6,798 research outputs found

    The number of maximum matchings in a tree

    Get PDF
    We determine upper and lower bounds for the number of maximum matchings (i.e., matchings of maximum cardinality) m(T)m(T) of a tree TT of given order. While the trees that attain the lower bound are easily characterised, the trees with largest number of maximum matchings show a very subtle structure. We give a complete characterisation of these trees and derive that the number of maximum matchings in a tree of order nn is at most O(1.391664n)O(1.391664^n) (the precise constant being an algebraic number of degree 14). As a corollary, we improve on a recent result by G\'orska and Skupie\'n on the number of maximal matchings (maximal with respect to set inclusion).Comment: 38 page

    Trees with maximum number of maximal matchings

    Get PDF
    AbstractForests on n vertices with maximum number of maximal matchings are called extremal forests. All extremal forests, except 2K1, are trees. Extremal trees with small number n of vertices, n⩽19, are characterized; in particular, they are unique if n≠6. The exponential upper and lower bounds on the maximum number of maximal matchings among n-vertex trees have been found

    Cavity Matchings, Label Compressions, and Unrooted Evolutionary Trees

    Get PDF
    We present an algorithm for computing a maximum agreement subtree of two unrooted evolutionary trees. It takes O(n^{1.5} log n) time for trees with unbounded degrees, matching the best known time complexity for the rooted case. Our algorithm allows the input trees to be mixed trees, i.e., trees that may contain directed and undirected edges at the same time. Our algorithm adopts a recursive strategy exploiting a technique called label compression. The backbone of this technique is an algorithm that computes the maximum weight matchings over many subgraphs of a bipartite graph as fast as it takes to compute a single matching

    Enumeration of maximum matchings of graphs

    Full text link
    Counting maximum matchings in a graph is of great interest in statistical mechanics, solid-state chemistry, theoretical computer science, mathematics, among other disciplines. However, it is a challengeable problem to explicitly determine the number of maximum matchings of general graphs. In this paper, using Gallai-Edmonds structure theorem, we derive a computing formula for the number of maximum matching in a graph. According to the formula, we obtain an algorithm to enumerate maximum matchings of a graph. In particular, The formula implies that computing the number of maximum matchings of a graph is converted to compute the number of perfect matchings of some induced subgraphs of the graph. As an application, we calculate the number of maximum matchings of opt trees. The result extends a conclusion obtained by Heuberger and Wagner[C. Heuberger, S. Wagner, The number of maximum matchings in a tree, Discrete Math. 311 (2011) 2512--2542]

    An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings

    Full text link
    A widely used method for determining the similarity of two labeled trees is to compute a maximum agreement subtree of the two trees. Previous work on this similarity measure is only concerned with the comparison of labeled trees of two special kinds, namely, uniformly labeled trees (i.e., trees with all their nodes labeled by the same symbol) and evolutionary trees (i.e., leaf-labeled trees with distinct symbols for distinct leaves). This paper presents an algorithm for comparing trees that are labeled in an arbitrary manner. In addition to this generality, this algorithm is faster than the previous algorithms. Another contribution of this paper is on maximum weight bipartite matchings. We show how to speed up the best known matching algorithms when the input graphs are node-unbalanced or weight-unbalanced. Based on these enhancements, we obtain an efficient algorithm for a new matching problem called the hierarchical bipartite matching problem, which is at the core of our maximum agreement subtree algorithm.Comment: To appear in Journal of Algorithm

    Bounds on the maximum multiplicity of some common geometric graphs

    Get PDF
    We obtain new lower and upper bounds for the maximum multiplicity of some weighted and, respectively, non-weighted common geometric graphs drawn on n points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of n points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits {\Omega}(8.65^n) different triangulations. This improves the bound {\Omega}(8.48^n) achieved by the double zig-zag chain configuration studied by Aichholzer et al. (ii) We present a new lower bound of {\Omega}(12.00^n) for the number of non-crossing spanning trees of the double chain composed of two convex chains. The previous bound, {\Omega}(10.42^n), stood unchanged for more than 10 years. (iii) Using a recent upper bound of 30^n for the number of triangulations, due to Sharir and Sheffer, we show that n points in the plane in general position admit at most O(68.62^n) non-crossing spanning cycles. (iv) We derive lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). We show that the number of shortest non-crossing tours can be exponential in n. Likewise, we show that both the number of longest non-crossing tours and the number of longest non-crossing perfect matchings can be exponential in n. Moreover, we show that there are sets of n points in convex position with an exponential number of longest non-crossing spanning trees. For points in convex position we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial characterization of the longest tours, which leads to an O(nlog n) time algorithm for computing them

    A Tight Bound for Shortest Augmenting Paths on Trees

    Full text link
    The shortest augmenting path technique is one of the fundamental ideas used in maximum matching and maximum flow algorithms. Since being introduced by Edmonds and Karp in 1972, it has been widely applied in many different settings. Surprisingly, despite this extensive usage, it is still not well understood even in the simplest case: online bipartite matching problem on trees. In this problem a bipartite tree T=(WB,E)T=(W \uplus B, E) is being revealed online, i.e., in each round one vertex from BB with its incident edges arrives. It was conjectured by Chaudhuri et. al. [K. Chaudhuri, C. Daskalakis, R. D. Kleinberg, and H. Lin. Online bipartite perfect matching with augmentations. In INFOCOM 2009] that the total length of all shortest augmenting paths found is O(nlogn)O(n \log n). In this paper, we prove a tight O(nlogn)O(n \log n) upper bound for the total length of shortest augmenting paths for trees improving over O(nlog2n)O(n \log^2 n) bound [B. Bosek, D. Leniowski, P. Sankowski, and A. Zych. Shortest augmenting paths for online matchings on trees. In WAOA 2015].Comment: 22 pages, 10 figure

    The generalized Robinson-Foulds metric

    Get PDF
    The Robinson-Foulds (RF) metric is arguably the most widely used measure of phylogenetic tree similarity, despite its well-known shortcomings: For example, moving a single taxon in a tree can result in a tree that has maximum distance to the original one; but the two trees are identical if we remove the single taxon. To this end, we propose a natural extension of the RF metric that does not simply count identical clades but instead, also takes similar clades into consideration. In contrast to previous approaches, our model requires the matching between clades to respect the structure of the two trees, a property that the classical RF metric exhibits, too. We show that computing this generalized RF metric is, unfortunately, NP-hard. We then present a simple Integer Linear Program for its computation, and evaluate it by an all-against-all comparison of 100 trees from a benchmark data set. We find that matchings that respect the tree structure differ significantly from those that do not, underlining the importance of this natural condition.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013
    corecore