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ABSTRACT In this manuscript, the problem of detecting multiple targets and jointly estimating their
spatial coordinates (namely, the range, the Doppler and the direction of arrival of their electromagnetic
echoes) in a colocated multiple-input multiple-output radar system employing orthogonal frequency division
multiplexing is investigated. It is well known its optimal solution, namely the joint maximum likelihood
estimator of an unknown number of targets, is unfeasible because of its huge computational complexity.
Moreover, until now, sub-optimal solutions have not been proposed in the technical literature. In this
manuscript a novel approach to the development of reduced complexity solutions is illustrated. It is
based on the idea of separating angle estimation from range-Doppler estimation, and of exploiting known
algorithms for solving these two sub-problems. A detailed analysis of the accuracy and complexity of
various detection and estimation methods based on this approach is provided. Our numerical results
evidence that one of these methods is able to approach optimal performance in the maximum likelihood
sense with a limited computational effort in different scenarios.

INDEX TERMS Dual-function radar-communication, four-dimensional radar imaging, frequency estima-
tion, multiple-input multiple-output radar, orthogonal frequency division multiplexing, radar processing.

I. INTRODUCTION

WIRELESS communication and radar sensing have
been advancing independently for many years, even

though they share various similarities in terms of both
signal processing and system architecture. This consider-
ation and the problem of radio spectrum scarcity have
motivated the investigation of a new class of wireless
systems, able to accomplish sensing and communication
jointly. Various recent research activities in this field have
evidenced that joint communication and sensing (JCAS)
systems can provide significant advantages in terms of device
size, power consumption, cost, and spectral efficiency com-
pared to traditional systems in various applications [1].
Different approaches to their development are currently being
investigated [2], [3], [4], [5], [6]. In this manuscript we
adopt a communication-centric approach; this means that

radar sensing represents an add-on to the considered wireless
communication system. Moreover, we assume that orthog-
onal frequency division multiplexing (OFDM) is employed
for both communication and sensing and that our system is
equipped with both transmit (TX) and receive (RX) arrays
(i.e., it is of multiple-input multiple-output, MIMO, type).
The OFDM modulation format has been adopted in vari-

ous wireless communication standards, due to its robustness
to multipath fading and to its relatively simple synchro-
nization [5]; in addition, its use in MIMO communication
systems has been widely investigated (e.g., see [7], [8] and
references therein). A wide technical literature on the use of
OFDM for radar sensing refers mainly to single input, single
output (SISO) systems [2], [9], [10], [11], [12], [13], [14],
[15], [16]. For this class of systems, various direct and indi-
rect sensing methods for target detection and estimation have
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been proposed. Generally speaking, direct sensing methods
extract target information from the received signal without
compensating for the effect of the data payload it conveys
(e.g., see [1], [11], [17]) and typically exploit computa-
tionally intensive compressed sensing (CS) techniques. An
example of application of CS is shown in [18], in which
different multiplexing alternatives to OFDM are analyzed
and the CS technique is employed to overcome the ran-
dom assignment of subcarriers. Indirect estimation methods,
instead, require estimating the communication channel and,
consequently, compensating for the contribution due to chan-
nel symbols (e.g., see [2, eq. (20)]), which are known at the
RX side of any colocated radar. Indirect sensing methods can
be divided in: 1) discrete Fourier transform (DFT)-based
or correlation-based methods (i.e., methods based on the
matched filter, MF, concept) [10], [12], [19]; 2) subspace
methods [15], [16]; 3) maximum likelihood (ML)-based
methods [14], [20], [21]. Correlation-based and DFT-based
algorithms are conceptually simple and computationally effi-
cient, but can generate poor radar images in the presence of
closely spaced targets and/or strong clutter [22]. Moreover,
they can be outperformed by subspace methods, like the well-
known multiple signal classification (MUSIC) algorithm and
the estimation of signal parameters via rotational invariant
technique (ESPRIT) at the price, however, of a significantly
larger computational complexity [16]. An estimation accu-
racy comparable to that of subspace methods is provided by
various ML-based algorithms, which also require a signifi-
cant computational effort; relevant contributions to this field
can be found in [14], [20] and [21].
Indirect sensing methods for JCAS MIMO systems

employing OFDM are investigated in [4], [6], [17], [23],
[24], [25], [26], [27], [28] and can be classified according
to the same criteria as defined above for SISO systems.
Correlation-based or DFT-based methods are developed
in [4], [6], [17] and [28]. In particular, an algorithm
combining matched filtering for range estimation with a one-
dimensional (1D)-MUSIC algorithm for both Doppler and
azimuth (i.e., angle of arrival, AoA) estimation is proposed
in [6]. In [4] a constant false alarm rate (CFAR) technique is
employed to detect multiple targets, whereas the estimation
of their range and Doppler is based on a two-dimensional
(2D) fast Fourier transform (FFT); note that in this case the
estimation of AoA is ignored and the availability of antenna
arrays is beneficial for communication only. In [17] a 2D-
FFT technique is exploited to estimate the range of multiple
targets and their azimuth, whereas in [28] multiple FFTs are
combined with a clutter removal technique to estimate their
range, azimuth and Doppler.
Subspace methods are investigated in [23], [24] and [25].

More specifically, in [23] a subspace-based algorithm
assisted by CFAR pre-processing is developed to estimate
the range, velocity, and azimuth of multiple targets on the
basis of a reduced number of samples and without resorting
to high-resolution spectral estimation. In [24] the estima-
tion accuracy of the 2D-MUSIC algorithm is assessed for a

varying number of available data snapshots, whereas in [25]
the use of an augmented beam-space approach is proposed
to make the use of 2D-MUSIC and 2D-ESPRIT possible
when hybrid digital arrays are used.
Methods based on an ML approach are proposed in [26]

and [27]. In particular, the strategy devised in [26] is based
on: 1) a preliminary channel estimation; 2) an ML-based
technique for the estimation of the range and direction of
arrival (DoA) of multiple targets. In [27], instead, a 1D
technique, based on a systematic phase correction method
and leveraging on the virtual array concept, is derived for
the estimation of the azimuth of a single target. Finally,
an hybrid approach, combining DFT-based and subspace
methods, is illustrated in [29]. More specifically, channel
estimation is accomplished, after DFT-based processing for
range estimation, by means of an amplitude and phase esti-
mation (APES)-based method; this method, that exploits
the presence of inter-carrier interference (ICI) to produce a
preliminary estimate of target Doppler, is followed by the
1D-MUSIC algorithm for angular estimation and by 1D-FFT
processing to generate the final estimate of target Doppler.
It is important to point out that all the methods mentioned

above for JCAS MIMO systems represent partial solu-
tions to the problem of jointly estimating the range, Doppler,
azimuth and elevation of multiple targets, i.e., briefly, to the
four-dimensional (4D) imaging problem considered in this
manuscript. On the one hand, the authors of [4] focus on
range and Doppler estimation only; moreover, they develop
a correlation-based method, which is employed after chan-
nel estimation and time-frequency synchronization in the
context of long-range radar processing. On the other hand,
the correlation-based or subspace methods proposed in [17],
[24], [25] are able to compute accurate estimates of target
azimuth only, whereas the other target parameters are ignored
(see [24] and [25]) or estimated with limited accuracy, with-
out any refinement process (see [17]). Similar considerations
apply to the ML-based method illustrated in [27], since it
can provide accurate estimates of the azimuth of multiple
targets, but coarse estimates of their range only. These limi-
tations originate from the fact that an acceptable complexity
in subspace-based and ML-based methods can be achieved
by neglecting (or accepting poor accuracy in) the estima-
tion of a portion of target parameters. These considerations
have motivated the work described in this manuscript, which
aims at illustrating how a family of novel and computation-
ally efficient sub-optimal methods able to generate accurate
4D radar images in an OFDM-based JCAS system equipped
with TX and RX arrays can be developed; therefore, unlike
previous research work, this paper aims at providing a full
solution to the above mentioned 4D imaging problem. More
specifically, the contribution provided by our manuscript is
threefold and can be summarized as follows:
1) A general strategy, called Doppler-range-angle estima-

tion with successive compensation (DRAEC), is proposed for
the detection of multiple targets and the estimation of their
parameters in a MIMO OFDM-based JCAS system. This
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strategy is based on the idea of: a) decoupling the problem
of range-Doppler estimation from that of azimuth-elevation
estimation; b) employing an algorithm for the estimation of
the parameters of 2D complex tones to solve each of these
two sub-problems.
2) An overview of the algorithms that can be employed

for the detection and the estimation of 2D complex tones,
and an analysis of their computational complexity are pro-
vided. On the one hand, five of these algorithms are known
DFT-based estimation techniques, that have been proposed
in the technical literature for related applications (namely,
for harmonic retrieval [30], [31] or for radar sensing applica-
tions [32], [33]). On the other hand, the remaining algorithm,
called extended Lee algorithm (ELA), is new, even if it can
be considered as an extended version of the ML-based 1D
algorithm developed in [27]. Note that all these algorithms
have been originally proposed to solve estimation problems
that are formally different from the ones considered in this
manuscript. For this reason, in this manuscript, their use
for target range-Doppler estimation and azimuth-elevation
estimation according to the DRAEC strategy is illustrated
in detail. Moreover, a unified notation is adopted in their
description to ease their implementation and the reading of
this manuscript.
3) Based on the above-mentioned estimation algorithms,

seven different embodiments of the DRAEC strategy are
proposed and compared in terms of both accuracy and com-
putational complexity. Six of them are based on the known
DFT-based estimation techniques mentioned above, whereas
the remaining one relies on the CSFDEC algorithm. This
allows us to assess how various state-of-the-art algorithms
perform in 4D imaging and how large is the computational
effort they require.
The remaining part of this manuscript is organized as fol-

lows. In Section II, the processing accomplished in a MIMO
OFDM-based radar system is summarized and the received
signal model adopted in our work is briefly derived. The
DRAEC strategy is illustrated in Section III, whereas vari-
ous estimators of 2D complex tones and their computational
complexity are described in Sections IV and V, respec-
tively. Different embodiments of the DRAEC strategy are
proposed and compared, in terms of accuracy and complex-
ity, in Section VI. Finally, some conclusions are offered in
Section VII.
Notation: Throughout this paper, the following notation is

adopted: 1) (·)T denotes matrix transposition; 2) (·)∗ and (·)H
denote complex conjugate and complex conjugate transpose
(Hermitian operator), respectively; 3) the symbols ⊗, �, ∗
and × represent the Kronecker, Hadamard, Khatri-Rao and
Cartesian product operators, respectively; 4) �{x} and �{x}
indicate the real part and the imaginary part, respectively,
of the complex variable x; 5) diag(v) represents a square
diagonal matrix having the elements of the vector v along
its main diagonal; 6) 0M,N denotes the M × N null matrix;
7) IM denotes the order M identity matrix; 8) Ø represents
the empty set.

II. SYSTEM AND SIGNAL MODELS
This section focuses on the architecture of the MIMO
OFDM-based JCAS system considered in our manuscript
and on the processing accomplished at its receive side. Our
main objectives are deriving the received signal model in
the presence of multiple targets and illustrating some essen-
tial assumptions on which it relies. The architecture of the
considered JCAS system is illustrated in Fig. 1 and has the
following essential features:
1) Its transmitter is colocated with the receiver; conse-

quently, the receiver has full knowledge of the structure and
content of the transmitted signal and of its carrier frequency,
and exploits these information for sensing purposes only.
2) It is equipped with a transmit (TX) horizontal uniform

linear array (HULA) and a receive (RX) vertical uniform
linear array (VULA), consisting of NT and NR elements,
respectively. All the antennas are placed on the same planar
shield, so that a 2D reference system lying on the plane of
the physical antenna array can be defined, as illustrated in
Fig. 2 (where λ denotes the wavelength of the transmitted
signal).
3) The data frames it transmits are made of M consecu-

tive OFDM symbols, each consisting of N subcarriers. Such
symbols can convey both pilot tones (for channel estimation
and synchronization) and information data to be sent to a
single or multiple receivers at different locations.
In our work, each couple of physical TX and RX antennas

is replaced by a single virtual antenna (VA); the abscissa
x(p,q)v and the ordinate y(p,q)v of the VA element associated
with the pth TX antenna and the qth RX antenna (briefly,
the (p, q) VA) are evaluated as (e.g., see [34, eqs. (1)–(2)])

x(p,q)v =
(
x(p)t + x(q)r

)/
2 (1)

and

y(p,q)v =
(
y(p)t + y(q)r

)/
2, (2)

respectively, with p = 0, 1, . . . ,NT − 1 and q =
0, 1, . . . ,NR − 1; here, (x(p)t , y(p)t ) and (x(q)r , y(q)r ) denote
the coordinates of the pth TX and qth RX antenna, respec-
tively. It is easy to show that the set of NVA = NT NR VAs
associated with the physical arrays shown in Fig. 2 forms a
virtual uniform rectangular array (URA). Moreover, based
on (1) and (2), the abscissa and ordinate of the VA (p, q)
are

x(p,q)v = x(p)v =
(
x(0)t + x(0)r + p dt

)/
2 (3)

and

y(p,q)v = y(q)v =
(
y(0)t + y(0)r + q dr

)/
2, (4)

respectively; here, (x(0)t , y(0)t ) (x(0)r , y(0)r ) represent the coor-
dinates of the leftmost TX (lowermost RX) antenna and
dt (dr) denotes the distance between adjacent antennas of
the TX (RX) array (see Fig. 2, where it is assumed that
dt = dr = λ/2).
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FIGURE 1. Architecture of the considered MIMO OFDM-based JCAS system.

FIGURE 2. Representation of the physical TX and RX arrays, and of the
corresponding virtual array characterizing the considered JCAS system. The
reference virtual antenna element (corresponding to the couple (p, q)=(4, 4) is
identified by a purple circle).

In the following derivations, we concentrate on the trans-
mission of a single frame. The complex envelope of the radio
frequency (RF) signal conveying the mth OFDM symbol radi-
ated by the pth TX antenna (with p = 0, 1, . . . ,NT − 1) can
be expressed as (e.g., see [14, eq. (3)])

x(p)m (t) � q(t − mTs)
N−1∑
n=0

s(p)m,n exp
(
j2πn�f (t − mTs)

)
(5)

up to a transmit delay; here, q(t) is a windowing function,
s(p)m,n is the mth channel symbol conveyed by the nth sub-
carrier and transmitted by the pth TX antenna, �f = 1/T
is the subcarrier spacing, T is the OFDM symbol interval,
Ts � T + TG is the overall duration of the OFDM symbol

and TG is the cyclic prefix interval. Following [14], a rect-
angular windowing function is adopted, so that q(t) = 1 for
t ∈ [−TG,T] and q(t) = 0 elsewhere.

Given the complex envelope (5), the RF waveform radi-
ated by the pth TX antenna in the considered frame can be
expressed as

x(p)RF(t) = �
{

exp(j2π fc t)
M−1∑
m=0

x(p)m (t)

}
, (6)

where fc = c/λ denotes the frequency of the local oscillator
employed in the up-conversion at the TX side and c the
speed of light.
Let assume now that x(p)RF(t) in (6) is reflected by K distinct

point targets, and that the kth target (with k = 0, 1, · · · , K−1)
is located at the (initial) distance Rk from the transmitter,
moves with the radial velocity1 vk with respect to it and is
characterized by the azimuth (elevation) angle θk (φk). It is
not difficult to show that the complex envelope of the RF
signal r(q)RF(t) (see Fig. 1) captured by the qth RX antenna
is2 (e.g., see [14, eqs. (5) and (6)])

r(q)(t) =
K−1∑
k=0

NT−1∑
p=0

α
(p,q)
k exp

(
−j2π fcτ (p,q)k

)

· exp
(
j2π fDk t

)M−1∑
m=0

x(p)m

(
t − τ

(p,q)
k + fDk

fc
t

)
+ w(q)(t),

(7)

1. This velocity is positive (negative) if the target approaches (moves
away from) the JCAS system.

2. Note that the overall delay that characterizes the echo originating from
the kth target depends on all the parameters of the target itself (namely, its
range, its velocity and its angular parameters) and changes over time.
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where

τ
(p,q)
k � 2

c

[
Rk + x(p,q)v sin(θk) cos(φk)+ y(p,q)v sin(φk)

]
(8)

and α(p,q)k are the overall propagation delay and the attenu-
ation, respectively, associated with the kth point target (and
observed on the VA (p, q)),

fDk � 2
vk
λ

(9)

is the Doppler shift due to the motion of the kth target
and w(q)(t) is the complex additive white Gaussian noise
(AWGN) process affecting r(q)(t).

The signal r(q)(t) in (7) undergoes analog-to-digital con-
version followed by DFT processing. A simple mathematical
model that describes the sequence generated by sampling
r(q)(t) in the mth OFDM symbol interval can be derived as
follows. Substituting the right-hand side (RHS) of (5) in that
of (7), extracting the portion associated with the mth OFDM
symbol from the resulting expression and substituting t with
t′ = t − mTs yields

r(q)m
(
t′
)
�

K−1∑
k=0

D
(
fDk , t

′) νm
(
fDk

)
A(Rk)

·Y(q)k,m

(
t′
) + w(q)

(
t′
)
, (10)

where

D
(
f , t′

)
� exp

(
j2π ft′

)
, (11)

νm(f ) � exp(j2π fmTs), (12)

A(R) � exp
(−j4π fcR/c

)
, (13)

Y(q)k,m

(
t′
)
�

NT−1∑

p=0

α
(p,q)
k B(p,q)(θk, φk)

N−1∑

n=0

s(p)m,nγn(Rk)

·η(p,q)n (θk, φk) ξn
(
fDk , t

′) ζm,n
(
fDk

)
exp

(
j2πn�f t

′),
(14)

B(p,q)(θ, φ) � exp
(
−j4π

(
x(p,q)v sin(θ) cos(φ)

+ y(p,q)v sin(φ)
)
/λ

)
, (15)

γn(R) � exp
(−j4πn�f R/c

)
, (16)

η
(p,q)
n (θ, φ) � exp

(
−j4πn(�f /fc

)(
x(p,q)v sin(θ) cos(φ)

+ y(p,q)v sin(φ)
)
/λ

)
, (17)

ξn
(
f , t′

)
� exp

(
j2πn�f (f /fc) t

′) (18)

and

ζm,n(f ) � exp
(
j2πn�f (f /fc)mTs

)
. (19)

Note that: 1) the term D(f , t′), in (10), is responsible for the
so called range migration effect (see [35]) due to the kth
target Doppler frequency, whereas νm(fDk) is proportional to
both fDk and the OFDM symbol index m; 2) the phase of
A(Rk) in (10) depends on the range Rk only, whereas that of
γn(Rk) in (14) is proportional to both Rk and the subcarrier
index n (see (13) and (16), respectively); 3) The terms in (15)
and in (17) both depend on the virtual array configuration

as well as the target DoA; 4) the term ξn(fDk , t
′) in (14) pro-

duces a time-dependent phase rotation influenced by both the
Doppler frequency fDk and the subcarrier index n (see (18));
5) the term ζm,n(fDk) in (14) introduces a phase rotation
depending on both the OFDM symbol index m and the sub-
carrier index n (see (19)), and accounts for the so-called
intersubcarrier Doppler effect (e.g., see [14, Sec. II, p. 3]).

It is not difficult to show that sampling r(q)m (t′) (10) at
the instant t′l � lT/N (i.e., sampling r(q)(t) at the instant
tl � t′l + mTs), with l = 0, 1, . . . ,N − 1, yields3

r(q)m,l � r(q)m
(
t′l
) =

K−1∑
k=0

Dl
(
fDk

)
νm

(
fDk

)
A(Rk)

·Y(q)k,m,l + w(q)l ; (20)

here, the term Dl(f ) � exp(j2π flT/N) accounts for the ICI
effect due to the range migration,

Y(q)k,m,l � Y(q)k,m

(
t′l
)

=
NT−1∑
p=0

α
(p,q)
k B(p,q)(θk, φk)

N−1∑
n=0

s(p)m,n γn(Rk)

·η(p,q)n (θk, φk) ξn,l
(
fDk

)
ζm,n

(
fDk

)
exp(j2πnl/N),

(21)

ξn,l(f ) � ξn(f , t′l) and w(q)l � w(q)(t′l) is the Gaussian noise
affecting r(q)m,l (an AWGN model is assumed for the sequence

{w(q)l ; l = 0, 1, . . . ,N − 1}).
If the target Dopplers {fDk} are sufficiently small and,

more precisely, |fDk/fc| 	 1/(MN) for any k, the factors
ξn,l(fDk) and ζm,n(fDk) appearing in the RHS of (21) can be
neglected; this leads to the simplified signal model

r(q)m,l =
K−1∑
k=0

Dl
(
fDk

)
νm

(
fDk

)
A(Rk)

·
NT−1∑
p=0

α
(p,q)
k B(p,q)(θk, φk)

N−1∑
n=0

s(p)m,n exp(j2πnl/N)

·γn(Rk) η(p,q)n (θk, φk)+ w(q)l . (22)

The N signal samples acquired in the mth OFDM symbol
interval through the qth RX antenna undergo serial-to-
parallel (S/P) conversion, as shown in Fig. 1; this produces

the N-dimensional vector r(q)m �
[
r(q)m,0, r

(q)
m,1, . . . , r

(q)
m,N−1

]T
,

for which an order N DFT is computed. The nth element of
the resulting DFT output vector

R(q)m �
[
R(q)m,0,R

(q)
m,1, . . . ,R

(q)
m,N−1

]T
(23)

can be expressed as

R(q)m,n �
1

N

N−1∑
l=0

r(q)m,l exp(−j2πnl/N)

3. Note that the samples associated with the CP are ignored.
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= 1

N

K−1∑
k=0

Dn
(
fDk

)
νm

(
fDk

)
A(Rk)

NT−1∑
p=0

α
(p,q)
k

·B(p,q)(θk, φk) s(p)m,n γn(Rk) η(p,q)n (θk, φk)+W(q)
n ,

(24)

where W(q)
n is the AWGN sample affecting the nth subcarrier.

The received signal model expressed by (24) is general,
but quite complicated. In our work, a simplified version of
it can be employed since:
1) the approximation

η(p,q)n (θ, φ) ∼= 1 (25)

is made for any n, since fc is assumed to be much greater
than �f (see (17));
2) it is assumed that, in the transmission of each OFDM

symbol, disjoint subsets of the N available subcarriers are
assigned to distinct TX antennas.
The last assumption means that the signal radiated by

each TX antenna can be represented as the superposition
of a set of multiple subcarriers exclusively assigned to that
antenna, i.e., briefly, it consists of private subcarriers only.4

Therefore, if S(p)m denotes the set collecting the indices of
the subcarriers radiated by the pth TX antenna in the mth
symbol interval, we have that

S(p1)
m ∩ S(p2)

m = Ø (26)

for any p1 �= p2, with p1 and p2 ∈ {0, 1, . . . ,NT − 1}, and
NT−1⋃
p=0

S(p)m = J (27)

for any m, where J � {0, 1, . . . ,N − 1}. It is important
to point out that, although our assumption about the use of
subcarrier frequencies is strong and entails a reduction by a
factor NT in the transmission rate (with respect to the case in
which all the subcarriers are employed by each TX antenna),
it paves the way for the development of target detection
and estimation algorithms requiring a limited computational
effort. In fact, under the last assumption, the sum over p
appearing in the RHS of (24) involves a single term different
from zero; consequently, (24) becomes

R(q)m,n = s(pa)m,n

N

K−1∑
k=0

α
(pa,q)
k Dn

(
fDk

)
νm

(
fDk

)
A(Rk)

·B(pa,q)(θk, φk) γn(Rk)+W(q)
n , (28)

which represents a sample of the 2D signal employed for
channel estimation. Here, pa denotes the index of the TX
antenna to which the nth subcarrier has been assigned in
the mth OFDM symbol interval (the dependence of pa on

4. The use of private subcarriers in JCAS systems has been first proposed
in [19] to improve the accuracy of target range and angle estimation through
a CS technique.

m and n is not explicitly shown to ease notation). Based
on (3), (4), (11)-(13), (15) and (16), it is easy to show that

γn(Rk)Dn
(
fDk

) = an
(−Fρk

)
, (29)

νm
(
fDk

) = am
(
FDk

)
(30)

and

α
(pa,q)
k A(Rk)B

(pa,q)(θk, φk)

= α
(pa,q)
k exp(jωk) apa

(−FHk
)
aq

(−FVk
)
, (31)

where

az(FX) � exp(j2πzFX), (32)

with z = pa, q, m or n, X = Hk, Vk, Dk or ρk,

FHk � dt sin(θk) cos(φk)/λ (33)

and

FVk � dr sin(φk)/λ (34)

denote the normalized horizontal frequency and the normal-
ized vertical frequency, respectively, associated with the kth
target,

FDk � fDkTs (35)

is the normalized Doppler frequency,

Fρk � Frk − FDkT/(N Ts) (36)

is a normalized frequency accounting for both the Doppler
of the kth target and its range through the normalized target
delay5

Frk � 2Rk�f /c (37)

and

ωk � −2π
(

2Rk +
(
x(0)t + x(0)r

)
sin(θk) cos(φk)

+
(
y(0)t + y(0)r

)
sin(φk)

)
/λ. (38)

Note that:
1) Fρk and FDk satisfy the inequalities Fρ,min ≤ Fρk ≤

Fρ,max, and FD,min ≤ FDk ≤ FD,max, respectively, with
Fρ,min = 0, Fρ,max = 1, FD,min = −1/2 and FD,max = 1/2
for any k;
2) FVk and FHk satisfy the inequalities −dr/λ ≤ FVk ≤

dr/λ and −dr cos(φk)/λ ≤ FHk ≤ dr cos(φk)/λ, respectively,
for any k;
3) the range of FHk is also limited by the elevation φk of

the kth target for any k (see (33));
4) the ranges of FVk and FHk are maximized for dr = λ/2

and dt = λ/2, respectively.
Based on (29)-(31), eq. (28) can be rewritten as6

R(q)m,n = s(pa)m,n Ĥ
(pa,q)
m,n , (39)

5. Note that, Frk is always positive, whereas FDk is positive (negative)
if the kth target is approaching (moving away from) the considered JCAS
system.

6. Note that channel symbols {s(pa)m,n } are known to the JCAS receiver for
any m, n and pa.
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where7

Ĥ(pa,q)m,n � 1

N

K−1∑
k=0

Ak apa
(−FHk

)

·aq
(−FVk

)
am

(
FDk

)
an

(−Fρk
) + W̄(pa,q)

m,n , (40)

denotes an estimate of the channel frequency response H(pa,q)m,n

characterizing the nth subcarrier frequency in the mth OFDM
symbol interval for the VA (pa, q), Ak � αk exp(jωk) and

W̄(pa,q)
m,n � W(pa,q)

m,n

s(pa)m,n

(41)

is the noise sample affecting Ĥ(pa,q)m,n . The quantity Ĥ(pa,q)m,n ,
in (40), represents the noisy measurement produced by the
symbol compensation block for the VA (pa, q), the nth sub-
carrier and the mth OFDM symbol interval (see Fig. 1, where
this block is followed by a buffer storing the measurements
acquired over each frame). Moreover, the measurements
acquired over the OFDM frame and the whole virtual array
are collected in the set8

SH �
{
Ĥ(p,q);
p = 0, 1, . . . ,NT − 1, q = 0, 1, . . . ,NR − 1

}
,

(42)

where Ĥ(p,q) � [Ĥ(p,q)m,n ] represents the M×N matrix formed
by all the measurements acquired through the VA (p, q)
over the OFDM frame. Note that this set consists of NVA
matrices, one for each of the NVA VAs, and that it represents
the output of the last block appearing in Fig. 1.

The measurement model (40) deserves the following
comments:
1) The complex gain Ak appearing in its RHS accounts

for the phase rotation due to the path delay, the path loss
and the gain (attenuation) introduced by the kth target.
2) Since, in all our computer simulations, a Nsary phase

shift keying (PSK) constellation is adopted for the channel
symbols {s(pa)m,n }, the 2D sequence of noise samples {W̄(pa,q)

m,n }
(see (41)) affecting the measurements has the same statistical
properties as {W(q)

n } (see (28)), i.e., it can be modelled as
AWGN (the variance of each sample is denoted σ 2

W).
3) The noisy samples {Ĥ(p,q)m,n } of the 4D channel response

acquired over a single OFDM frame can be modelled as
the superposition of an AWGN process with K 4D com-
plex exponentials, whose amplitude, phase and frequencies
provide information about the range, the Doppler and the
angular coordinates of the detectable targets. For this reason,
target detection and estimation is tantamount to identifying
the K complex exponentials that form the useful component

7. In the following, the dependence of α(pa,q)k on (pa, q) is neglected;

therefore, αk = α
(pa,q)
k is assumed.

8. In the following, the antenna index pa is replaced by p (with p =
0, 1, . . . ,NT − 1) for simplicity.

of the sequence {Ĥ(p,q)m,n } and to estimating their parameters,
respectively.
Finally, it is important to make some considerations about

the use of private subcarriers and the criteria that can be
adopted in the selection of their subsets {S(p)m }. From the
rules illustrated above about the use of private subcarriers it
can be easily inferred that the maximum data rate achievable
through the proposed transmission scheme is identical to that
of a JCAS system equipped with a single TX antenna, i.e.,
as already mentioned above, it is NT times lower than that
provided by a MIMO system with shared subcarriers (e.g.,
see [19]). In addition, the TX array is not exploited for
beamsteering, as suggested, for instance, in [29], where a
single-stream beamforming model is assumed. Despite this,
the considered JCAS system benefits from the availability
of a TX array, since this results in a larger virtual array
(i.e., in an increase of the overall number of VAs, NVA)

and, consequently, in a better angular resolution [27]. As far
as the selection of the subsets {S(p)m } is concerned, in our
computer simulations, a pseudo-random mechanism has been
adopted in assigning the N available subcarriers to the NT TX
antennas in the transmission of the mth OFDM symbol of a
given frame; moreover, the same pseudo-random pattern has
been employed for all the transmitted frames. The choice of
this strategy is motivated by the fact that randomly changing
the subset of subcarriers from symbol to symbol allows the
considered radar system to benefit from transmit diversity.

III. DESCRIPTION OF THE PROPOSED APPROACH TO
THE ESTIMATION OF MULTIPLE TARGETS
In this section, the problem of developing reduced complex-
ity methods for the detection of multiple targets and for the
estimation of their parameters in the MIMO OFDM-based
JCAS system described in the previous section is tackled.
We first describe a general strategy to devise novel solutions
to this problem. Then, we provide some indications about
the processing to be accomplished by each of the two main
parts it consists of.

A. DESCRIPTION OF THE PROPOSED STRATEGY
Achieving joint ML estimation of an unknown number of
targets, given the set of measurements SH, in (42), is an
overly complicated problem, since it involves a large number
of parameters to be estimated (more precisely, five param-
eters per target plus the overall number of targets), even
for small values of K. This motivates our interest in the
development of sub-optimal methods based on the idea of
turning a multidimensional estimation problem into a set
of interconnected lower dimensional sub-problems. In the
remaining part of this subsection, we illustrate a general strat-
egy, called DRAEC, for the derivation of a new class of such
methods. According to this strategy, range and Doppler esti-
mation is decoupled from angular estimation. This explains
why its structure, described by the block diagram shown
in Fig. 3, contains two core blocks, called range-Doppler
estimator (RDE) and angular estimator (AE): in fact, the
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former block accomplishes target detection and jointly esti-
mates target range and Doppler, whereas the second one
identifies multiple targets characterized by similar Doppler
and ranges, and estimates their azimuth and elevation. Note
also that the proposed structure includes a fusion block,
whose task is merging the information provided by the first
two blocks in order to generate a 4D radar image in the form
of a point cloud. The processing accomplished by the core
blocks can be summarized as follows. Based on the avail-
able measurements (i.e., on the set SH, in (42)), the RDE
generates the so-called target range-Doppler profile (TRDP),
namely a collection of: 1) range-Doppler couples at which
relevant echoes are detected; 2) an estimate of the complex
amplitude associated with each of these couples (the abso-
lute value of such amplitudes allows us to rank the couples
on the basis of their perceptual importance). More precisely,
the TRDP is represented by the set

S(RDE) �
{(
F̂Dk , F̂rk , Âk

)
; k = 0, 1, . . . ,K(RDE) − 1

}
,

(43)

where F̂Dk , F̂rk and Âk denote the estimates of the nor-
malized Doppler frequency, the normalized delay and the
complex amplitude, respectively, associated with the kth
range-Doppler bin9 in which (at least) one target has been
detected,10 and K(RDE) is the overall number of relevant
range-Doppler bins identified by the RDE.
The set S(RDE), in (43), is passed to the AE, which

processes it jointly with the set SH (see (42)) in order
to: 1) identify all the targets associated with each of
the range-Doppler-complex amplitude triplets forming the
TRDP; 2) generate the so-called angular profile (AP), that
collects the estimates of the angular parameters and the
complex amplitude of all the targets detected within each
range-Doppler bin. In practice, the AP information associated
with the kth element (i.e., triplet) of S(RDE) is represented
by the set

S(AE)k �
{(
F̂Hk [l], F̂Vk [l], Âk[l]

); l = 0, 1, . . . ,K(AE)k − 1
}
,

(44)

with k = 0, 1, . . . ,K(RDE)− 1; here, F̂Hk [l], F̂Vk [l] and Âk[l]
denote the estimates of the normalized horizontal frequency,
normalized vertical frequency and complex amplitude of the
lth target detected in the kth range-Doppler bin, respec-
tively, whereas K(AE)k represents the overall number of targets
detected in that bin. The normalized frequencies F̂Hk [l] and
F̂Vk [l] are jointly processed by the fusion block in order
to generate, on the basis of (33) and (34), the estimates
θ̂k[l] and φ̂k[l] of the azimuth θk[l] and the elevation φk[l],
respectively, characterizing the lth target identified in the kth
range-Doppler bin. Moreover, the fusion block processes the

9. As shown in the next section, the 2D FFT processing executed by the
RDE leads to discretizing the range-Doppler domain and, in particular, to
partitioning it into multiple range-Doppler bins.

10. Note that the RDE is unable to separate multiple targets whose range
and Doppler fall in the same bin.

FIGURE 3. Block diagram describing the DRAEC strategy. Two interconnected core
blocks, namely the RDE and the AE, and a fusion block, generating the final output,
are employed.

estimates F̂Dk and F̂rk to compute the estimates v̂k[l] and
R̂k[l] of the velocity vk[l] and range Rk[l], respectively, on
the basis of (9), (35) and (37). Then, the above mentioned
estimates are collected in the set

S(DRAEC) �
K(RDE)−1⋃

k=0

S(DRAEC)k , (45)

where

S(DRAEC)k �
{(
R̂k[l], v̂k[l], θ̂k[l], φ̂k[l], Âk[l]

)
;

l = 0, 1, . . . ,K(AE)k − 1
}
, (46)

with k = 0, 1, ..,K(RDE) − 1. The set S(DRAEC), in (45),
represents the final output of the DRAEC strategy if the
RDE is not exploited again. Alternatively, it can be passed
to the RDE with the aim of re-estimating the range and
Doppler parameters of each of the K(AE)k detected targets for
any k; this step is expected to generate an updated version
of the set S(RDE) (see (43)); fusing this set with the overall
AP produces an updated version of the set S(DRAEC), that
collects finer estimates of the parameters of all the detected
targets.

B. PROCESSING TASKS ACCOMPLISHED BY THE
CONSTITUENT BLOCKS
In this subsection, the essential processing tasks accom-
plished by the RDE and AE blocks appearing in Fig. 3
are sketched; in our description it is assumed, without any
loss of generality, that the considered MIMO OFDM-based
JCAS system is equipped with the URA illustrated in Fig. 2.
The RDE extracts from the set SH (see (42)), collecting

NVA matrices, a single matrix, denoted Ĥ(pR,qR) and referring
to a specific VA (called reference VA and associated with
the choice (p, q) = (pR, qR); see Fig. 2). Then, it processes
Ĥ(pR,qR) to generate the TRDP, i.e., the set S(RDE), in (43).
It is important to point out that:
1) Based on Ĥ(pR,qR), the TRDP can be generated by

estimating the complex amplitudes and the frequencies of
the complex exponentials that form the useful component of
the 2D sequence {Ĥ(pR,qR)m,n }.
2) The parameter K(RDE) appearing in (43) represents the

overall number of range-Doppler bins in which at least a
single target is detected. In fact, at this stage, the RDE
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detects multiple targets, characterized by similar ranges and
Dopplers (and, in particular, such that their parameters fall
inside in the same range-Doppler bin) as a single target. This
explains why, in general, the kth range-Doppler bin selected
by the RDE (with k = 0, 1, . . . ,K(RDE) − 1) may contain
multiple (say, K(AE)k ) targets, which are overlapped in the
range-Doppler domain, but have distinct angular coordinates.
3) The absolute value of the complex amplitude Âk appear-

ing in (43) represents the perceptual importance of the kth
detected range-Doppler bin (with k = 0, 1, . . . ,K(RDE)); in
the following, we assume that the elements of S(RDE) are
ordered according to a decreasing perceptual importance, so
that |Âk+1| ≥ |Âk|, with k = 0, 1, . . . ,K(RDE) − 1.

The set SH and the TRDP (see (42) and (43), respectively)
feed the AE, that sequentially accomplishes the three steps
listed below.
1) It checks if the kth range-Doppler bin satisfies the

inequality

|Âk|2 > T (RDE), (47)

with k = 0, 1, . . . ,K(RDE); here, T (RDE) is a proper thresh-
old. Any bin not meeting this condition is discarded. This
leads to the reduced TRDP

S̄(RDE) �
{(
F̂Dk , F̂rk , Âk

)
; k = 0, 1, . . . , K̄(RDE) − 1

}
,

(48)

with K̄(RDE) ≤ K(RDE).
2) It merges the information provided by the NVA matrices

of the set SH (see (42)) in K̄(RDE) NT ×NR matrices, one for
each of K̄(RDE) range-Doppler bins selected in the previous
step. The kth matrix (with k = 0, 1, . . . , K̄(RDE) − 1) is
denoted H̆k � [H̆(p,q)k ]; the element appearing on its pth row
and qth column is evaluated as

H̆(p,q)k = 1

MN

M−1∑
m=0

N−1∑
n=0

Ĥ(p,q)m,n a∗
m

(
F̂Dk

)
a∗
n

(
−F̂ρk

)
, (49)

with p = 0, 1, . . . ,NT − 1 and with q = 0, 1, . . . ,NR − 1;
here, F̂ρk represents the estimate of the normalized frequency
in (36).
3) It processes the matrix H̆k to identify all the targets con-

tained in the kth range-Doppler bin in order to generate the
set S(AE)k in (44) where, however, k = 0, 1, . . . , K̄(RDE) − 1.

The AE output, i.e., the overall AP, results from merging
all the information contained in the K̄(RDE) sets {S(AE)k }
and collects the estimates of all the angular parameters
referring to

K(AE) �
K̄(RDE)−1∑

k=0

K(AE)k (50)

distinct targets. This concludes the AE processing.
It is worth noting that:
1) The term a∗

m(F̂Dk) (a
∗
n(−F̂ρk)) appearing in the RHS

of (49) aims at compensating for the factor am(FDk)
(an(−Fρk)) which is visible in the same side of (40); in other

words, it is expected to cancel the dependence of H̆(p,q)k on
the Doppler and range of the kth target (leaving, however,
the dependence on its normalized horizontal and vertical
frequencies).
2) Similarly as step 1) of the RDE, step 3) of the AE

processing requires estimating the complex amplitudes and
the frequencies of the overlapped complex exponentials that
form the useful component of the 2D sequence {H̆(p,q)k } (with
k = 0, 1, . . . , K̄(RDE) − 1).
If the AE output is passed to the RDE, the last block

sequentially accomplishes the three steps11 illustrated below
for each of the considered K̄(RDE) range-Doppler bins; in our
description of such steps we refer to the kth range-Doppler
bin (with k = 0, 1, . . . , K̄(RDE) − 1).

1) The RDE generates the subset

S̄(AE)k �
{(
F̂Hk [l], F̂Vk [l], Âk[l]

); l = 0, 1, . . . , K̄(AE)k − 1
}

(51)

of S(AE)k , in (44), (here, K̄(AE)k denotes the size of S̄(AE)k ,
with K̄(AE)k ≤ K(AE)k ); in doing so, it discards the lth element
of S(AE)k (with l = 0, 1, . . . ,K(AE)k − 1) if

|Âk[l]|2 ≤ T (AE), (52)

where T (AE) is a proper threshold.
2) It merges the information provided by the NVA anten-

nas at the N subcarrier frequencies and over the M OFDM
symbol intervals (i.e., over the whole OFDM frame) to
generate a set of K̄(AE)k M × N matrices, each referring
to a single element of the set S̄(AE)k . More specifically,
the matrix associated with the lth element of S̄(AE)k (with
l = 0, 1, . . . , K̄(AE)k − 1) is denoted Ȟk[l] � [Ȟm,n[k, l]];
moreover, the element appearing on its mth row and nth
column is evaluated as

Ȟm,n[k, l] � 1

NT NR

NT−1∑
p=0

NR−1∑
q=0

Ĥ(p,q)m,n

·ap
(
F̂Hk [l]

)
aq

(
F̂Vk [l]

)
, (53)

with m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . ,N − 1.
3) It processes the matrix Ȟk[l] (with l = 0, 1, . . . , K̄(AE)k −

1) in order to estimate the range, Doppler and complex
amplitude of the lth target detected in the kth range-Doppler
bin. This requires estimating the parameters of a single com-
plex exponential on the basis of the 2D sequence {Ȟm,n[k, l]}
and leads to the fine estimates (F̂Dk [l], F̂rk [l], Âk[l]) of the
normalized Doppler frequency, normalized delay and com-
plex amplitude, respectively, of the above mentioned target.
These information are collected in the set

S̄(RDE)k �
{(
F̂Dk [l], F̂rk [l], Âk[l]

); l = 0, 1, . . . , K̄(AE)k − 1
}
.

(54)

11. Actually, the first step is ignored if all the targets detected in each
range-Doppler bin are taken into consideration.
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Note that the term ap(F̂Hk [l]) (aq(F̂Vk [l])) appearing in the
RHS of (53) aims at compensating for the factor ap(−FHk)
(aq(−FVk)) that appears in the same side of (40); in other
words, it is expected to cancel the dependence of Ĥm,n[k, l]
on the normalized horizontal and vertical frequencies (i.e.,
on the angular parameters) of lth target detected in kth range-
Doppler bin.
The strategy described above is called Doppler-range-

angle estimation with successive compensation, or DRAEC,
and is summarized in Algorithm 1. Its final output is
represented by the set

S̄(DRAEC) �
K̄(RDE)−1⋃

k=0

S̄(DRAEC)k . (55)

that collects the estimates referring to

K(DRAEC) �
K̄(RDE)−1∑

k=0

K̄(AE)k (56)

distinct targets; here,

S̄(DRAEC)k �
{(
R̂k[l], v̂k[l], θ̂k[l], φ̂k[l], Âk[l]

)
;

l = 0, 1, . . . , K̄(AE)k − 1
}
, (57)

represents the contribution due to all the targets detected
in the kth range-Doppler bin. Note that, the set S̄(DRAEC),
in (55), results from merging all the information provided
the RDE and the AE, namely the sets S̄(RDE) and {S̄(AE)k }.
In other words, the final output is obtained by 1) convert-
ing each normalized frequency to the corresponding spatial
parameter; 2) associating each target with its set of spatial
parameters. These operations are carried out by the fusion
block appearing in Fig. 3.

Finally, it is important to stress that the most important
task accomplished by both the RDE and the AE is repre-
sented by the estimation of the parameters of 2D complex
oscillations on the basis of a set of noisy measurements.
Different algorithms can be employed for this task; the selec-
tion of a specific algorithm leads to a different instance of
the DRAEC strategy, as illustrated in the following sections.

IV. DESCRIPTION OF VARIOUS ALGORITHMS FOR THE
DETECTION AND THE ESTIMATION OF
TWO-DIMENSIONAL COMPLEX OSCILLATIONS
In this section, we concentrate on the problem of detecting
multiple overlapped 2D complex exponentials and estimating
their parameters in the presence of AWGN. Various esti-
mators, representing distinct solutions to this problem, are
illustrated. In all cases, essential mathematical details are
provided and a unified mathematical notation is employed.
More specifically, it is assumed that: 1) {Ĥ(X)m,n; m =
0, 1, . . . ,M − 1, n = 0, 1, . . . ,N − 1} (with X = RDE or

X = AE) represents the input sequence12 of any 2D esti-
mator employed in the RDE or in the AE; 2) the element
(m, n) of this sequence can be expressed as

Ĥ(X)m,n �
K−1∑
k=0

Ak am
(
F1,k

)
an

(
F2,k

) +W(X)
m,n, (58)

where F1,k = FDk , F2,k = −Fρk (F1,k = −FHk , F2,k =
−FVk) if the estimator is employed in the RDE (AE); 3) the
parameters Ak, FDk , Fρk , FHk and FVk have the same mean-
ing as the corresponding parameters appearing in the RHS
of (40) and W(X)

m,n is the noise sample affecting Ĥ(X)m,n (an
AWGN model is adopted for the sequence {W(X)

m,n}).
All the algorithms described in the following subsections

make use of 2D periodograms. More specifically, target
detection and range & Doppler estimation in the RDE
require the computation of the M0 × N0 matrix

Y(RDE) =
[
Y(RDE)

[
l, p

]]

� DSFTM0,N0

[
Ĥ(RDE)ZP

]
� FM0Ĥ

(RDE)
ZP FHN0

, (59)

that represents the order (M0,N0) discrete symplectic Fourier
transform (DSFT) of the M0 × N0 matrix

Ĥ(RDE)ZP �
[
Ĥ(RDE) 0M,N0−N
0M0−M,N 0M0−M,N0−N

]
, (60)

that results from zero-padding the M × N matrix Ĥ(RDE) �
[Ĥ(RDE)m,n ] (see (58)); here, FN represents the order N Fourier
matrix (its element (a, b) is equal to ωabN /N , where ωN =
exp(−j2π/N)). The element (l, p) of Y(RDE), in (59), is given
by

Y(RDE)
[
l, p

]
� 1

MN

M−1∑
m=0

N−1∑
n=0

Ĥ(RDE)m,n

· exp

(
−j2πm l

M0

)
exp

(
j2πn

p

N0

)
, (61)

where

M0 � L(RDE)1 M, (62)

N0 � L(RDE)2 N, (63)

and L(RDE)1 and L(RDE)2 represent the oversampling fac-
tors adopted in RDE processing. Note that Y(RDE)[l, p] is
associated with the normalized Doppler frequency

FD[l] � l F̄D − 1/2 (64)

and the normalized frequency (accounting for both range and
Doppler; see (36))

Fρ
[
p
]
� p F̄ρ , (65)

where

F̄D � 1/M0 (66)

12. This 2D sequence corresponds to {Ĥ(pR,qR)m,n } or {Ȟm,n[k, l]} (see (40)
and (53), respectively) in the case of the RDE; it corresponds, instead, to
{H̆(p,q)k } (see (49)) in the case of the AE.
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Algorithm 1: The DRAEC Strategy
Input: The set SH, in (42), made of NVA M × N matrices, and the indices of the reference antenna ((pR, qR)).

1 RDE-1:
a-Generation of the TRDP: Process Ĥ(pR,qR) to generate the set S(RDE) (see (43)), made of K(RDE) elements; one of
the estimators described in Section IV is employed in this step.

2 AE:
b-Reduction of the TRDP size: Discard some elements of the set S(RDE) on the basis of their perceptual relevance
(see (47)); the resulting set consists of K̄(RDE) elements.
for k = 0 to K̄(RDE) − 1 do

c-Doppler and range compensation: Compute the NR × NT matrix H̆k, whose element (p, q) is defined by (49).
d-Detection and angular estimation of the targets contributing to the kth range-Doppler bin: Detect all the
targets contained in the kth range-Doppler bin and estimate their normalized horizontal and vertical frequencies,
and their complex amplitude on the basis of the matrix H̆k (one of the estimators described in Section IV is
employed); this produces the set S(AE)k , in (44), made of K(AE)k elements.

3 RDE-2:
e-Reduction of the AP size: Discard some elements of the set S(AE)k , in (44), on the basis of their perceptual
relevance (see (52)); the resulting set (see (51)) consists of K̄(AE)k elements.
for l = 0 to K̄(AE)k − 1 do

f-Angular compensation: Compute the M × N matrix Ȟk[l], whose element (m, n) is defined by (53).
g-Fine estimation: Evaluate the fine estimates of the normalized Doppler frequency FDk [l], the normalized
delay Frk [l], and the complex amplitude Ak[l] of the lth target contained in the kth range-Doppler bin on the
basis of the matrix Ȟk[l]; one of the estimators described in Section IV is employed in this step.

end
end
Output: The set S̄(DRAEC), in (55).

and

F̄ρ � 1/N0. (67)

Similarly, angular estimation in the AE requires the
computation of the M̄0 × N̄0 matrix

Y(AE) =
[
Y(AE)

[
l, p

]]

� IDFTM̄0,N̄0

[
Ĥ(AE)ZP

]
� FH

M̄0
Ĥ(AE)ZP FH

N̄0
, (68)

that represents the order (M̄0, N̄0) 2D inverse discrete Fourier
transform (IDFT) of the M̄0 × N̄0 matrix Ĥ(AE)ZP , that results
from zero-padding the NT × NR matrix Ĥ(AE) � [Ĥ(AE)m,n ]
(see (58)). In practice, the structure of the matrix Ĥ(AE)ZP is
expressed by the RHS of (60) if the matrix Ĥ(RDE) and the
parameters M, N, M0 and N0 are replaced by Ĥ(AE) and NR,
NT , M̄0 and N̄0, respectively; moreover, the element (l, p)
of Y(AE) is given by

Y(AE)
[
l, p

]
� 1

NRNT

NR−1∑
m=0

NT−1∑
n=0

Ĥ(AE)m,n

· exp

(
j2πm

l

M̄0

)
exp

(
j2πn

p

N̄0

)
, (69)

where

M̄0 � L(AE)1 NR, (70)

N̄0 � L(AE)2 NT , (71)

and L(AE)1 and L(AE)2 are the oversampling factors adopted in
AE processing. Furthermore, Y(AE)[l, p] is associated with
the normalized horizontal frequency

FH[p] � p F̄H − 1/2 (72)

and the normalized vertical frequency

FV [l] � l F̄V − 1/2, (73)

where

F̄H � 1/N̄0 (74)

and

F̄V � 1/M̄0. (75)

In the remaining part of this section we take into consid-
eration six different estimation algorithms and provide a
brief mathematical description of each of them. The first
five algorithms are FFT-based methods and, more precisely,
are the 2D periodogram method [2], the CSFDEC algo-
rithm derived in [32], the estimation algorithm proposed by
Popović-Bugarin and Djukanović in [30], a modified version
of the estimation algorithm devised by Fan et al. in [33]
for solving the problem of channel estimation in a hybrid
millimeter-wave massive MIMO system and the q-shift esti-
mator (dubbed QSE) developed in [31]. The sixth (and last)
algorithm can be considered as an extension to 2D frequency
estimation of the algorithm developed by Lee and Chun
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in [27]; therefore, it is dubbed extended Lee algorithm, or
ELA. In the description of each estimation algorithm, we
first describe its formulation for the RDE; then, we illus-
trate the changes required to make its use possible in the
AE.

A. TWO-DIMENSIONAL PERIODOGRAM METHOD
This method is based on the idea that the frequencies of the
2D complex exponentials forming the useful component of
the sequence {Ĥ(X)m,n} are associated with the peaks of a 2D
periodogram. For this reason, if the kth target is considered
(with k = 0, 1, . . . , K̂−1, where K̂ denotes an estimate of the
overall number of targets), the estimates F̂Dk and F̂ρk of its
normalized frequencies FDk (35) and Fρk (36), respectively,
are evaluated as F̂Dk = FD[l̂(RDE)k ] and Fρk = Fρ[p̂(RDE)k ]
(see (64) and (65), respectively), where (l̂(RDE)k , p̂(RDE)k ) is
the value of the couple (l̃, p̃) associated with the kth of the
K̂ most relevant local maxima (peaks) of the 2D sequence
{|Y(RDE)[l̃, p̃]|2; l̃ ∈ SM0 , p̃ ∈ SN0}, Y(RDE)[l, p] is expressed
by (61) and

SU � {0, 1, . . . ,U − 1} (76)

for any positive integer U.
This algorithm can be also used in the AE block

to evaluate the estimates F̂Hk = FH[p̂(AE)k ] and F̂Vk =
FV [l̂(AE)k ] (see (72) and (73), respectively) of the nor-
malized frequencies FHk (33) and FVk (34); the cou-
ple of (l̂(AE)k , p̂(AE)k ) is generated in a similar way as
(l̂(RDE)k , p̂(RDE)k ), the only difference being represented by
the fact that Y(RDE)[l, p], in (61), is replaced by Y(AE)[l, p],
in (69).
The estimation accuracy of this method can be improved

by:
1) Extracting an Il × Ip sub-matrix (where Il and Ip

denote the interpolation orders adopted in the Doppler
and range domains, respectively), whose central element is
Y(X)[l̂(X)k , p̂(X)k ] (with k = 0, 1, . . . , K̂ − 1 and X = RDE or
AE) from Y(X) in order to generate a more detailed represen-
tation of the analyzed spectrum through the interpolation13

of the sub-matrix elements.
2) Identifying the peak of the interpolated spectrum over

the considered 2D domain.

B. COMPLEX SINGLE FREQUENCY DELAY ESTIMATION
AND CANCELLATION ALGORITHM
The second FTT-based method combines a single 2D tone
estimator, named complex single frequency delay estimator
(CSFDE), with a serial cancellation procedure. This algo-
rithm can be exploited by the RDE block as it is, whereas
some modifications are required if it is employed in the AE
block. For this reason, we first focus on its use in the RDE
and, then, we illustrate the changes to be made for its use
in the AE.

13. In our computer simulations, the ‘spline’ interpolation (interp2
function) of MATLAB R2022b has been employed.

The derivation of the CSFDE is based on the assump-
tions that: 1) K = 1 in the model (58) for Ĥ(RDE)m,n ; 2) the
unknown frequencies F1,0 = FD and F2,0 = −Fρ appear-
ing in that model can be represented as FD = FD,c + δD F̄D
and Fρ = Fρ,c + δρ F̄ρ , respectively, where FD,c (Fρ,c) is
a coarse estimate of FD (Fρ), δD (δρ) is the associated
residual, and F̄D (F̄ρ) is expressed by (66) (67) and repre-
sents the normalized fundamental frequency characterizing
an order M0 FFT (N0 IFFT).

The CSFDE first exploits the 2D periodogram method
to detect a single tone and to compute a coarse estimate
of its complex amplitude A and frequencies; then, it makes
use of an iterative procedure for estimating the residuals
and refining the complex amplitude. More specifically, in
the initialization of the CSFDE, the following quantities are
computed:
1) The set of 13 M0 × N0 matrices {Ȳk1,k2 = [Ȳk1,k2 [l, p]]},

with k1, k2 = 0, 1, 2, 3, and (k1, k2) �= (0, 3), (3, 0) and
(3, 3); here,

Ȳk1,k2 � DSFTM0,N0

[
Ĥ(k1,k2)

ZP

]
(77)

is the order (M0,N0) DSFT (see (59)) of the matrix Ĥ(k1,k2)
ZP

that results from zero padding14 the M×N matrix Ĥ(k1,k2) �
[Ĥ(k1,k2)

m,n ] and

Ĥ(k1,k2)
m,n � mk1nk2Ĥ(RDE)m,n , (78)

with m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . ,N − 1.
2) The coarse estimates F̂(0)D,c = FD[l̂(0)] and

F̂(0)ρ,c = Fρ[p̂(0)] of FD and Fρ , respectively (see (64)
and (65), respectively), where

(
l̂(0), p̂(0)

) = arg max
l̃∈SM0 ,p̃∈SN0

∣∣∣Ȳ0,0
[
l̃, p̃

]∣∣∣
2
. (79)

3) The initial estimate

Â(0) = Ȳ0,0

(
F̂(0)D,c, F̂

(0)
ρ,c

)
(80)

of the complex amplitude A; here,15

Ȳk1,k2

(
F̃D, F̃ρ

)
� 1

MN

M−1∑
m=0

N−1∑
n=0

Ĥ(k1,k2)
m,n

· exp
(
j2πnF̃ρ

)
exp

(−j2πmF̃D
)
. (81)

4) The coefficients

b�
(
FD,Fρ

)

= �̂3 �{
Â∗Ȳ2,3

(
FD,Fρ

)}
/3 − �̂2 �{

Â∗Ȳ2,2
(
FD,Fρ

)}

− 2�̂�{
Â∗Ȳ2,1

(
FD,Fρ

)} + 2�{
Â∗Ȳ2,0

(
FD,Fρ

)}
, (82)

14. In practice, the structure of the matrix Ĥ(k1,k2)
ZP is the same as that of

Ĥ(RDE)ZP (60); the only difference between them is due to the fact that the
matrix Ĥ(RDE) appearing in the definition of the former matrix is replaced
by Ĥ(k1,k2) in that of the latter one. For this reason, the parameters M0
and N0 are still expressed by (62) and (63), respectively.

15. Note that: a) Ĥ(0,0)m,n = Ĥ(RDE)m,n (see (78)); b) Ȳk1,k2 (F̃D, F̃ρ) =
Ȳk1,k2 [l̃, p̃] if F̃D = FD[l̃] and F̃ρ = Fρ [p̃] for any integer l̃ and p̃.
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c�
(
FD,Fρ

)

= �̂3 �{
Â∗Ȳ1,3

(
FD,Fρ

)}
/3 + �̂2 �{

Â∗Ȳ1,2
(
FD,Fρ

)}

− 2�̂�{
Â∗Ȳ1,1

(
FD,Fρ

)} − 2�{
Â∗Ȳ1,0

(
FD,Fρ

)}
, (83)

b�
(
FD,Fρ

)

= −�̂3 �{
Â∗Ȳ3,2

(
FD,Fρ

)}
/3 − �̂2 �{

Â∗Ȳ2,2
(
FD,Fρ

)}

+ 2�̂ �{
Â∗Ȳ1,2

(
FD,Fρ

)} + 2�{
Â∗Ȳ0,2

(
FD,Fρ

)}
(84)

and

c�
(
FD,Fρ

)

= �̂3 �{
Â∗Ȳ3,1

(
FD,Fρ

)}
/3 − �̂2 �{

Â∗Ȳ2,1
(
FD,Fρ

)}

− 2�̂�{
Â∗Ȳ1,1

(
FD,Fρ

)} + 2�{
Â∗Ȳ0,1

(
FD,Fρ

)}
, (85)

under the assumption that (FD,Fρ) = (FD[l̂(0)],Fρ[p̂(0)])
(so that Ȳk1,k2(FD,Fρ) = Ȳk1,k2 [l̂(0), p̂(0)]).

5) The initial estimates �̂(0) and �̂(0) of � � 2πδD and
� � 2πδρ as

X̂(0) = −cX/bX, (86)

with X = � and X = �, respectively.
6) The initial fine estimates

F̂(0)D = F̂(0)D,c + �̂(0)/(2π) (87)

and

F̂(0)ρ = F̂(0)ρ,c + �̂(0)/(2π) (88)

of FD and Fρ , respectively. This concludes the initialization,
which is followed by an iterative procedure whose index
i is set to 1. The ith iteration of this procedure is fed by
the estimates F̂(i−1)

D , F̂(i−1)
ρ and Â(i−1) of FD, Fρ and A,

respectively, and produces the new estimates F̂(i)D , F̂(i)ρ and
Â(i) of the same quantities (with i = 1, 2, . . . ,Nit, where
Nit is the overall number of iterations to be selected at the
beginning of the algorithm). The procedure adopted for the
evaluation of F̂(i)D , F̂(i)ρ and Â(i) consists of the two steps
described below.
1) Estimation of the normalized Doppler and the nor-

malized delay - The new estimates �̂(i) and �̂(i) of �
and �, respectively, are computed on the basis of (86);
in the evaluation of the coefficients cX and bX appearing
in that equation (with X = � and �), Â = Â(i−1) and
(FD,Fρ) = (F̂(i−1)

D , F̂(i−1)
ρ ) are assumed. Then,

F̂(i)D = F̂(i−1)
D + �̂(i)/(2π) (89)

and

F̂(i)ρ = F̂(i−1)
ρ + �̂(i)/(2π) (90)

are computed.
It is worth mentioning that an alternative to (81) for the

evaluation of Ȳk1,k2(F̃D, F̃ρ) in (82)–(85) is represented by
the use of a 2D interpolation method applied to a Il×Ip sub-
matrix16 of Ȳk1,k2 (77); the need of interpolation originates

16. In the following, IM and IN denote the interpolation orders adopted
for the first and second dimension, respectively, of that matrix.

from the fact that, in general, F̂(i−1)
D and F̂(i−1)

ρ cannot be
expressed as FD[l] and Fρ[p], respectively, with a proper
choice of the integers l and p (see (64) and (65), respectively).
2) Estimation of the complex amplitude - The new estimate

Â(i) of Â is evaluated by means of (80); in doing so, the
couple (F̂(i)D , F̂(i)ρ ) is used in place of (F̂(0)D,c, F̂

(0)
ρ,c).

After that the last step has been carried out, the index i
is incremented by one and a new iteration is started. At the
end of the last (i.e., of the Nitth) iteration, the fine estimates
F̂D = F̂(Nit)

D , F̂ρ = F̂(Nit)
ρ and Â = Â(Nit) of FD, Fρ and A,

respectively, become available and the algorithm stops.
The CSFDE algorithm represents the core of the CSFDEC

algorithm, which is used to recursively estimate the multiple
tones forming the useful component of the complex sequence
{Ĥ(RDE)m,n }, whose (m, n)th element is expressed by (58) with
K ≥ 1 and, in general, unknown. The CSFDEC algorithm is
initialized by:
1) Running the CSFDE algorithm to compute the initial

estimates F̂(0)D0
, F̂(0)ρ0 and Â(0)0 of the parameters FD0 , Fρ0

and A0, respectively, that characterize the first target.
2) Setting the recursion index i to 1 and Ȳ(0)0,0 = Ȳ0,0

(see (77) with k1 = k2 = 0).
Then, a recursive procedure is started. The ith recursion of

this procedure is fed by the vectors F̂(i−1)
D = [F̂(i−1)

D0
, F̂(i−1)

D1
,

, . . . , F̂(i−1)
Di−1

]T , F̂(i−1)
ρ = [F̂(i−1)

ρ0 , F̂(i−1)
ρ1 , · · · , F̂(i−1)

ρi−1 ]T and

Â(i−1) = [Â(i−1)
0 , Â(i−1)

1 , · · · , Â(i−1)
i−1 ]T , collecting the esti-

mates of the normalized Doppler frequency, normalized
delay and complex amplitude, respectively, of the i tones
detected and estimated in the previous recursions, and gen-
erates the new vectors F̂(i)D , F̂(i)ρ and Â(i) after: 1) estimating
the parameters F̂(i)Di , F̂

(i)
ρi and Â(i)i of the new (i.e., of the ith)

tone (if any); 2) refining the estimates of the i tones available
at the beginning of the considered recursion. The procedure
employed for accomplishing all this consists of three steps
and can be summarized as follows (further details can be
found in [32, Sec. III-B]).
1) The residual spectrum Ȳ(i)0,0 is computed by subtract-

ing from Ȳ(i−1)
0,0 the contribution given by the ith estimated

2D tone. Then, if the overall energy ε0,0[i] � ‖Ȳ(i)0,0‖2 of

the vector Ȳ(i)0,0 satisfies the inequality ε0,0[i] < T (CSFDEC)

(where T (CSFDEC) is a proper threshold), the algorithm stops
after executing step 3) (see below) and the estimate K̂ = i
of K is generated;17 otherwise, a new tone is detected and
a preliminary estimate of its parameters is obtained. Note
that, in the last case, the residual spectra {Ȳ(i)k1,k2

} (with
k1, k2 = 0, 1, 2, 3, and (k1, k2) �= (0, 0), (0, 3), (3, 0) and
(3, 3)) are computed by subtracting from each matrix of the
set {Ȳ(i−1)

k1,k2
} the contribution given to it by the ith estimated

2D tone.
2) Multiple (say, N̄it) iterations are executed to refine

the estimate of the parameters of the new tone detected

17. If K is known, the computation of the energy ε0,0[i] and its compar-
ison with a threshold are not required; in fact, in this case, the CSFDEC
algorithm stops at the end of its Kth recursion.
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in the previous step. The processing accomplished in this
step follows closely that described in the refinement part
(i.e., in the second step) of the CSFDE. For this reason, in
each iteration, a new estimate of the complex amplitude and
of the two residuals of the ith tone are computed.
3) Each of the i detected tones is re-estimated after can-

celling the leakage due to all the other (i − 1) tones. This
allows to progressively refine the amplitude, normalized
Doppler frequency and normalized delay of each tone, thus
generating the final estimates. Note that, in principle, this
re-estimation procedure can be repeated multiple (say, NREF)

times.
As already mentioned above, the CSFDEC algorithm can

also be employed in the AE. However, this requires:
1) Using Ĥ(AE)m,n (see (58)) in place of Ĥ(RDE)m,n in the

evaluation of Ĥ(k1,k2)
m,n according to (78).

2) Evaluating the initial estimate of the complex amplitude
of the strongest 2D tone as (see (80))

Â(0) = Ȳ0,0

(
F̂(0)V,c, F̂

(0)
H,c

)
, (91)

where F̂(0)V,c = FV [l̂(0)k ] and F̂(0)H,c = FH[p̂(0)k ] (see (72)
and (73), respectively) are the coarse estimates of the
normalized vertical and horizontal frequencies, respectively.
3) Replacing (84) and (85) with

b�(FV ,FH)

= −�̂3 �{
Â∗Ȳ3,2(FV ,FH)

}
/3 + �̂2 �{

Â∗Ȳ2,2(FV ,FH)
}

+ 2�̂ �{
Â∗Ȳ1,2(FV ,FH)

} − 2�{Â∗Ȳ0,2(FV ,FH)}
(92)

and

c�(FV ,FH)

= �̂3 �{
Â∗Ȳ3,1(FV ,FH)

}
/3 + �̂2 �{

Â∗Ȳ2,1(FV ,FH)
}

− 2�̂�{
Â∗Ȳ1,1(FV ,FH)

} − 2�{
Â∗Ȳ0,1(FV ,FH)

}
,

(93)

respectively.
The CSFDEC algorithm is summarized in Algorithm 2

for the case in which K is unknown. If K is known, in step
d) of the frequency estimation procedure, the evaluation of
the energy ε0,0[i] and its comparison with a threshold are
replaced by a comparison of the iteration index i with K; if
i = K, step e) is executed, otherwise i is increased by one
and the algorithm proceeds with step b).

C. POPOVIĆ ALGORITHM
The third FFT-based method (namely, Alg-P) computes the
frequency estimates through a serial refinement and can-
cellation procedure based on the computation of a set of
shifted DFT coefficients and their subsequent parabolic fit-
ting. If employed in the RDE, it is fed by the complex
sequence {Ĥ(RDE)m,n } and it is initialized by setting the target
index k to zero and H(0)m,n = Ĥ(RDE)m,n for m = 0, 1, . . . ,M− 1

Algorithm 2: CSFDEC Algorithm

Input: The matrices {Ĥ(k1,k2)
ZP ; k1, k2 = 0, 1, 2 and 3},

the overall number of iterations of the CSFDE (Nit),
the overall number of iterations in the initialization and
re-estimation phases (N̄it), the overall number of
re-estimation steps (NREF) and the detection threshold
(T (CSFDEC)).

1 Initialization:
a-Compute the matrices {Ȳk1,k2; k1, k2 = 0, 1, 2, 3}
(see (77)) and set Ȳ(0)k1,k2

= Ȳk1,k2 , with
(k1, k2) �= (0, 3), (3, 0) and (3, 3). Then, set the
recursion index i to one and the re-estimation index r
to one.

2 Frequency estimation:
b-Run the CSFDE algorithm to compute the estimates
F̂(i)Di , F̂

(i)
ρi (F̂

(i)
Vi
, F̂(i)Hi ) and Â

(i)
i on the basis of (82)–(86)

((82), (83), (86), (92) and (93)) for the RDE (AE).
c-Compute the residual spectra
{Ȳ(i)k1,k2

; k1, k2 = 0, 1, 2, 3}, with (k1, k2) �= (0, 3), (3, 0)
and (3, 3) (see [32], [Sec. III-B, eqs. (53) and (55)]).
d-Compute the energy ε0,0[i] � ‖Ȳ(i)0,0‖2; then, if
ε0,0[i] < T (CSFDEC), go to step e); otherwise increase
the recursion index i by one and go to step b).
e-If r = NREF, go to Output; otherwise, increase the
re-estimation index r by one and go to f).

3 Re-estimation cycle:
f-set Ȳ(0)k1,k2

= Ȳk1,k2 for k1, k2 = 0, 1, 2, 3 (with
(k1, k2) �= (0, 3), (3, 0) and (3, 3)); then, set the
recursion index i to one and go to b).

4 Output: 1) The estimates F̂(i)D , F̂(i)ρ (F̂(i)V , F̂(i)H ) and Â(i)

if the RDE (AE) is considered; 2) the estimate K̂ = i
of K.

and n = 0, 1, . . . ,N − 1. Then, it sequentially executes
the three steps described below for the kth target (with
k = 0, 1, . . . , K̂ − 1, where K̂ is an estimate of K).

1) 2D periodogram maximization - In this step, the coarse
estimates of the normalized Doppler frequency FDk and the
normalized range frequency Fρk are evaluated as F̂(k)D,c =
FD[l̂(0)k ] and F̂(k)ρ,c = Fρ[p̂(0)k ], respectively (see (64) and (65),
respectively); here,

(
l̂(0)k , p̂(0)k

)
= argmax

l̃∈SM0 ,p̃∈SN0

∣∣∣Y(k)[l̃, p̃]
∣∣∣
2
, (94)

and Y(k)[l, p] is defined in a similar way as Y(RDE)[l, p],
in (61), the only difference being represented by the fact
that Ĥ(RDE)m,n is replaced by H(k)m,n (the evaluation of H(k)m,n is
illustrated below).
2) Frequency refinement and amplitude estimation - In

this step, the fine estimates F̂Dk and F̂ρk of FDk and Fρk ,
respectively, are computed according to the formula (see [30,
Table 1, eqs. (10)–(11)])
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F̂X = 1

2

�NUM

�DEN
, (95)

with X = D or ρ; here,

�NUM = ψ2
X,3

(
PX,1 − PX,2

) + ψ2
X,2

(
PX,3 − PX,1

)

+ ψ2
X,1

(
PX,2 − PX,3

)
, (96)

�DEN = ψX,3
(
PX,1 − PX,2

) + ψX,2
(
PX,3 − PX,1

)

+ ψX,1
(
PX,2 − PX,3

)
, (97)

ψX,i � δX,c + (i − 2)/(2Q0) (with i = 1, 2 and 3), Q = M
(Q = N) if X = D (if X = ρ),

δD,c � F̂D,c + 1

π
arctan(tan(π/M0)�{�D}), (98)

δρ,c � F̂ρ,c + 1

π
arctan

(
tan(π/N0)�

{
�ρ

})
, (99)

�D �
Y(k)

(
l̂− 1, p̂

) − Y(k)
(
l̂+ 1, p̂

)

2Y(k)
(
l̂, p̂

) − Y(k)
(
l̂− 1, p̂

) − Y(k)
(
l̂+ 1, p̂

) ,
(100)

�ρ �
Y(k)

(
l̂, p̂− 1

) − Y(k)
(
l̂, p̂+ 1

)

2Y(k)
(
l̂, p̂

) − Y(k)
(
l̂, p̂− 1

) − Y(k)
(
l̂, p̂+ 1

) ,
(101)

PD,i �
∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

Ĥ(RDE)m,n exp
(−j2π(

mψD,i − nψr,2
))

∣∣∣∣∣
(102)

and

Pρ,i �
∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

Ĥ(RDE)m,n exp
(−j2π(

mψD,2 − nψρ,i
))

∣∣∣∣∣,

(103)

with i = 1, 2 and 3. Finally, an estimate of the com-
plex amplitude Ak is evaluated on the basis of (80), where
(F̂(0)D,c, F̂

(0)
ρ,c) is replaced by (F̂Dk , F̂ρk).

3) Target cancellation - In this step, the contribution of
the (k + 1) previously detected targets is subtracted from
{Ĥ(RDE)m,n }; this produces the 2D residual sequence {H(k+1)

m,n },
where

H(k+1)
m,n � Ĥ(RDE)m,n −

k∑
i=0

Âi am
(
F̂Di

)
an

(−F̂ρi
)
, (104)

with m = 0, 1, . . . ,M−1 and n = 0, 1, . . . ,N−1. Then, the
residual spectrum Y(k+1) � [Y(k+1)[l, p]] is computed; the
expression of the element (l, p) of this M0 × N0 matrix is
obtained from that of Y(RDE)[l, p], in (61), by simply replac-
ing Ĥ(RDE)m,n with H(k+1)

m,n (additional details can be found in
the description of the sinousoid removal step available in
[30, Table 2, eq. (12)–(13)]). If the energy ε[k + 1] �
‖Y(k+1)‖2 is smaller than T (P), where T (P) is a proper
threshold, the algorithm stops and the estimate K̂ = k + 1
of K is generated; otherwise, k is increased by one and the
three steps described above are accomplished again.

The use of Alg-P in the AE requires the following
modifications: 1) the spectral coefficient Y(k)[l̃, p̃] appear-
ing in the RHS of (94) is still expressed by (69), where,
however, Ĥ(AE)m,n is replaced by

H(k+1)
m,n � Ĥ(AE)m,n −

k∑
i=0

Âi am
(−F̂Vi

)
an

(−F̂Hi
)
; (105)

2) formula (95) (with X = V or H) is employed to compute
the estimates F̂Hk and F̂Vk of FHk and FVk , but the quantities

PH,i �
∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

Ĥ(AE)m,n exp
(
j2π

(
mψV,2 + nψH,i

))
∣∣∣∣∣
(106)

and

PV,i �
∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

Ĥ(AE)m,n exp
(
j2π

(
mψV,i + nψH,2

))
∣∣∣∣∣
(107)

are used in place of Pρ,i (103) and PD,i (102), respectively.
A schematic description of Alg-P is provided in [30, Sec. 3,
Tables 1 and 2].

D. MODIFIED FAN ALGORITHM
The fourth FFT-based method (namely, the MFA) results
from: 1) adapting the estimation algorithm devised in [33]
to the signal model expressed by (58); 2) including zero-
padding in the initialization of the 2D periodogram method
(see Section IV-A). The processing accomplished by the
proposed algorithm evolves through the following two con-
secutive steps; note that, in this case, an estimate, denoted
K̂, of the overall number of targets is required.
1) 2D periodogram maximization - In this step the 2D

periodogram is maximized (see our description of the 2D
periodogram method in Section IV-A) in order to evaluate the
coarse estimates F̂Dk,c and F̂ρk,c of the normalized Doppler
frequency FDk , in (35), and the normalized range frequency
Fρk , in (36), respectively, with k = 0, 1, . . . , K̂ − 1.

2) Frequency refinement - First, the fine estimates of
normalized Doppler frequency FDk and the normalized range
frequency Fρk are evaluated as

F̂Dk = F̂Dk,c − �̂Dk (108)

and

F̂ρk = F̂ρk,c + �̂ρk (109)

respectively, where
(
�̂Dk , �̂ρk

)
� argmax(

�̃Dk ,�̃ρk

)
∈ID(M0)×Iρ(N0)

Jk
(
�̃Dk , �̃ρk

)
,

(110)

with k = 0, 1, . . . , K̂ − 1, �̃Dk (�̃ρk) represents the trial
variable for the residual �Dk (�ρk), ID(M0) (Iρ(N0)) is the
search domain for �Dk (�ρk),
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Jk
(
�̃Dk , �̃ρk

)

�
∥∥∥fHM

(
F̂Dk,c

)
�M

(
�̃Dk

)
Ĥ(RDE)�N

(
�̃ρk

)
gN

(
F̂ρk,c

)∥∥∥
2

(111)

is the cost function selected for the considered estimation
problem (see [33, Sec. III, eq. (31)]),

fM(FD) �
1

M

[
exp(j2π(M/2)FD), . . . , 1, exp(−j2πFD) ,

, . . . , exp(−j2π(M/2 − 1)FD)
]T , (112)

gN
(
Fρ

)
� 1

N

[
1, exp

(
j2πFρ

)
, . . . , exp

(
j2π(N − 1)Fρ

)]T

(113)

and

�X

(
�Qk

)
� diag

{[
1, exp

(
j2π�Qk

)
,

. . . , exp
(
j2π

(
X − 1

)
�Qk

)]}
, (114)

with Q = D (Q = ρ) if X = M (if X = N). Then, the
estimate

Âk � fHM
(
F̂Dk

)
Ĥ(RDE)gN

(
F̂ρk

)
(115)

of the complex amplitude characterizing the kth target is
evaluated (with k = 0, 1, . . . , K̂ − 1). It is important to
point out that the search domain ID(M0) (Iρ(N0)) selected
in our computer simulations consists of NFD (NFρ ) equally
spaced numbers belonging to the interval [−1/M0, 1/M0]
([−1/N0, 1/N0]); this interval covers two adjacent bins of the
periodogram computed in the initialization of the algorithm.
The use of the MFA in the AE block requires the following

changes:
1) The 2D periodogram method processes the spectral

matrix Y(AE), in (68), (in place of Y(RDE), in (59)) to
produce the coarse estimates F̂Hk,c and F̂Vk,c of the normal-
ized frequencies FHk (33) and FVk (34), respectively (with
k = 0, 1, . . . , K̂ − 1).

2) The fine estimates of FHk and FVk are evaluated as
F̂Hk = F̂Hk,c+�̂Hk and F̂Vk = F̂Vk,c+�̂Vk , respectively. The
estimates of the residuals �̂Hk and �̂Vk represent the solu-
tion of an optimization problem formally identical to (110),
where, however, Jk(�̃Dk , �̃ρk) is replaced by

Jk
(
�̃Vk , �̃Hk

)

�
∥∥∥fHM

(
F̂Vk,c

)
�M

(
�Vk

)
Ĥ(AE)�N

(
�Hk

)
fN

(
F̂Hk,c

)∥∥∥
2
,

(116)

where

fX
(
FQ

)
� 1

X

[
exp

(−j2π(X/2)FQ
)
, . . . , 1, exp

(
j2πFQ

)
,

. . . , exp
(
j2π(X/2 − 1)FQ

)]T , (117)

with Q = V (Q = H) if X = M (if X = N). Finally, the
estimate

Âk � fHM
(
F̂Vk

)
Ĥ(AE)fN

(
F̂Hk

)
(118)

Algorithm 3: Modified Fan Algorithm (MFA)

Input: The matrix Ĥ(RDE) (Ĥ(AE)) if the RDE (AE) is
considered and an estimate of the overall number of
targets (K̂).

1 Initialization:
a-Compute the coarse estimates F̂Dk,c and F̂ρk,c (F̂Vk,c
and F̂Hk,c), if the RDE (AE) is considered, by resorting
the 2D periodogram method.

2 Refinement procedure:
for k = 0 to K̂ − 1 do

b-Compute the fine estimates F̂Dk = F̂Dk,c − �̂Dk
and F̂ρk = F̂ρk,c + �̂ρk (F̂Hk = F̂Hk,c + �̂Hk and
F̂Vk = F̂Vk,c + �̂Vk) if the RDE (AE) is considered.
The quantities (�̂Dk , �̂ρk) ((�̂Hk , �̂Vk)) result from
solving the optimization problem (110) with the
cost function (111) (116) for the RDE (AE).
c-Compute the amplitude estimate Âk through (115)
(118) for the RDE (AE).

end
Output: The set of estimates
{(F̂Dk , F̂ρk , Âk); k = 0, 1, ..., K̂ − 1}
({(F̂Hk , F̂Vk , Âk); k = 0, 1, ..., K̂ − 1}) for the RDE
(AE).

of the complex amplitude characterizing the kth target is
evaluated (with k = 0, 1, . . . , K̂ − 1).

The MFA is summarized in Algorithm 3.

E. Q-SHIFT ESTIMATOR
The fifth FFT-based algorithm (namely, the QSE) has been
proposed by [31] to estimate the frequency of a 2D com-
plex tone in the presence of AWGN. Similarly to the MFA,
this estimator makes use of the 2D periodogram method for
coarse frequency estimation and requires prior knowledge of
the overall number of targets; however, it exploits a differ-
ent method for frequency refinement. In fact, the last task is
accomplished by a serial procedure that requires the evalua-
tion of the DFT coefficients located at the relevant frequency
bins shifted by a quantity q ∈ [−0.5, 0.5]. In practice, the
final estimates of the normalized frequencies FDk (35) and
Fρk (36) are evaluated as

F̂Qk = F̂Qk,c + δ̂Qk/X, (119)

with Q = D (Q = ρ) if X = M (if X = N); here, F̂Qk,c is
a coarse estimate of FQk and δ̂Qk is an estimate of the
associated residual. In the QSE, F̂Dk,c (F̂ρk,c) is evaluated
according to (64), (65) with l = l̂(RDE)k (with p = p̂(RDE)k )

and the couple (l̂(RDE)k , p̂(RDE)k ) is provided by the 2D peri-
odogram method for the RDE (see Section IV-A). The
estimation of the residuals (δ̂Dk , δ̂ρk), instead, is accom-
plished by an iterative procedure; this is initialized by
setting the initial estimates of the residuals (namely, δ̂(0)Dk
and δ̂(0)ρk ) to zero and the iteration index i to 1. In the ith
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iteration (with i = 1, 2, . . . ,Nit, where Nit is the overall
number of iterations), the new estimate of the residual δ̂(i)Xk
is computed as

δ̂
(i)
Xk

= δ̂
(i−1)
Xk

+ 1

cX(qX)
�

{
S(i)+qX − S(i)−qX
S(i)+qX + S(i)−qX

}
, (120)

with X = D or ρ, and k = 0, 1, . . . , K̂ − 1; here, K̂ denotes
our estimate of K,

S(i)±qD �
M−1∑
m=0

N−1∑
n=0

Ĥ(RDE)m,n exp
(−j2π(

mϒ±1,qD − nϒ0,qρ

))

(121)

and

S(i)±qρ �
M−1∑
m=0

N−1∑
n=0

Ĥ(RDE)m,n exp
(−j2π(

mϒ0,qD − nϒ±1,qρ

))

(122)

are the DFT coefficients evaluated with small shifts (quan-
tified by the real parameters qD and qρ) with respect
to the periodogram peak associated with the couple
(l̂(RDE)k , p̂(RDE)k ). Moreover,

ϒz,qD �
(
l̂(RDE)k F̄D + δ̂

(i−1)
Dk

+ zqD

M

)
(123)

and

ϒz,qρ �
(
p̂(RDE)k F̄ρ + δ̂

(i−1)
ρk + zqρ

N

)
(124)

are the normalized frequencies associated with the shifts qD
and qρ , respectively, z is an integer belonging to the set
{0,±1}, and

cD(qD) �
1 − πqD cot(πq)

q cos2(πq)
(125)

and

cρ
(
qρ

)
� 2π

sin
(
2πqρ

) (126)

are correction factors. The final estimates of the residuals
(δ̂Dk and δ̂ρk) are evaluated as δ̂Dk = δ̂

(Nit)
Dk

and δ̂ρk = δ̂
(Nit)
ρk ,

respectively.
The use of the QSE in the AE requires the following

modifications:
1) The final estimates of the normalized frequencies FHk

and FVk are evaluated through (119), where X = N (X = M)
if Q = H (if Q = V). Moreover, the coarse estimate
F̂Hk,c (F̂Vk,c) appearing in that formula is evaluated on
the basis of (72), (73) with p = p̂(AE)k (with l = l̂(AE)k );
here, (l̂(AE)k , p̂(AE)k ) denotes the couple of spectral indexes
provided by the 2D periodogram method for the AE (see
Section IV-A).

2) The computation of the residuals δ̂Hk and δ̂Vk is still
based on (120) (with X = H or V), but (122) and (121) are
replaced by

S(i)±qH �
M−1∑
m=0

N−1∑
n=0

Ĥ(AE)m,n exp
(
j2π

(
m�0,qV + n�±1,qH

))
,

(127)

and

S(i)±qV �
M−1∑
m=0

N−1∑
n=0

Ĥ(AE)m,n exp
(
j2π

(
m�±1,qV + n�0,qH

))

(128)

respectively; here,

�z,qH �
(
p̂(RDE)k F̄H + δ̂

(i−1)
Hk

+ zqH

N

)
(129)

and

�z,qV �
(
l̂(RDE)k F̄V + δ̂

(i−1)
Vk

+ zqV

M

)
(130)

are the normalized frequencies associated with the shifts qH
and qV , respectively, and z is an integer belonging to the
set {0,±1}. Moreover, the correction factors cX(qX) (with
X = H or V) are both computed according to (126).

A schematic description of the QSE is provided in
[31, Sec. IV, Algorithm 2].

F. EXTENDED LEE ALGORITHM
The last algorithm (namely, the ELA) has been originally
proposed in [27, Sec. III] to perform azimuth estimation in
a MIMO radar equipped with a uniform linear array (ULA)
and is based on an ML approach. However, in our work, the
following modifications have been made:
1) The original algorithm, being developed to estimate the

frequencies of 1D tones, has been adapted to the 2D signal
model expressed by (58), so making its use possible in both
the RDE and the AE.
2) An iterative procedure for frequency refinement has

been added. In each iteration of this procedure, the grid
adopted in the search for the frequency estimate of a given
target is adjusted to improve the achieved accuracy.
3) The 2D periodogram method has been employed for the

initialization of the ELA; in the original algorithm, instead,
the frequency estimates are initialized to zero for all the
detected targets.
The ELA is fed by the 2D sequence {Ĥ(RDE)m,n }; in its ini-

tialization, this sequence is processed by the 2D periodogram
method to evaluate the initial estimates F̂(0)Dk , F̂

(0)
ρk and Â(0)k

of FDk , Fρk and Ak, respectively, with k = 0, 1, . . . , K̂ − 1
(being K̂ a preliminary estimate of the overall number of
targets K), and the iteration index i is set to one. Then,
the refinement procedure is started. In its ith iteration (with
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i = 1, 2, . . . ,Nit, where Nit is the overall number of iter-
ations), the new estimates F̂(i)Dk and F̂(i)ρk of FDk and Fρk ,
respectively, are evaluated as

(
F̂(i)Dk , F̂

(i)
ρk

)
= argmax(

F̃Dk ,F̃ρk

)

∈I(i)FD
(
NFD

)×I(i)Fρ
(
NFρ

)

∣∣∣J(i)(F̃Dk , F̃ρk
)∣∣∣

2
,

(131)

with k = 0, 1, . . . , K̂ − 1; here,

J(i)
(
F̃Dk , F̃ρk

)
�

a
(
F̃Dk , F̃ρk

)HR−1H̄

a
(
F̃Dk , F̃ρk

)HR−1a
(
F̃Dk , F̃ρk

) (132)

is the ML cost function evaluated for the trial couple
(F̃Dk , F̃ρk), a(F̃Dk , F̃ρk) � a(F̃Dk)⊗ a(−F̃ρk),

aQ(FX) �
[
1, exp(j2πFX), . . . , exp(j2π(Q− 1)FX)

]T
(133)

is a steering vector, H̄ � [H0,H1, . . . ,HM−1]
is a (MN)-dimensional row vector, Hm �
[Ĥ(RDE)m,0 , Ĥ(RDE)m,1 , . . . , Ĥ(RDE)m,N−1] (with m = 0, 1, . . . ,M − 1)
and R = σ 2

HIMN represents the covariance matrix
of the Gaussian measurement noise, whose sam-
ples have variance σ 2

H (σ 2
H = MN can be selected as

the first attempt guess of the noise variance of H̄;
see [27, Sec. (III), eq. (21)]). Moreover, the search grid
in (131) results from the Cartesian product of the sets18

I(i)FD(NFD) � {F̃(i)D [zD]; zD = 0, 1, . . . ,NFD − 1} and

I(i)Fρ (NFρ ) � {F̃(i)ρ [zρ]; zρ = 0, 1, . . . ,NFρ − 1}. This grid
has the following relevant properties: 1) its center depends
on both F̂(i−1)

Dk
and F̂(i−1)

ρk ; 2) its step sizes get smaller
as i increases. More precisely, its node (zD, zρ) (with
zD = 0, 1, . . . ,NFD − 1 and zρ = 0, 1, . . . ,NFρ − 1) is

associated with the frequencies (F̃(i)D [zD], F̃(i)ρ [zρ]), where

F̃(i)X [zX] = FX,min + (
zX/

(
NFX − 1

))
(δX/i), (134)

if FX,min ≤ F̂(i−1)
Xk

< FX,min + δX ,

F̃(i)X [zX] = F̂(i−1)
Xk

+ ((
zX/

(
NFX − 1

)) − 1/2
)
(δX/i),

(135)

if FX,min + δX ≤ F̂(i−1)
Xk

≤ FX,max − δX and

F̃(i)X [zX] = FX,max + ((
zX/

(
NFX − 1

)) − 1
)
(δX/i),

(136)

if FX,max − δX < F̂(i−1)
Xk

≤ FX,max, with X = D or ρ.
Moreover, δX = 1/M0 (δX = 1/N0) is selected if X = D
(if X = ρ), so that, when i = 1, two adjacent bins of
the spectrum considered in coarse frequency estimation are
covered.

18. The dependence of I(i)FD , I
(i)
Fρ

and F̃(i)X [z] on the target index k is not
shown in the following three equations to ease notation.

Algorithm 4: Extended Lee Algorithm (ELA)

Input: The matrix Ĥ(RDE) (Ĥ(AE)) for the RDE (AE),
the overall number of iterations in frequency
refinement (Nit) and an estimate of the overall number
of targets (K̂).

1 Initialization: Evaluate the estimates (F̂(0)Dk , F̂
(0)
ρk , Â

(0)
k )

(F̂(0)Hk , F̂
(0)
Vk
, Â(0)k ) by finding K̂ peaks in the spectrum

(61) (69) for the RDE (AE).
2 Refinement: for k = 0 to K̂ − 1 do

for i = 1 to Nit do
a-Compute the estimates (F̂(i)Dk , F̂

(i)
ρk ) (F̂

(i)
Vk
, F̂(i)Hk )

by means of (131).
end
b-Evaluate the kth target amplitude as
Âk = J(Nit)(F̂(Nit)

Dk
, F̂(Nit)

ρk ) for the RDE or

Âk = J(Nit)(F̂(Nit)
Vk

, F̂(Nit)
Hk

) for the AE (see (132)).
end
Output: The estimates (F̂(Nit)

Dk
, F̂(Nit)

ρk , Â(i)k )

((F̂(Nit)
Hk

, F̂(Nit)
Vk

, Â
(Nit)
k )) for the kth target (with

k = 0, 1, ..., K̂ − 1) if the RDE (AE) is considered.

At the end of the last (namely, the Nitth) iteration, an esti-
mate of the complex amplitude of the kth target is evaluated
as Âk = J(Nit)(F̂(Nit)

Dk
, F̂(Nit)

ρk ) (see (132)).
The ELA can also be employed in the AE; its formulation

for the last block can be easily derived from that illustrated
above for the RDE by simply replacing Ĥ(RDE)m,n , FD and Fρ
with Ĥ(AE)m,n , −FV and FH , respectively.

The ELA is summarized in Algorithm 4.

V. COMPUTATIONAL COMPLEXITY
In this section, the computational cost of the DRAEC strat-
egy and of the estimation algorithms exploited by it is
analyzed in terms of the floating point operations (FLOPs)
to be executed when K targets are detected and estimated.
In general, the complexity of the DRAEC technique is
approximately of order O(NDRAEC), where

NDRAEC = NRDE + NCAE + NAE + NCRDE + N̄RDE. (137)

In the last formula, the terms NRDE and NAE represent the
number of FLOPs required by the RDE and the AE, respec-
tively, whereas N̄RDE refers to the number of FLOPs required
by the second instance of the RDE for the refinement of the
range-Doppler estimates. Moreover, NCAE = 4KMN NT NR
and NCRDE = 4KMN NT NR represent the costs due
to range-Doppler and angular compensation through (49)
and (53), respectively. The expressions of the terms NRDE,
NAE and N̄RDE depend on the choice of the detection & esti-
mation algorithm employed by the RDE and AE; our main
results about the computational complexity of the algorithms
described in the previous section are summarized below.
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2D periodogram method - The computational complexity
of this method is O(C2D−FFT), where

C2D−FFT = M0N0 log2(M0N0)+ KM0N0. (138)

If spectral interpolation is used, the term

Cint = K
(
IlIp + NlNp

)
(139)

has to be added to C2D−FFT , in (138); here, Il (Ip) is the num-
ber of nodes employed along the first (second) dimension,
whereas Nl (Np) is the resulting number of points evaluated
by means of interpolation for the first (second) dimension.
CSFDEC algorithm - The computational complexity of

this method is O(CCSFDEC), where (see [32, Sec. III-C])

CCSFDEC = 13M0N0 log2(M0N0)+ 13K2NREFNitIMIN .

(140)

In the last formula, NREF, Nit, IM (IN) are the overall number
of re-estimations, the overall number of iterations accom-
plished in the evaluation of the residuals appearing in (86)
and the interpolation order adopted for the first (second)
dimension of the considered spectrum in (77), respectively.
Alg-P - Unlike the CSFDEC algorithm, this algorithm

does not operate in an iterative fashion, performs time
domain cancellation and re-computes the spectral residual
after each cancellation step in order to get ready for the
detection of a new target (if any). For these reasons, its
computational complexity is O(CALG−P), where

CALG−P = K(Cinit + CP + Ccanc). (141)

In the last formula, Cinit = M0N0 log2(M0N0) + M0N0 is
the contribution due to step 1) of Alg-P (i.e., to the 2D
periodogram maximization), CP = CPM +CPN (with CPM =
CPN = 12MN) is the cost originating from the computation
of the spectral samples for the first and second frequency
of the kth target (see (102) and (103), respectively) and
Ccanc = KMN is the contribution due to cancellation in the
time domain. Note that the initialization cost depends on
the number of targets K; this is due to the fact that the
residual spectrum for the coarse estimation of a new target
is evaluated after each time domain cancellation (see (94)).
MFA - The initialization phase of this algorithm relies,

similarly as both the CSFDEC algorithm and the Alg-P, on
the 2D periodogram method; however, since the MFA does
not include a cancellation procedure, the search for K local
maxima in the periodogram is required in order to acquire
K coarse frequency estimates. Moreover, the initialization is
followed by a frequency refinement process, which is sequen-
tially repeated for each target. Therefore, the computational
complexity of the MFA is O(CMFA), where

CMFA = Cinit + KCref. (142)

In the last formula, Cinit is equal to C2D−FFT , in (138),
(initialization cost) and Cref = 16MNNFDNFρ (Cref =
16MNNFVNFH ) is the cost of the refinement step, being NFD

and NFρ (NFV and NFH ) the number of trial values charac-
terizing the grid selected for FD and Fρ (FV and FH) if the
RDE (AE) is considered.
QSE - Similarly to the MFA and the ELA, this algo-

rithm evaluates first the coarse estimates of K targets through
the 2D periodogram method. The frequency refinement step
requires evaluating (120) Nit times for each target. Therefore,
the computational complexity of the QSE is O(CQSE), where

CQSE = Cinit + KNitCref. (143)

In the last formula, Cinit is the initialization cost (which is
equal to that of the same step of the MFA and the ELA),
Nit represents the overall number of iterations carried out to
evaluate (120) and Cref = 8MN is the complexity due to the
computation of the DFT coefficients required to solve the
last referred equation.
ELA - The initialization of this algorithm is based on the

2D periodogram method and is followed by the frequency
refinement step, which requires solving (131) Nit times for
each target. Therefore, the computational complexity of the
ELA is O(CELA), where

CELA = Cinit + KNitCref. (144)

In the last formula, Cinit is equal to C2D−FFT , in (138), (being
the cost of 2D periodogram method), Nit is the number of
iterations carried out to refine the estimates of each target
and Cref = 16(M2 + N2 + MN)NFDNFρ (Cref = 16(M2 +
N2 + MN)NFVNFH ) represents the cost of each iteration of
the refinement step, being NFD and NFρ (NFV and NFH )
the sizes of the grid for the refinement of FD and Fρ (FV
and FH), respectively, if the RDE (AE) is considered.

VI. NUMERICAL RESULTS
In our work, seven different embodiments of the DRAEC
strategy are compared in terms of computational effort and
estimation accuracy achieved in various scenarios. In each
embodiment, the same algorithm for the detection and esti-
mation of 2D complex tones is employed in both the RDE
and the AE, and the RDE is executed for the second time
after that the AE has estimated the DoA (i.e., both the
azimuth and the elevation) of all the detected targets in
order to generate a finer estimate19 of their range and veloc-
ity. For this reason, in the following, the acronyms FFT0
(FFTi), CSFDEC, Alg-P, MFA, QSE and ELA are adopted
to identify the embodiments employing the 2D periodogram
method without spectral interpolation (with spectral inter-
polation), the CSFDEC algorithm, the Alg-P, the MFA, the
QSE and the ELA, respectively. It is important to point out
that embedding these algorithms in the DRAEC allows us to
compare state-of-the-art estimators, in terms of accuracy and
complexity, in a 4D radar imaging problem and, in particu-
lar, to assess their performance in the estimation of specific
parameters of multiple targets.

19. Note that the performance of the second instance of the RDE is
affected by the estimation errors introduced by the AE.

1534 VOLUME 4, 2023



In the following, we also assume that:
1) The considered radar system is equipped with a TX

HULA (RX VULA) consisting of NT = 8 (NR = 8) ele-
ments, whose spacing, as already mentioned in Section II,
is dt = λ/2 (dr = λ/2); consequently, the structure of its
virtual array is described by Fig. 2.

2) The OFDM modulation employed by the radar system is
characterized by the following parameters: a) overall number
of subcarriers N = 512; b) overall number of OFDM sym-
bols/frame M = 64; c) subcarrier spacing �f = 250 kHz;
d) cyclic prefix duration TG = 12.5 μs (consequently, the
OFDM symbol duration is Ts = 1/�f + TG = 16.5 μs);
e) carrier frequency fc = 79 GHz (consequently, the carrier
wavelength is λ = c/fc = 3.8 mm); f) cardinality of the PSK
constellation Ns = 4.

In our simulations, four different scenarios have been
considered. The first three scenarios share the following
features:
1) They are characterized by a couple of targets (i.e.,

by K = 2), whose echoes have a unitary amplitude (so that
|A0| = |A1| = 1). The range R0, the velocity v0, the normal-
ized vertical frequency20 FV0 and the normalized horizontal
frequency FH0 of the first target are mutually independent
and uniformly distributed random variables (the interval
characterizing the uniform distribution of these variables is
denoted (Xmin,Xmax) in the following, with X = R, v, FV or
FH).21 The same parameters for the second target (namely,
R1,v1, FV1 and FH1), instead, depend on those of the first
one, since they are evaluated as

X1 = X0 + Xbin Xres, (145)

where X = R, v, FV or FH , and Xbin and Xres rep-
resent the normalized target spacing and the reso-
lution, respectively, of the radar system along the
X dimension; moreover, Rres = c/(2N�f ) = 1.1719 m,
vres = λ/(2MTs) = 1.798 m/s, FVres = 1/NR = 0.125 and
FHres = 1/NT = 0.125 denote the resolutions in the range,
velocity, normalized vertical frequency and normalized hor-
izontal frequency domains, respectively.
2) The signal-to-noise ratio22

SNR �
K−1∑
k=0

|Ak|2/σ 2
W , (146)

at the RX side varies from −20 to 20 dB.
However, the first three scenarios differ for the values

selected for the parameters Xmin, Xmax and Xbin, with X = R,
v, FV and FH . In fact, we have that:
1) In the first scenario (denoted S1), (Rmin,Rmax) =

(0, 10) m, (vmin, vmax) = (0, 2.78) m/s, (FVmin ,FVmax) =
20. Note that, given the normalized spatial frequencies FV and FH char-

acterizing a given target, target elevation θ and azimuth φ can be easily
computed on the basis of (33) and (34), respectively.

21. In all the scenarios, target parameters have been generated by means
of the function rand available in MATLABR2022b.

22. Note that σ 2
W represents the variance of the noise sample W̄(pa,q)

m,n
appearing in the RHS of (40).

(0, 0.1754), (FHmin ,FHmax) = (−0.1761, 0.1761), Rbin =
vbin = 3 and FVbin = FHbin = 2.
2) In the second scenario (denoted S2), the intervals

(FVmin ,FVmax) and (FHmin ,FHmax) are the same as S1, but
(Rmin,Rmax) = (10, 20) m, (vmin, vmax) = (2.78, 5.56) m/s,
Rbin = vbin = 0 and FVbin = FHbin = 2.2.

3) In the third scenario (denoted S3), the intervals
(Rmin,Rmax) and (vmin, vmax) are the same as S2,
but (FVmin,FVmax) = (0, 0.3566), (FHmin ,FHmax) =
(−0.3623, 0.3623), Rbin = vbin = 3 and FVbin = FHbin = 0.

The fourth scenario (denoted S4), instead, has the follow-
ing characteristics:
1) Its overall number of targets is varying (in particular,

K ∈ {1, 2, . . . , 5}).
2) The range R0, the velocity v0, the normalized vertical

frequency FV0 and the normalized horizontal frequency FH0

of the first target are mutually independent and uniformly
distributed random variables; the intervals (Rmin,Rmax),
(vmin, vmax) and (FVmin ,FVmax) selected for R0, v0 and FV0 ,
respectively, are the same as S2, whereas the interval
(FHmin ,FHmax) = (−0.7765, −0.5534) is chosen for FH0 .
3) The amplitude of the kth target (with k = 0, 1, . . . ,

K − 1) is unitary.
4) The range Rk, velocity vk, normalized vertical frequency

FVk and normalized horizontal frequency FHk of the kth
target (with k = 1, 2, . . . ,K − 1) are evaluated as Xk =
X0 + k Xbin Xres, with X = R, v, FV or FH (the parameters
Xbin and Xres have been already defined; see (145)); here,
Rbin = vbin = 1.8 and FVbin = FHbin = 0.7.

5) The SNR is fixed and set to 10 dB. The selection of the
four scenarios defined above can be motivated as follows.
On the one hand, the first scenario allows us to compare
the considered embodiments of the DRAEC strategy in the
presence of two targets whose spacing in the range, velocity
and angular domains is fixed, but not small. On the other
hand, in the second (third) scenario, we still focus on the
case of two targets, but assume that they are overlapped in
range and velocity (azimuth and elevation) domains, whereas
they are well spaced in the azimuth and elevation (range and
velocity) domains. The fourth scenario, instead, allows us to
assess the impact of a variable number of targets on the
estimation accuracy; note that such targets are quite close in
the azimuth and elevation domains, but are fairly spaced in
the range and velocity domains.
In our simulations,23 the following choices have been also

made:
1) The overall number of targets (i.e., K) has been always

assumed to be known. This entails that, none of the 2D esti-
mators employed in the DRAEC strategy requires setting a
specific threshold. Note, however, that the target configu-
ration is unknown at the RX side; for instance, the radar
receiver is unaware of the existence of targets characterized

23. All the simulations have been performed on MATLAB R2022b,
running on a personal computer equipped with an i7 processor.

VOLUME 4, 2023 1535



MIRABELLA et al.: DETERMINISTIC ALGORITHMS FOR 4D IMAGING IN COLOCATED MIMO

by the same parameters in some domain (e.g., by the same
DoA).
2) In the first three scenarios, the estimation accuracy

achieved by each embodiment of the DRAEC strategy has
been assessed by evaluating the root mean square error
(RMSE)

RMSEX � 1

Nr

Nr−1∑
t=0

√√√√ 1

K

K−1∑
k=0

(
X̂k[t] − Xk

)2
(147)

for the range (X = R), velocity (X = v), azimuth (X = θ)

and elevation angle (X = φ) of the considered targets; here,
X̂k[t] denotes the estimate of the parameter Xk evaluated for
the kth target in the tth Monte Carlo run and Nr is the overall
number of Monte Carlo runs. Moreover, in applying the last
formula, the parameters of the K targets and the estimates
generated for them have been ordered on the basis of their
range (in particular, according to an ascending order, i.e.,
from minimum to maximum range).
3) In the fourth scenario, instead, the estimation accuracy

achieved by each embodiment of the DRAEC strategy has
been assessed by evaluating the normalized RMSE

NRMSEX � RMSEX
CRLBX

, (148)

with X = R, v, FV and FH ; here, CRLBX denotes the
Cramer-Rao Lower Bound (CRLB) for the estimation of
X (the evaluation of the CRLB for the considered scenarios
is illustrated in the Appendix-A). Note that the adoption of
NRMSEX , in (148), as a performance index allows us to
fairly compare the estimation accuracy of each algorithm
achieved in the presence of a variable number of targets and
its computation is done for each SNR value.
4) The detection thresholds adopted in the inequalities (47)

and (52) have not been selected, being K known. In practice,
the RDE, in its first instance, searches for K(RDE) = K
targets (i.e., K range-Doppler bins). Then, the AE identifies
K(AE) ≥ K targets, orders them according to a decreasing
perceptual importance and discards the last (K(AE) − K) of
them.
5) In all the considered scenarios, the oversampling fac-

tors L(RDE)1 = L(RDE)2 = 4 (L(AE)1 = L(AE)2 = 8) have been
adopted for the RDE (for the AE), independently of the
employed frequency estimation algorithm; consequently,
according to (62), (63), (70), (71), we have that M0 = 512
(M̄0 = 64) and N0 = 2048 (N̄0 = 64).
In addition, in all the considered scenarios, the follow-

ing choices have been made for the parameters of the 2D
complex tone estimators.
2D periodogram method with interpolation - Orders

Il = Ip = 7 have been adopted for the spectral interpolation
accomplished in both the RDE and the AE, and a grid of size
Nl × Np = 251 × 251 is selected in the serial refinement of
the target estimates.
CSFDEC algorithm - Number of iterations carried out in

the evaluation of the residuals N(RDE)it = 30 (N(AE)it = 35),

number of re-estimations N(RDE)REF = 3 (N(AE)REF = 3) and inter-
polation orders along the two dimensions of the spectral
components I(RDE)M = I(RDE)N = 7 (I(AE)M = I(AE)N = 7) for
the RDE (for the AE).
MFA - Number of trial values employed in (111) (in (116))

NFD = NFρ = 51 (NFV = NFH = 51) for the RDE (for the
AE).
QSE - Number of iterations for frequency refinement

N(RDE)it = 20 (N(AE)it = 20) and q-shifts qD = qρ = 0.031
(qV = qH = 0.25) for the RDE (for the AE).
ELA - Number of iterations accomplished to refine target

estimates N(RDE)it = 7 (N(AE)it = 7) and number of trial values
employed in (132) NFD = NFρ = 15 (NFV = NFH = 15) for
the RDE (for the AE).
Some numerical results referring to S1 are shown in

Fig. 4, where the performance index RMSEX (with X = R,
v, θ or φ) characterizing all the considered algorithms is
shown for SNR ∈ [ − 20, 20] dB (in these figures and
in all the following ones, simulation results are repre-
sented by labels, whereas continuous and dotted lines are
drawn to ease reading). From these results, it is easily
inferred that:
1) The FFT0 is outperformed by all the other methods;

note also that the floor observed in the RMSE performance
of this embodiment is due to the discretization of the grid
(see (76)) employed in the RDE and in the AE (see (61)
and (69), respectively).
2) The CSFDEC and the Alg-P achieve very good accu-

racy (close to the CRLB) thanks to their use of cancellation
and refinement procedures.
3) The QSE performs similarly to the Alg-P (FFTi) in

range (angle) estimation and similarly to the CSFDEC in
velocity estimation.
4) The FFTi takes advantage of peak interpolation, so

achieving an estimation accuracy similar to that of the MFA
and of the ELA in angular estimation. These considerations,
together with those illustrated at point 3), also apply to S2
and S3.
5) The RMSE curves for the FFTi, the MFA and the ELA

exhibit a floor at high SNRs. This is due to the fact that the
accuracy of the FFTi estimator and the MFA is intrinsically
limited by the discretization of their search grid. Further sim-
ulation results have evidenced that enlarging the set of trial
values improves estimation accuracy; however, this result is
achieved at the price of higher computational complexity.
As far as the ELA is concerned, its accuracy can also be
improved by increasing its number of iterations, but this
results in a significant increase in the required computa-
tional effort. These considerations apply to all the results
shown below for the three algorithms that have been just
mentioned.
6) The RMSER and RMSEv curves of the Alg-P exhibit a

floor at high SNRs. This phenomenon can be related to the
fact the employed estimation algorithm is biased, since it
does not include neither an iterative refinement process nor
a leakage compensation procedure for each detected target.
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FIGURE 4. Root mean square error performance achieved by the considered embodiments of the DRAEC strategy. The first scenario is considered.

7) The computational efforts required by the FFTi, the
CSFDEC, the Alg-P, the MFA, the QSE and the ELA are
1.01, 6.6, 1.1, 10, 1.2 and 49 times higher than that required
by the FFT0; these results also hold for S2 and S3.

Further results for S1 are shown in Fig. 5, in which the
RMSER curves of the CSFDEC, the Alg-P and the QSE are
shown for the cases in which the RDE is executed only once
(dashed lines) and twice (solid lines). From this figure, it is
easily inferred that:
1) The improvement in range estimation provided by the

second instance of the RDE in order is significant for all the
proposed techniques; similar results, not shown here, have
been found for velocity estimation.
2) The price to be paid for this improvement is an increase

in the overall computational effort (this is quantified by the
term N̄RDE appearing in (137)).
Note also that running a single instance of the RDE corre-

sponds to what is done in all the related technical manuscripts
in which only a subset of the target parameters (range and
Doppler, in this case) is estimated, whereas the other param-
eters are kept fixed and/or are not successively compensated
for (e.g., see [4] where the angular parameters are not esti-
mated). For this reason, these results evidence the importance
of estimating all the target parameters jointly.

FIGURE 5. Root mean square error performance achieved in range estimation by
the first and the second instance of the RDE. The first scenario and three different
embodiments of the DRAEC strategy are considered.

Some numerical results referring to S2 are shown Fig. 6,
where the performance index RMSEX (with X = R, v, θ
or φ), characterizing all the considered algorithms, is shown
for SNR ∈ [−20, 20] dB. These results lead to the following
conclusions:
1) The FFTi, the MFA and the ELA achieve similar accu-

racy in the estimation of angular parameters and exhibits
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FIGURE 6. Root mean square error performance achieved by the considered embodiments of the DRAEC strategy. The second scenario is considered.

similar trends (and, in particular, a floor); however, the FFTi
is outperformed by the MFA and the ELA in range and
Doppler estimation.
2) The RMSEθ and RMSEφ referring to the Alg-P and

the QSE are quite flat. This is due to the fact the two targets
are located in the same range-Doppler bin. This affects the
quality of the signal generated by the AE in compensating
for the range and Doppler of each target (see (49)) and
passed to the RDE. Moreover, the performance of the QSE
is appreciably influenced by the selection of the shifting
parameters (i.e., qV and qH for the AE). The values of these
parameters have been optimized according to [31, Sec. III,
eqs. (40) and (45)].
3) The CSFDEC performs substantially better than all

the other embodiments in the estimation of azimuth and
elevation, and similarly as the QSE in range and velocity
estimation (the accuracy of both embodiments is very close
to the CRLB).
Some numerical results obtained for S3 are illustrated in

Fig. 7, showing again the dependence of the RMSEs on the
SNR, with SNR ∈ [ − 20, 20] dB. These results lead to the
following conclusions:
1) The CSFDEC and the QSE achieve the best estimation

accuracy (very close to the CRLB) for all the considered
parameters, whereas the Alg-P performs similarly in angle
estimation only.

2) The accuracy provided by the MFA in azimuth and
elevation estimation is slightly better than that characterizing
the ELA and the FFTi.
3) The accuracy achieved by the MFA in range and veloc-

ity estimation is similar to that provided by the Alg-P and
the ELA; moreover, the trend of their RMSER and RMSEv
curves remains flat even at high SNR values.
Our last results refer to S4 and are shown in Figs. 8 and 9.

In particular, in Fig. 8 the NRMSE characterizing all the
considered embodiments at a given SNR and in the presence
of a variable number of targets is shown. These results lead
to the following conclusions:
1) The NRMSEX increases with the overall number of tar-

gets (i.e., the RMSEX departs from the associated CRLB),
with X = R, v, FV or FH . This is due to the fact that increas-
ing K results in a stronger spectral leakage and, consequently,
in poorer estimation accuracy of each algorithm.
2)TheCSFDEC, theAlg-P and theQSEperformsimilarly in

range and velocity estimation, whereas the CSFDEC performs
better in the estimation of azimuth and elevation. This confirms
once again that the CSFDEC algorithm better exploits the
limited information available in the angular domain24 and
takes advantage of its leakage compensation mechanism.

24. The estimation of angular parameters is based on the NT × NR
matrix H̆k; see Section III-B.
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FIGURE 7. Root mean square error performance achieved by the considered embodiments of the DRAEC strategy. The third scenario is considered.

3) The QSE represents the best option in the case of single
target. However, if the overall number of targets increases,
it is outperformed by the CSFDEC and the Alg-P; this is
due to the fact that the CSFDEC algorithm and the Alg-P
make use of a serial cancellation procedure.
4) The ELA performs better than the MFA in the

considered scenario.
5) The FFT0 and the FFTi are less accurate than all the

other techniques.
In Fig. 9, instead, the computational complexity of all the

embodiments is represented for a variable number of tar-
gets; both the computational cost, measured in mega FLOPs
(MFLOPs), and the computation time25 (CT) are taken into
consideration. From this figure, it is easily inferred that:
1) The trend of most of the CT curves is similar and in

agreement with that characterising the corresponding curves
of the computational cost; the only exception is represented
by the CSFDEC, for which the trend of the computational
cost appears to be flatter than that of the CT.
2) The slopes of all the curves (i.e., the relative increase

in complexity as K gets larger) are similar.

25. These metrics allow us to compare the impact of different 2D estima-
tors available in the technical literature on the overall computational effort
required by the DRAEC, since this mainly depends on the complexity of
the specific algorithm adopted in its two core blocks.

3) The CT of the Alg-P is very close to that required
by the FFT0 and the FFTi; moreover, the last two methods
require similar CTs.
4) Even if the complexity of the QSE is similar to that

of the Alg-P, the CT of the former embodiment tends to be
larger than that of the latter; this is mainly due to the fact
their estimators have different initializations. In fact, in the
case of the QSE (the Alg-P), the search for K local maxima
(for a single maximum) is required.
The results shown in this section evidence that the

CSFDEC represents the winning option among the set
of considered embodiments, since it achieves the best
performance-complexity trade-off.

VII. CONCLUSION
In this manuscript, a novel general strategy to develop sub-
optimal methods for the detection of multiple targets and
the estimation of their parameters in a MIMO OFDM-based
JCAS system has been proposed. This strategy is based on
the idea of splitting a complicated optimization problem
into a couple of simpler (but interacting) sub-problems.
Seven different embodiments of it have been described, their
complexity has been assessed and their estimation accuracy
has been compared in four different scenarios. Our numer-
ical results, based on synthetically generated data referring
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FIGURE 8. Root mean square error performance achieved by the considered embodiments of the DRAEC strategy. The fourth scenario is considered.

FIGURE 9. Computation time (blue lines) and computational cost (red lines)
characterizing the analyzed embodiments in the presence of a variable number of
targets. The fourth scenario is considered.

to four distinct scenarios, evidence that all the proposed
embodiments perform reasonably well, but may require
substantially different computational efforts. Moreover, the
estimation accuracy of the majority of the algorithms exhibits
a floor as the SNR increases. This phenomenon is due to the
lack of an iterative procedure for refining the coarse esti-
mates of the detected targets or to the use of a sub-optimal
refinement procedure or to the adoption of a (discretized)
search grid.

We believe that our work sheds new light on a complicated
technical problem, which plays a key role in the develop-
ment of future JCAS systems; in fact, it provides an in-depth
analysis of the accuracy-complexity trade-off characteriz-
ing different solutions to it. In a number of applications,
achieving good estimation accuracy represents a fundamen-
tal requirement; at the same time, real-time operation is
also needed, so that substantial attention must be paid to
the computational effort required by the adopted estimation
algorithms. All in all, we believe the detection and estimation
algorithms based on the strategy we propose can represent
good candidates for the processing to be accomplished in
OFDM-based 4D radars. Our future work includes the appli-
cation of the proposed strategy to MIMO JCAS systems
employing the Orthogonal Time Frequency Space (OTFS)
modulation.

APPENDIX
A. CRAMER-RAO LOWER BOUND DERIVATION
Cramer-Rao lower bounds for OFDM-based radar systems
have been already derived in [4] and [16], but refer to the
estimation of Doppler and range only. In this Appendix, the
procedure we followed in the evaluation of the CRLBs for
Doppler, range, azimuth and elevation is sketched.
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First of all, let us consider the signal model (40), that
refers to K distinct targets; the parameters of these targets
are collected in the vectors26

� �
[
γ0, γ1, . . . , γK−1

]T , (149)

FD = [
FD0 ,FD1 , . . . ,FDK−1

]T , (150)

Fρ = [
Fρ0,Fρ1 , . . . ,FρK−1

]T , (151)

FV = [
FV0 ,FV1 , . . . ,FVK−1

]T (152)

and

FH = [
FH0 ,FH1 , . . . ,FHK−1

]T . (153)

We also define: 1) the trial vectors �̃, F̃D, F̃ρ , F̃V and
F̃H in a similar way as �, FD, Fρ , FV and FH , respec-
tively (see (149)-(153)); 2) the vectors �̂, F̂D, F̂ρ , F̂V and
F̂H , structured like �, FD, Fρ , FV and FH , respectively, but
collecting the ML estimates of all the considered parameters.
The CRLBs we are interested in refer to the ML estimation

problem
(
F̂D, F̂ρ, F̂V , F̂H, �̂

)
� argmin

F̃D,F̃ρ,F̃V ,F̃H ,�̃

ε(ã); (154)

here,

ε(ã) � (x − x̃)(x − x̃)H

MNNTNR
(155)

is a mean square error (MSE) referring to the (MN NT NR)-
dimensional column vector

x � �T�
(
FD, Fρ, FV ,FH

) + w (156)

and its useful component

x̃ = x(ã) = �̃T�̃. (157)

In the last two formulas,

ã �
[
F̃TD, F̃

T
ρ , F̃

T
V , F̃

T
H, �̃

T]T (158)

is a (5K)-dimensional column vector collecting the trial val-
ues of the target parameters, w is a (MN NT NR)-dimensional
noise vector, �̃ = �(F̃D, F̃ρ, F̃V , F̃H),

�
(
FD, Fρ, FV , FH

)
� A(FD) ∗ B

(
Fρ

) ∗ C(FV) ∗ D(FH)

(159)

is a (MN NT NR) × K steering matrix, and A(FD), B(Fρ),
C(FV) and D(FH) areM×K, N×K, NR×K and NT×K matri-
ces, respectively; the kth column (with k = 0, 1, . . . ,K− 1)
of the last four matrices is defined as

A
(
FDk

)
�

[
a0

(
FDk

)
, a1

(
FDk

)
, . . . ,

am
(
FDk

)
, . . . , aM−1

(
FDk

)]T , (160)

B
(
Fρk

)
�

[
a0

(−Fρk
)
, a1

(−Fρk
)
, . . . ,

an
(−Fρk

)
, . . . , aN−1

(−Fρk
)]T , (161)

26. The kth element of the vector � represents the complex amplitude of
the kth target and coincides with the parameter Ak defined in Section VI.

C
(
FVk

)
�

[
a0

(−FVk
)
, a1

(−FVk
)
, . . . ,

aq
(−FVk

)
, . . . , aNR−1

(−FVk
)]T , (162)

and

D
(
FHk

)
�

[
a0

(−FHk
)
, a1

(−FHk
)
, . . . ,

ap
(−FHk

)
, . . . , aNT−1

(−FHk
)]T , (163)

respectively (az(FX) is defined by (32), with z = m, n, q or
p, and X = D, ρ, V or H if z = m, n, q or p, respectively).

If we assume that the elements of the noise vector w are
Gaussian, mutually independent and have zero mean and
variance σ 2

W , the CRLBs of all the parameters of interest are
represented by the diagonal elements of the matrix

V = σ 2
WF

−1, (164)

where

F � 2�
{
∂ x̃
∂ ã

(
∂ x̃
∂ ã

)H
}

(165)

is the (5K × 5K)-dimensional Fisher information matrix
computed for the vector x̃,

∂ x̃
∂ ã

= [
Ā, B̄, C̄, D̄, �̃

]T , (166)

Ā � [Ā0, Ā1, . . . , ĀK−1], B̄ � [B̄0, B̄1, . . . , B̄K−1], C̄ �
[C̄0, C̄1, . . . , C̄K−1], D̄ � [D̄0, D̄1, . . . , D̄K−1],

Āk � −γ̃k
(
ϒM � A

(
F̃Dk

))
∗ B

(
F̃ρk

)
∗ C

(
F̃Vk

)
∗ D

(
F̃Hk

)
,

(167)

B̄k � γ̃kA
(
F̃Dk

)
∗

(
ϒN � B

(
F̃ρk

))
∗ C

(
F̃Vk

)
∗ D

(
F̃Hk

)
,

(168)

C̄k � γ̃kA
(
F̃Dk

)
∗ B

(
F̃ρk

)
∗

(
ϒNR � C

(
F̃Vk

))
∗ D

(
F̃Hk

)
,

(169)

D̄k � γ̃kA
(
F̃Dk

)
∗ B

(
F̃ρk

)
∗ C

(
F̃Vk

)
∗

(
ϒNT � D

(
F̃Hk

))
,

(170)

and

ϒX �
[
0,−j2π, . . . ,−j2π(X − 1)

]T . (171)

for any integer X.
In our work, all the above-mentioned CRLBs have been

evaluated numerically on the basis of (164)-(171); in partic-
ular, in the computation of Āk, B̄k, C̄k and D̄k, the following
choices have been made for any k: 1) the complex gain γ̃k
(corresponding to Ak in Section VI) has been set to unity in
all the considered scenarios; 2) the noise variance σ 2

W has
been derived from (146), since the SNR and the amplitudes
of the target echoes are known in all the considered sce-
narios. Moreover, as far as the normalized frequencies F̃Dk ,
F̃ρk , F̃Vk and F̃Hk are concerned, the following rules have
been followed:
a) F̃X0 has been set to the expected value F̄X0 of the nor-

malized frequency of the first target (with X = D, ρ, V
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or H). This choice is motivated by the fact that, in all the
considered scenarios, the four normalized frequencies char-
acterizing the first target are uniformly distributed random
variables; therefore, F̄X0 = (FXmax − FXmin)/2 (the values of
FXmax and FXmin are provided in Section VI).
b) The other (K−1) frequencies {F̃Xk ; k = 1, 2, . . . ,K−1}

have been set to F̄X0 + k FXbin FXres for any k; here, FXbin =
Xbin represents the normalized bin spacing between adjacent
targets adopted in the considered scenario and FXres = 1/Q,
where Q = M, N, NR or NT if X = D, ρ, V or H, respectively.
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