35,013 research outputs found

    Fractional colorings of cubic graphs with large girth

    Get PDF
    We show that every (sub)cubic n-vertex graph with sufficiently large girth has fractional chromatic number at most 2.2978 which implies that it contains an independent set of size at least 0.4352n. Our bound on the independence number is valid to random cubic graphs as well as it improves existing lower bounds on the maximum cut in cubic graphs with large girth

    Maximum edge-cuts in cubic graphs with large girth and in random cubic graphs

    Full text link
    We show that for every cubic graph G with sufficiently large girth there exists a probability distribution on edge-cuts of G such that each edge is in a randomly chosen cut with probability at least 0.88672. This implies that G contains an edge-cut of size at least 1.33008n, where n is the number of vertices of G, and has fractional cut covering number at most 1.127752. The lower bound on the size of maximum edge-cut also applies to random cubic graphs. Specifically, a random n-vertex cubic graph a.a.s. contains an edge cut of size 1.33008n

    Fractional total colourings of graphs of high girth

    Get PDF
    Reed conjectured that for every epsilon>0 and Delta there exists g such that the fractional total chromatic number of a graph with maximum degree Delta and girth at least g is at most Delta+1+epsilon. We prove the conjecture for Delta=3 and for even Delta>=4 in the following stronger form: For each of these values of Delta, there exists g such that the fractional total chromatic number of any graph with maximum degree Delta and girth at least g is equal to Delta+1

    Independent sets and cuts in large-girth regular graphs

    Get PDF
    We present a local algorithm producing an independent set of expected size 0.44533n0.44533n on large-girth 3-regular graphs and 0.40407n0.40407n on large-girth 4-regular graphs. We also construct a cut (or bisection or bipartite subgraph) with 1.34105n1.34105n edges on large-girth 3-regular graphs. These decrease the gaps between the best known upper and lower bounds from 0.01780.0178 to 0.010.01, from 0.02420.0242 to 0.01230.0123 and from 0.07240.0724 to 0.06160.0616, respectively. We are using local algorithms, therefore, the method also provides upper bounds for the fractional coloring numbers of 1/0.445332.245541 / 0.44533 \approx 2.24554 and 1/0.404072.47481 / 0.40407 \approx 2.4748 and fractional edge coloring number 1.5/1.341051.11851.5 / 1.34105 \approx 1.1185. Our algorithms are applications of the technique introduced by Hoppen and Wormald

    Minimizing the number of independent sets in triangle-free regular graphs

    Get PDF
    Recently, Davies, Jenssen, Perkins, and Roberts gave a very nice proof of the result (due, in various parts, to Kahn, Galvin-Tetali, and Zhao) that the independence polynomial of a dd-regular graph is maximized by disjoint copies of Kd,dK_{d,d}. Their proof uses linear programming bounds on the distribution of a cleverly chosen random variable. In this paper, we use this method to give lower bounds on the independence polynomial of regular graphs. We also give new bounds on the number of independent sets in triangle-free regular graphs
    corecore