, we consider a lane width of 3.75 m, a subject vehicle
speed of 100 kph, and a target vehicle speed of 80 kph. We map the parameter sep-
aration to normalized frequency separation using the system parameters, gathered
in Table 5.2, of a typical series production automotive radar sensor. Figure 5.7 (b)
shows the frequency separations normalized to the respective resolution limit over
the relative x-position of the target. Note that the shape of the angular separation
stems from the ambiguous mapping to normalized frequencies. Observe, that above
130 m and between 25m and 42 m the frequency separation is below the respective
resolution limit in all three dimensions, so that conventional periodogram-based pro-
cessing will fail to resolve the original and mirror target. This can lead to misplaced
target estimates in the driving path of the subject vehicle and may thus trigger er-
roneous ACC or FCA reactions such as deceleration or even unjustified emergency
braking. This holds in particular for small x-positions in from 25m to 42 m. In that
region it will be advantageous to use either the range or the radial velocity dimension
when applying high-resolution methods, due to their larger separation compared to
the angular dimension.

5.4.1.2 Scattering center extraction

Electromagnetic scattering from targets, which are large with respect to a wave-
length, is a superposition of local scattering hot spots known as scattering centers.
Details can be found in Appendix 5.A.3. Extracting multiple scattering centers of
the same target enables many advances in automotive radar, e.g. lateral velocity esti-
mation [FR06], advanced target tracking [HSSS12], and target classification [Heu13].
Note that scattering center extraction was considered in [Eng14] for motivating mul-
tidimensional high-resolution frequency estimation.
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(a)

(b)

Figure 5.8: FCA example: the subject is approaching a stationary vehicle. In this
case, emergency braking shall be performed (a). A small metallic object,
e.g. a beverage can, shall not trigger emergency braking (b).

Here, we consider scattering center extraction for target classification, which serves
as an important input to FCA for deciding if autonomous emergency braking shall
be triggered. In Figure 5.8, two example scenarios are shown. The first comprises
the subject vehicle, which is approaching another stationary car and the second
consists of a small metallic object, e.g. a beverage can, in the driving path of the
subject. Only in the first scenario emergency braking is justified. Here, correct target
classification aids in taking the appropriate decision in both scenarios. A typical
feature used for radar-based classification is the longitudinal target extension, which
can be obtained from extracted scattering centers. The beverage can shows typically
a single scattering center, while for the target car multiple, longitudinally displaced
scattering centers can be obtained. To see this, consider Figure 5.9, which shows the
propagation paths associated with two potential scattering centers. One at the rear
end of the car and one at the cars rear axle, which the radar observes only indirectly
via specular multipath involving the street surface. High-resolution methods applied
to the range dimension can be used to resolve the two scattering centers, which are
then used for feature calculation.

5.4.2 Proposed approach

A practical approach to obtain high-resolution capability in the range, radial velocity,
and angle dimension is the framework on multidimensional frequency estimation
proposed in Chapter 3. It can be straightforwardly incorporated in the processing
sequence shown in Figure 5.3 by applying the processing steps shown in Figure 3.1 for
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1○ 2○

Figure 5.9: Propagation paths associated with two scattering centers: one at the
rear end of the car (1) and one at the rear axle (2). The latter is only
observed indirectly via the road surface.

each detected peak. To see this, we show that the local Fourier-domain models (3.1)
and (3.2) apply directly to peak neighborhoods obtained according to Figure 5.3.

Substituting the baseband model in (5.13) in the 3-D DTFT in (5.15) and using

2 cos x = ejx + e−jx

yields

X (λ, µ, ν) =

K∑

k=1

akWλ (λ− λk)Wµ (µ− µk)Wν (ν − νk)+

K∑

k=1

a∗

kWλ (λ+ λk)Wµ (µ+ µk)Wν (ν + νk) + Ξr(λ, µ, ν). (5.18)

Herein, Wλ (λ), Wµ (µ), Wν (ν) are the Fourier-domain window functions given in
(2.5), (2.6), (2.7), respectively, ak = Ak

2
ejϕk , and

Ξr (λ, µ, ν)

=

Ls−1∑

ls=0

Ms−1∑

ms=0

Ns−1∑

ns=0

wλ(ls)wµ(ms)wν(ms) ξr (ls,ms, ns) e
−j(λ ls+µms+ν ns). (5.19)

If frequencies in one dimension are restricted to [0, π) and the target frequencies in
that dimension lie in the same interval, the second term in (5.18) is on the order of
the SLL of the corresponding Fourier-domain window function and can be neglected.
If the frequency interval is further restricted to (0, π), that is frequencies equal to
zero are excluded, the noise term Ξr(λ, µ, ν) is approximately circular symmetric
with covariance given by (2.9) [Bri81, Ch.5]. In that case, the model in (5.18) can
be approximated as

X (λ, µ, ν) ≈
K∑

k=1

akWλ (λ− λk)Wµ (µ− µk)Wν (ν − νk) + Ξ(λ, µ, ν)

︸ ︷︷ ︸

Model in (2.4)

. (5.20)
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where λ ∈ (0, π), µ ∈ [0, 2π), ν ∈ [0, 2π), and λk ∈ (0, π).

The right-hand side of (5.20) is given by the model (2.4) considered in Chapter 3.
Therefore, the framework on multidimensional frequency estimation, as shown in Fig-
ure 3.1, can be directly applied to peak neighborhoods obtained with the automotive
radar processing sequence in Figure 5.3. In this way, high-resolution capability in
the range, radial velocity, and angular dimension can be obtained and the memory
efficiency of Fourier-based automotive radar processing can be retained. Computa-
tional efficiency is addressed by two approaches within the framework, as discussed
in Chapter 3. The first is that computationally involved high-resolution methods
are only applied to a subset of detected peaks, which most likely contain two targets.
The second is decoupling the multidimensional frequency estimation problem into a
sequence of computationally simpler 1-D problems.

Using that approach for the series production sensor presented in Section 5.3.1,
yields ambiguous angle estimates due to the employed ULA spacing. However, high-
resolution frequency estimates in either the range or the radial velocity dimension
can be used to extract the corresponding signal components for Rx channels two
and three, which are available when the processing sequence as in Figure 5.6 is used.
The phase difference of the obtained signal components can be used for resolving the
angular ambiguity of the corresponding high-resolution estimates.

5.4.2.1 Single-cisoid search pre-processing

Calculating 1-D high-resolution estimates in the resolution dimension constitutes
the main computational burden of the proposed decoupled frequency estimation
framework. In principle, single-cisoid search based frequency estimation, as proposed
in Chapter 4, could be used, which is computational simpler than the NLS approach
considered in the optimal framework. However, frequency separation in at least
two dimensions are required, that is in the selected resolution dimension and in
one of the remaining dimensions. Therefore, we combine single-cisoid search based
frequency estimation and optimal NLS-based estimation sequentially as shown in
Figure 5.10.

Here, the first processing steps, that is fitting the single-target model for the three
possible decoupled models in the range, radial-velocity, or angle dimension, deter-
mining the resolution dimension, and two-target indication based on the fitting error
in the resolution dimension, are retained as in the original framework shown in Fig-
ure 3.1. Subsequently, single-cisoid search based frequency estimation is performed
and the resulting estimates are used for calculating the fitting error of the correspond-
ing two-cisoid model. The fitting error is then to decide if the single-cisoid search
result can be accepted or if optimal NLS-based frequency estimation shall be applied.
In the latter case, further processing follows the original sequence in Figure 3.1, that

91



5 Automotive radar

is the two-cisoid model is fitted based on the NLS-based frequency estimates and the
corresponding fitting error is used to decide between the single-cisoid model and the
two-cisoid model. For the latter, the remaining dimension frequencies are obtained
as discussed in Section 3.4.2.

5.4.3 Experimental Results

We use experimental data of a series production automotive radar sensor to compare
conventional radar processing, high-resolution frequency estimation in the spatial
domain, and the proposed high-resolution frequency estimation in the Fourier do-
main with optimal selection of resolution dimension. Note that the radar system
parameters are given in Table 5.2 and are thus the same as the ones considered in
Section 5.4.1.

The experimental setup is designed such that resolution is the dominant influence
on the target position estimates and detections can be straightforwardly associated
to the targets of interest. To this end, corner reflectors are employed to obtain
point-target radar responses. The radar sensor is kept stationary and the targets are
moved towards the radar sensor to easily separate the targets from the environment,
having a different relative velocity. Overall, this results in a clean two-target scenario
without additional effects. Figure 5.11 (a) shows the experimental setup. The two
corner reflectors are placed on a carrier, which allows for variable relative positioning.
For the two experiments the corner reflectors are positioned such that either the
angular or the range dimension has a significantly larger frequency separation than
all others. The carrier is then moved straight towards the radar sensor at walking
speed.

Figure 5.11 (b) shows the corresponding frequency separations normalized to the re-
spective resolution limits. The radial velocity separation is very low and thus omitted.
Observe that for the first experiment the frequency separation in the angular dimen-
sion is the largest, whereas for the second experiment the frequency separation in
the range dimension is the largest. For all dimensions the separations are below
the resolution limit except for x-positions below 18 m, where the angular separation
exceeds the resolution limit for the first experiment. Therefore, we expect that con-
ventional radar processing will fail for both experiments, except for x-positions below
18 m in the first experiment. For the first experiment we expect further that high-
resolution processing in the spatial domain will perform well due to the dominating
angular separation and that high-resolution processing in the Fourier domain selects
the angular dimension as resolution dimension, leading to a similar performance.
For the second experiment we expect, that high-resolution processing in the Fourier
domain correctly selects the range dimension as resolution dimension and will thus
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Figure 5.10: Processing sequence proposed in Chapter 3 extended with the single-
cisoid search approach of Chapter 4.
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Figure 5.11: Experimental setup with two corner reflectors (a) and corresponding
normalized frequency separation (b). For the mapping of range and an-
gle to normalized frequencies, the radar system parameters in Table 5.2
are used.

provide resolved and accurate frequency estimates. In contrast, we expect that high-
resolution processing in the spatial domain performs significantly worse due to the
predefined resolution dimension and the much smaller angular separation.

Figure 5.12 shows the resulting position estimates in Cartesian coordinates for the
first experiment, which are obtained with (a) conventional radar processing, (b)
high-resolution frequency estimation in the spatial domain, and (c) high-resolution
frequency estimation in the Fourier domain with optimal selection of resolution di-
mension. The true target positions are shown as dashed vertical lines. As expected,
conventional processing fails to resolve the two targets except for x-positions below
18 m. In contrast, both high-resolution approaches are well able to resolve the targets
and provide accurate position estimates. Note that this means, that the resolution
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Figure 5.12: Real data results of a series production automotive radar sensor for ex-
periment 1 as described in Figure 5.11. Position estimates in Cartesian
coordinates obtained with (a) conventional radar processing (b) high-
resolution frequency estimation in the spatial domain (c) high-resolution
frequency estimation in the Fourier domain with optimal selection of
resolution dimension.

dimension was correctly selected by the approach proposed in Section 3.2.1.

Figure 5.13 shows the corresponding results for the second experiment. Here, conven-
tional processing fails for all x-positions. The high-resolution approach in the spatial
domain breaks down for x-positions above 30m due to the small frequency separa-
tion in the angular dimension. Only the high-resolution, Fourier-domain approach
can resolve the two targets for all x-positions, as it exploits the much larger range
separation. Note that this is enabled by the approach proposed in Section 3.2.1,
which correctly selects the range dimension as resolution dimension.

5.4.4 Single-cisoid search comparison

We use additional experiments to demonstrate the effectiveness of combining the
optimal NLS-based frequency estimation and the single-cisoid search based frequency
estimation, as outlined in Figure 5.10. Note that the radar system parameters are
the same as considered before and are gathered in Table 5.2.
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Figure 5.13: Real data results of a series production automotive radar sensor for ex-
periment 2 as described in Figure 5.11. Position estimates in Cartesian
coordinates obtained with (a) conventional radar processing (b) high-
resolution frequency estimation in the spatial domain (c) high-resolution
frequency estimation in the Fourier domain with optimal selection of
resolution dimension.

The experimental setup is shown in Figure 5.14 (a) and is of the same type as in
Figure 5.11 (a). That is, two corner reflectors are placed on a carrier, which allows
for variable relative positioning, and are moved towards the radar sensor. Here,
longitudinal corner separations of 0.56 m (experiment 2), 0.37 m (experiment 3), and
0.22 m (experiment 4) and a lateral separation of 0.5 m are used.

Figure 5.14 (b) shows the corresponding frequency separations normalized to the
respective resolution limits. The radial velocity separation is very low and thus
omitted. Observe that for all experiments the frequency separation in the range
dimension is the largest for x-positions above 25 m. The separation in the angular
dimension exceeds the frequency separation in the range dimension for x-positions
below 15m and 25 m for the third and the fourth experiment, respectively.

Figure 5.15 shows the resulting position estimates in Cartesian coordinates for the
second, third, and fourth experiment, which are obtained with (a) single-cisoid search
based frequency estimation, according to Figure 4.1 and (b) with NLS-based fre-
quency estimation according to Figure 3.1. Observe that both methods are able to
provide resolved position estimates for the second and third experiment, whereas for
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Figure 5.14: Experimental setup with two corner reflectors (a) and corresponding
normalized frequency separation (b). For the mapping of range and an-
gle to normalized frequencies, the radar system parameters in Table 5.2
are used.

the fourth experiment the resolution performance starts to break down due to the
small frequency separation in the range dimension, which is below 50% of the res-
olution limit. The obtained results show, that single-cisoid search based frequency
estimation constitutes a computationally simpler alternative to NLS-based estima-
tion and that the processing sequence in Figure 5.10 is a computationally efficient
approach for automotive radars to obtain high-resolution capability in the range,
radial velocity, and angular dimension.
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Figure 5.15: Real data results of a series production automotive radar sensor for ex-
periment 2, experiment 3, and experiment 4 as described in Figure 5.14.
Position estimates in Cartesian coordinates obtained with (a) single-
cisoid search frequency estimation (b) NLS-based frequency estimation.
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5.A Appendix

5.A.1 Target detection

We derive the detection threshold considered in Section 5.2.1 to distinguish peri-
odogram values, which are due to noise only from periodogram values due to a
target plus noise.

To this end, consider the likelihood ratio test [vT68b]

p(P (l,m, n) |H0)

p(P (l,m, n) |H1)

H1

≷
H0

γ̃, (5.21)

where H0 denotes the noise only hypothesis, H1 the target plus noise hypothesis,
and p(P (l,m, n) |H0) and p(P (l,m, n) |H1) are the distributions of the periodogram
P (l,m,n) under both hypothesis. For each DFT index the likelihood ratio on the
left hand side of (5.21) is compared to a threshold γ̃. For likelihood ratios above γ̃

the H1-hypothesis is accepted and for values below the H0-hypothesis.

To calculate the likelihood ratio, the probability distributions of the periodogram
under both hypotheses are needed. In the noise only case it is exponentially dis-
tributed

p (P (l,m, n) |H0) =
1

σ2
e

−P(l,m,n)

σ2 , (5.22)

where σ2 is the variance after Fourier transformation. The distribution of the peri-
odogram under the H1-hypothesis is given by a non-central chi-square distribution
with two degrees of freedom [Pat49]

p (P (l,m, n) |H1) =
1

σ2
e
−

P (l,m,n)+Ps(l,m,n)

σ2 I0

(

2

√
Ps (l,m, n)

σ2

√

P (l,m,n)

)

,

(5.23)
since the target parameters are unknown but deterministic. Herein,

Ps (l, m, n) =

∣
∣
∣
∣
∣

K∑

k=1

akWλ (∆λ l − λk)Wµ (∆µm− µk)Wν (∆ν n− νk)

∣
∣
∣
∣
∣

2

,

and I0 (·) denotes the modified Bessel function of the first kind.

The calculation of the likelihood ratio can be avoided and the periodogram can be
compared directly with a modified threshold. This can be seen by substituting (5.22)
and (5.23) in (5.21), taking the logarithm on both sides, and rearranging terms

ln

[

I0

(

2

√
Ps (l, m, n)

σ2

√

P (l,m, n)

)]
H1

≷
H0

ln γ̃ +
Ps (l, m,n)

σ2
.
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The logarithm, the Bessel function, and the square root are all monotonically in-
creasing functions. Thus the same test result can be obtained by comparing the
periodogram directly with a modified threshold γ, which gives the test

P (l,m,n)
H1

≷
H0

γ.

The threshold can be obtained as [vT68b]

γ = ln(PF ) σ
2

where PF is a desired probability of false alarm, that is the probability of erroneously
deciding for H1.

5.A.2 Microstrip antennas

Microstrip antennas consist of planar structures, e.g. patches or strips, etched out
in metal films on dielectric substrates [Kil15]. They can be fabricated using printed
circuit board technology, which enables cost-efficient mass production and space-
efficient sensor design. This makes microstrip antennas attractive for automotive
radar, where they constitute a cost and space-efficient alternative to reflector or lens
antennas [MM12].

Multiple microstrip antennas can be combined, either via serial feeding or by a
parallel power distribution network, to form an array antenna [Kil15, RA13]. The
number of antenna elements, their positions, and their relative amplitudes serve as
design parameters to obtain a desired gain and directivity. A practical example
is the rectangular patch array, which consists of microstrip patches arranged on a
rectangular grid. An example is shown in Figure 5.16, where the array consists
of five columns, each comprised of seven patch elements. Columns are realized by
serial feeding and combined via parallel power distribution. For the given patch
arrangement, the directivity of the array antenna can be controlled via the row and
column spacings and via tapering of the patch or connection line widths [CO09].

5.A.3 High-frequency electromagnetic scattering

Typical automotive radar targets, such as cars, trucks, motorcycles, road boundaries,
or road signs are large with respect to typical wavelengths, 3.79 mm, 3.94 mm, and
12.5 mm, employed in automotive radar. Therefore so called high frequency, that is
small wavelength, approximations to the general electromagnetic scattering problem
apply. High frequency methods solve Maxwell’s equations [MPM89] asymptotically
in order to avoid a complex, rigorous solution. The so obtained results allow an intu-
itive insight to scattering problems for which the scatterers dimensions are so large,
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z
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column spacing
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Figure 5.16: Rectangular microstrip patch antenna array with five columns, each
comprised of seven patch antennas. Columns are realized by serial-
fed patch antennas and are combined by a parallel power distribution
network.

that scattering becomes a local phenomenon and interactions of different scatterer
parts can be neglected. High frequency methods include: geometrical optics (GO),
geometrical theory of diffraction (GTD), and physical optics (PO). GO as well as
GTD are based on a ray optical approach, where the scattered field is comprised of
multiple plane waves each propagating along straight lines called rays. In contrast,
PO is based on a superposition of elementary surface currents leading to a surface
integral description. Each of the above methods can be associated with canonical
geometries, for which closed form high frequency approximations exist. Canonical
geometries for GO are doubly curved surfaces, for GTD edges, wedges, and corners,
and for PO the finite flat surface. Complex targets can be locally modelled by such
canonical shapes and the high frequency scattering of the target is the superposi-
tion of the local canonical solutions. This is the idea behind so-called scattering
center models [RB68, KST93, PM97, BML97, JHZQ08, GPGV99], which are consid-
ered in [SBW08, Büh08, Bud11, HSSS12] for modelling the scattering of automotive
radar targets. Experimental verification of scattering center models can be found in
[AFM+11, AFM12, SFGT+11].

Here, we consider an example and discuss the dominating scattering centers of a
typical car, which is shown in Figure 5.17. The locations of dominant scattering
centers are labeled with 1○ to 4○. Note that those do not necessarily coincide with
exact scattering center positions but only indicate target parts which can lead to a
scattering center for certain directions of incidence. This is in particular true for flat
surfaces such as the cars side 1○, which give rise to PO type specular scattering and
can be modelled by a scattering center at the point of reflection [Büh08]. As the
reflection point depends on the direction of incidence, so does the scattering center
position. In the same way we can determine the scattering center locations associated
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Figure 5.17: Outline of a typical car with scattering center locations.

with the cars front 2○, the cars back 2○, and its corners 3○. The corresponding
scattering types are flat surface PO scattering 2○ and doubly curved surface GO
type scattering 3○ [Büh08]. The main scattering contribution of 2○ stems from the
cars license plates [AFM+11] acting as the flat surface for reflection. The wheelhouses
give rise to so called multiple bounce scattering [LCL89]. The incident ray is reflected
multiple times inside the wheelhouse before eventually leaving it. This leads to a
scattering center 4○ for a large range of incident angles [Büh08].

In addition to the scattering centers shown in Figure 5.17, the radar can observe
scattering centers at the bottom side of the car, via specular multipath involving the
road surface. The reflectivity of road surfaces is studied comprehensively in [Sch98],
where it is found that the most common surfaces act as a mirror at automotive
radar wavelengths. The cars bottom side has an inhomogeneous structure compared
to the body [Sch98] and a main scattering center is difficult to locate by considering a
geometry common to a large variety of cars. However, we found from measurements
that scattering centers are often located at the cars axles.

5.A.4 High-resolution processing in the spatial domain

High-resolution processing in the spatial domain has been considered in [Hei12] for
state-of-the-art automotive radars and are discussed in [EHZ+17] as a special case
of the framework developed in this thesis. Here we give a brief overview.

A calculation similar to (5.15), but without the angular DTFT is

Y (λ, µ;ns) =

Ls−1∑

ls=0

Ms−1∑

ms=0

wλ(ls)wµ(ms)x(ls,ms, ns)e
−j(λls+µms) (5.24)
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with λ ∈ [0, 2π), µ ∈ [0, 2π), and ns = 0, . . . , Ns−1. The data model after 2-D finite
DTFT calculation in (5.24) can be obtained similarly to (5.15). The corresponding
local vector model is

y(λ, µ) =
K∑

k=1

αk(λ, µ)v(νk) + noise, (5.25)

where αk(λ,µ) is given in (3.11), and v(νk) =
[

1, ejνk , . . . , ej(Ns−1)νk

]T

is a ULA

steering vector. Note that the model in (5.25) is in the original domain, in which
the vector elements correspond to spatial array elements, whereas the model in (3.8)
is in the Fourier domain, in which the vector elements correspond to samples of the
angular spectrum.

Figure 5.18 gives an overview of high-resolution processing in the spatial domain.
Here, the single-target model is fitted in the spatial domain and the resulting MSE
is used for two-target indication. If a two-target situation is likely the corresponding
model is fitted and the resulting MSE is used in simplified GLRT to decide between
the two models. For the two-target model, resolved angular frequencies can be used
to obtain the corresponding frequencies in the range and radial velocity dimension
similarly to the approach in Section 3.4.2.
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Figure 5.18: Overview of high-resolution processing in the spatial domain.
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In this thesis, novel approaches to computationally efficient multidimensional fre-
quency estimation with high-resolution capability have been developed. In Sec-
tion 6.1 we draw conclusions and in Section 6.2 we give an outlook on possible
future work.

6.1 Conclusions

We have developed a framework on multidimensional high-resolution frequency es-
timation, which employs Fourier transform pre-processing to select frequency sub-
bands, which are either represented by a local single-cisoid model or a local two-
cisoid model. The sub-bands are obtained by frequency neighborhoods of peri-
odogram peaks. For each local model a different approach to frequency estimation
has been employed: high-resolution frequency estimation for the two-cisoid model
and periodogram-based estimation for the single-cisoid model. For the latter, we
proposed a computationally simple LUT-based method to compensate estimation
errors due to a frequency discretization.

For the two-cisoid model, a high-resolution frequency estimation, which estimates
frequencies in all dimensions jointly is considered to costly. To reduce the compu-
tational complexity, the multidimensional frequency estimation has been decoupled
in a sequence of computationally simpler 1-D problems. For a decoupled frequency
estimation, one has to decide on the processing sequence. In one dimension, referred
to as resolution dimension, a high-resolution frequency estimation for two cisoids is
performed first. In a second step, the resulting frequency estimates in the resolution
dimension are used to obtain two single-cisoid frequency estimation problems in the
remaining dimensions. These are computationally much simpler than the frequency
estimation for two cisoids and can be solved by a periodogram-based approach. For
the success of the decoupled approach, frequency separation in the resolution dimen-
sion is crucial. To ensure this, we proposed to select the best resolution dimension
adaptively. To this end, we selected the dimension with the largest corresponding
MSE of the single-cisoid model fit. For the 1-D frequency estimation for two cisoids
we proposed a NLS-based method, which comprises two steps. First, the NLS cri-
terion function is evaluated on a coarse frequency grid. Subsequently, the resulting
estimates are refined by Gauss-Newton iterations in a second step. For the frequency
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estimation in the remaining dimensions, we considered a LUT-based approach to cor-
rect estimation errors due to frequency discretization. Simulation results show that
the proposed framework can provide resolved frequencies for the case of two cisoids
with frequency separations below the resolution limits. The accuracy of the obtained
frequency estimates are close to the CRB. Further simulations demonstrate the ef-
fectiveness of selecting the resolution dimension according to the largest MSE of the
single-cisoid model fit.

The computational complexity of the proposed decoupled framework is determined
by NLS-based frequency estimation for two cisoids. To simplify that step we have
proposed a novel frequency estimation, which we have called single-cisoid search.
It is based on finding frequencies in the remaining dimensions, for which the res-
olution dimension is well represented by a single-cisoid model. The frequencies in
the resolution dimension are then obtained by a simple periodogram maximization
and the remaining dimension frequencies by the previously considered decoupled ap-
proach. To improve the accuracy of the so obtained frequency estimates we proposed
a bias correction step. Compared to optimal NLS-based frequency estimation, the
single-cisoid search frequency estimator is computationally much simpler. However,
it relies on frequency separation in at least two dimensions. Simulation results show
a good resolution performance for the two cisoid case with frequency separations
below the resolution limits. Interestingly, out-of-band interference showed only a
minor influence on accuracy and resolution performance.

We have considered the proposed framework on multidimensional frequency estima-
tion to enhance the resolution capability of state-of-the-art automotive radar sensors.
Here, the frequency dimensions are associated with range, radial velocity, and an-
gle of targets and thus localization and motion estimation are achieved through
frequency estimation. The proposed framework has been incorporated in conven-
tional radar processing, which is based on Fourier transformation of the sampled
baseband signal. The processing steps of the proposed framework are applied for
each detected peak. Due to the fact that targets are for most scenarios well sep-
arated, the peak neighborhoods are typically represented by a single-target model.
As a consequence, the proposed framework employs mostly computationally efficient
periodogram-based frequency estimation. In critical use-cases a small subset of peaks
are due to unresolved target pairs. We have pointed out that in such use-cases it is
advantageous to use either the range, the radial velocity, or the angular dimension
as the resolution dimension in a decoupled approach. The effectiveness of the pro-
posed framework has been demonstrated using experimental results obtained with
a series-production automotive radar sensor. The results show a strong resolution
enhancement compared to conventional processing and demonstrate the practical
relevance of resolution dimension selection for decoupled frequency estimation.
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6.2 Outlook

Possible future work includes the extension of the proposed framework to cases,
where local frequency sub-bands can contain more than two cisoids with frequency
separations below the resolution limits. The presented decoupled framework is still
appropriate when the initial 1-D high-resolution frequency estimation is performed
for more than two cisoids. For this task, optimal NLS-based frequency estimation
might be to costly and methods with lower complexity should be investigated.

For strong out-of-band interference, it might be advantageous to use the single-cisoid
search approach also for sub-bands with only one cisoid. In this way, remaining
dimension frequencies might be found for which the resolution dimension is less
influenced by the interference than it is for the peak frequencies. This should be
validated with simulations and experimental data.

For automotive radars, the influence of imperfections in the signal generation, e.g.
non linearities in the frequency chirps or a slow drift of the carrier frequency, on a
decoupled frequency estimation have to be investigated. In particular the influence
on high-resolution frequency estimation in the range or radial velocity dimension
should be considered. Further, scattering center extraction based on the proposed
framework should be validated with experimental data.
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List of acronyms

ACC Adaptive cruise control

ADAS Advance driver assistance systems

CFAR Constant false alarm rate

CPI Coherent processing interval

CRB Cramér Rao bound

DFT Discrete Fourier transform

DTFT Discrete time Fourier transform

EEG Electroencephalogram

EM Electromagnetic

BS-ESPRIT Beamspace estimation of signal parameters via rotational invariance
techniques

FCA Forward collision avoidance

FFT Fast Fourier transform

FMCW Frequency modulated continuous wave

GO Geometrical optics

GP General purpose

GTD Geometrical theory of diffraction

HAD Highly automated driving

LCA Lane change assist

LFM Linear frequency modulation

LUT Look-up table

BS-MUSIC Beamspcae multiple signal classification

MC Monte Carlo

ML Maximum likelihood
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List of acronyms

MLW Mainlobe width

NLS Non linear least squares

NMR Nuclear magnetic resonance

1-D One-dimensional

PO Physical optics

RMSE Root mean square error

Rx Receive

SIR Signal-to-interference ratio

SLL Sidelobe level

SNR Signal-to-noise ratio

Tx Transmit

3-D Three-dimensional

ULA Uniform linear array
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