27 research outputs found

    Contributions to the design of energy harvesting systems for autonomous sensors in low power marine applications

    Get PDF
    Tesi en modalitat de compendi de publicacionsOceanographic sensor platforms provide biological and meteorological data to help understand changes in marine environment and help to preserve it. Lagrangian drifters are autonomous passive floating platforms used in climate research to obtain surface marine data. They are low-cost, versatile, easy-to-deploy and can cover large extensions of the ocean when deployed in group. These deployments can last for years, so one of the main design challenges is the autonomy of the drifter. Several energy harvesting (EH) sources are being explored to reduce costs in battery replacement maintenance efforts such as solar panels. Drifters must avoid the impact of the wind because this may compromise proper surface current tracking and therefore, should ideally be mostly submerged. This interferes with the feasibility of solar harvesting, so other EH sources are being explored such as the oscillatory movement of the drifter caused by ocean waves. Wave energy converters (WEC) are the devices that turn this movement into energy. The motion of the drifter can principally be described by 3 oscillatory degrees of freedom (DoF); surge, heave and pitch. The heave motion includes the buoyancy’s response of the drifter, which can be explained by a mass-spring-damping model. By including the wave’s hydrodynamic load in this model, it is converted into a nonlinear system whose frequency response includes the wave’s frequency and the natural frequencies from the linear system. A smart option to maximize the captured energy is to design the inner WEC with a natural frequency similar to that of the drifter's movement. In this thesis, a 4 DoF model is obtained. This model includes the heave, the surge and the pitch motion of the drifter in addition to the inner pendulum motion relative to the buoy. Simultaneously, different pendulum-type WECs for small-size oceanic drifters are proposed. One of these converters consists of an articulated double-pendulum arm with a proof mass that generates energy through its relative motion with the buoy. Different experimental tests are carried out, with a prototype below 10 cm in diameter and 300 g of total mass, proving the capability of harvesting hundreds of microwatts in standard sea conditions EH sources require an additional power management unit (PMU) to convert their variable output into a constant and clean source to be able to feed the sensor electronics. PMUs should also ensure that the maximum available energy is harvested with a maximum power point tracking (MPPT) algorithm. Some sources, such as WECs, require fast MPPT as its output can show relatively rapid variations. However, increasing the sampling rate may reduce the harvested energy. In this thesis, this trade-off is analyzed using the resistor-based fractional open circuit voltage-MPPT technique, which is appropriate for low-power EH sources. Several experiments carried out in marine environments demonstrate the need for increasing the sampling rate. For this purpose, the use of a commercial PMU IC with additional low-power circuitry is proposed. Three novel circuits with a sampling period of 60 ms are manufactured and experimentally evaluated with a small-scale and low-power WEC. Results show that these configurations improve the harvested energy by 26% in comparison to slow sampling rate configurations. Finally, an EH-powered oceanographic monitoring system with a custom wave measuring algorithm is designed. By using the energy collected by a small-size WEC, this system is capable of transmitting up to 22 messages per day containing data on its location and measured wave parameters.Les plataformes d’observació oceanogràfiques integren sensors que proporcionen dades físiques i biogeoquímiques de l’oceà que ajuden a entendre canvis en l’entorn marí. Un exemple d’aquestes plataformes són les boies de deriva (drifters), que són dispositius autònoms i passius utilitzats en l’àmbit de la recerca climàtica per obtenir dades in-situ de la superfície marina. Aquests instruments són de baix cost, versàtils, fàcils de desplegar i poden cobrir grans superfícies quan s’utilitzen en grup. L’autonomia és un dels principals desafiaments en el disseny de drifters. Per tal d’evitar els costos en la substitució de bateries, s’estudien diferents fonts de captació d’energia com per exemple la solar. Els drifters utilitzats per l’estudi dels corrents marins superficials han d’evitar l’impacte directe del vent ja que afecta al correcte seguiment de les corrents i, per tant, cal que estiguin majoritàriament submergides. Això compromet la viabilitat de l’energia solar, fet que requereix l’estudi d’altres fonts de captació com el propi moviment de la boia causat per les onades. Els convertidors d’energia de les onades (WEC, wave energy converters) compleixen aquesta funció. El moviment dels drifters pot explicar-se bàsicament a través de 3 graus de llibertat oscil·latoris: la translació vertical i la horitzontal i el balanceig. La translació vertical inclou la flotabilitat del dispositiu, que es pot descriure mitjançant el model massamolla- amortidor. Incloure la càrrega hidrodinàmica de l’onada en aquest model el converteix en un sistema no lineal amb una resposta freqüencial que inclou la de l’onada i les naturals del sistema lineal. Una opció per maximitzar l’energia captada és dissenyar el WEC amb una freqüència natural similar a la del moviment de la boia. En aquesta tesis es proposa un model de 4 graus de llibertat per a l’estudi del moviment del drifter. Aquest inclou els 3 graus de llibertat de la boia i el moviment del pèndul relatiu a ella. En paral·lel, es proposen diferents WEC del tipus pendular per drifters de reduïdes dimensions. Un d’aquests WEC consisteix en un doble braç articulat amb massa flotant que genera energia a través del seu moviment relatiu al drifter. S’han dut a terme diferents proves experimentals amb un prototip inferior a 10 cm de diàmetre i 300 g de massa, les quals demostren la seva capacitat de captar centenars de microwatts en condicions marines estàndard. Utilitzar fonts de captació d’energia requereix incloure una unitat gestora de potència (PMU, power management unit) per tal de convertir la seva sortida variable en una font constant i neta que alimenti l’electrònica dels sensors. Les PMU també tenen la funció d’assegurar que es recull la màxima energia mitjançant un algoritme de seguiment del punt de màxima potència. Els WEC requereixen un seguiment d’aquest punt ràpid perquè la seva sortida consta de variacions relativament ràpides. Tanmateix, augmentar la freqüència de mostreig pot reduir l’energia captada. En aquesta tesi, s'analitza a fons aquesta relació utilitzant la tècnica de seguiment de la tensió en circuit obert fraccionada basada en resistències, que és molt adequada per a fonts de baixa potència. Diversos experiments realitzats en el medi marí mostren la necessitat d'augmentar la freqüència de mostreig, així que es proposa l'ús de PMU comercials amb una electrònica addicional de baix consum. S’han fabricat tres circuits diferents amb un període de mostreig de 60 ms i s’han avaluat experimentalment en un WEC de reduïdes dimensions. Els resultats mostren que aquestes configuracions milloren l'energia recollida en un 26% en comparació a PMU amb mostreig més lent. Finalment, s’ha dissenyat un sistema autònom de monitorització marina que inclou un algoritme de mesura d'ones propi. Aquest sistema és capaç de transmetre fins a 22 missatges al diaPostprint (published version

    Design of Low-Cost Energy Harvesting and Delivery Systems for Self-Powered Devices: Application to Authentication IC

    Get PDF
    This thesis investigates the development of low-cost energy harvesting and delivery systems for low-power low-duty-cycle devices. Initially, we begin by designing a power management scheme for on-demand power delivery. The baseline implementation is also used to identify critical challenges for low-power energy harvesting. We further propose a robust self-powered energy harvesting and delivery system (EHDS) design as a solution to achieve energy autonomy in standalone systems. The design demonstrates a complete ecosystem for low-overhead pulse-frequency modulated (PFM) harvesting while reducing harvesting window confinement and overall implementation footprint. Two transient-based models are developed for improved accuracy during design space exploration and optimization for both PFM power conversion and energy harvesting. Finally, a low-power authentication IC is demonstrated and projected designs for self-powered System-on-Chips (SoCs) are presented. The proposed designs are proto-typed in two test-chips in a 65nm CMOS process and measurement data showcase improved performance in terms of battery power, cold-start duration, passives (inductance and capacitance) needed, and end-to-end harvesting/conversion efficiency.Ph.D

    Energy efficient control for power management circuits operating from nano-watts to watts

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-172).Energy efficiency and form factor are the key driving forces in today's power electronics. All power delivery circuits, irrespective of the magnitude of power, basically consists of power trains, gate drivers and control circuits. Although the control circuits are primarily required for regulation, these circuits can play a crucial role in achieving high efficiency and/or minimizing overall system form-factor. In this thesis, power converter circuits, spanning a wide operating range- from nano-watts to watts, are presented while highlighting techniques for using digital control circuits not just for regulation but also to achieve high system efficiency and smaller system form-factor. The first part of the thesis presents a power management unit of an autonomous wireless sensor that sustains itself by harvesting energy from the endo-cochlear potential (EP), the 70-100mV electrochemical potential inside the mammalian inner ear. Due to the anatomical constraints, the total extractable power from the EP is limited to 1.1-6.3nW. A low switching frequency boost converter is employed to increase the input voltage to a higher voltage usable by CMOS circuits in the sensor. Ultra-low power digital control circuits with timers help keep the quiescent power of the power management unit down to 544pW. Further, a charge-pump is used to implement leakage reduction techniques in the sensor. This work demonstrates how digital low power control circuit design can help improve converter efficiency and ensure system sustainability. All circuits have been implemented on a 0.18[mu]m CMOS process. The second part of the thesis discusses an energy harvesting architecture that combines energy from multiple energy harvesting sources- photovoltaic, thermoelectric and piezoelectric sources. Digital control circuits that configure the power trains to new efficient system architectures with maximum power point tracking are presented, while using a single inductor to combine energy from the aforementioned energy sources all at the same time. A dual-path architecture for energy harvesting systems is proposed. This provides a peak efficiency improvement of 11-13% over the traditional two stage approach. The system can handle input voltages from 20mV to 5V and is also capable of extracting maximum power from individual harvesters all at the same time utilizing a single inductor. A proposed completely digital timebased power monitor is used for achieving maximum power point tracking for the photovoltaic harvester. This has a peak tracking efficiency of 96%. The peak efficiencies achieved with inductor sharing are 83%, 58% and 79% for photovoltaic boost, thermoelectric boost and piezoelectric buck-boost converters respectively. The switch matrix and the control circuits are implemented on a 0.35pm CMOS process. This part of the thesis highlights how digital control circuits can help reconfigure power converter architectures for improving efficiency and reducing form-factors. The last part of the thesis deals with a power management system for an offline 22W LED driver. In order to reduce the system form factor, Gallium Nitride (GaN) transistors capable of high frequency switching have been utilized with a Quasi-Resonant Inverted Buck architecture. A burst mode digital controller has been used to perform dimming control and power factor correction (PFC) for the LED driver. The custom controller and driver IC was implemented in a 0.35[mu]m CMOS process. The LED driver achieves a peak efficiency of 90.6% and a 0.96 power factor. Due to the high power level of the driver, the digital controller is primarily used for regulation purposes in this system, although the digital nature of the controller helps remove the passives that would be normally present in analog controllers. In this thesis, apart from regulation, control circuit enabled techniques have been used to improve efficiency and reduce system form factor. Low power design and control for reconfigurable power train architectures help improve the overall power converter efficiency. Digital control circuits have been used to reduce the form factor by enabling inductor sharing in a system with multiple power converters or by removing the compensator passives.by Saurav Bandyopadhyay.Ph.D

    Power Management Circuits for Energy Harvesting Applications

    Get PDF
    Energy harvesting is the process of converting ambient available energy into usable electrical energy. Multiple types of sources are can be used to harness environmental energy: solar cells, kinetic transducers, thermal energy, and electromagnetic waves. This dissertation proposal focuses on the design of high efficiency, ultra-low power, power management units for DC energy harvesting sources. New architectures and design techniques are introduced to achieve high efficiency and performance while achieving maximum power extraction from the sources. The first part of the dissertation focuses on the application of inductive switching regulators and their use in energy harvesting applications. The second implements capacitive switching regulators to minimize the use of external components and present a minimal footprint solution for energy harvesting power management. Analysis and theoretical background for all switching regulators and linear regulators are described in detail. Both solutions demonstrate how low power, high efficiency design allows for a self-sustaining, operational device which can tackle the two main concerns for energy harvesting: maximum power extraction and voltage regulation. Furthermore, a practical demonstration with an Internet of Things type node is tested and positive results shown by a fully powered device from harvested energy. All systems were designed, implemented and tested to demonstrate proof-of-concept prototypes

    Low Power Circuit Design in Sustainable Self Powered Systems for IoT Applications

    Get PDF
    The Internet-of-Things (IoT) network is being vigorously pushed forward from many fronts in diverse research communities. Many problems are still there to be solved, and challenges are found among its many levels of abstraction. In this thesis we give an overview of recent developments in circuit design for ultra-low power transceivers and energy harvesting management units for the IoT. The first part of the dissertation conducts a study of energy harvesting interfaces and optimizing power extraction, followed by power management for energy storage and supply regulation. we give an overview of the recent developments in circuit design for ultra-low power management units, focusing mainly in the architectures and techniques required for energy harvesting from multiple heterogeneous sources. Three projects are presented in this area to reach a solution that provides reliable continuous operation for IoT sensor nodes in the presence of one or more natural energy sources to harvest from. The second part focuses on wireless transmission, To reduce the power consumption and boost the Tx energy efficiency, a novel delay cell exploiting current reuse is used in a ring-oscillator employed as the local oscillator generator scheme. In combination with an edge-combiner power amplifier, the Tx showed a measured energy efficiency of 0.2 nJ=bit and a normalized energy efficiency of 3.1 nJ=bit:mW when operating at output power levels up to -10 dBm and data rates of 3 Mbps

    Efficient power management circuits for energy harvesting applications

    Get PDF
    Low power IoT devices are growing in numbers and by 2020 there will be more than 25 Billion of those in areas such as wearables, smart homes, remote surveillance, transportation and industrial systems, including many others. Many IoT electronics either will operate from stand-alone energy supply (e.g., battery) or be self-powered by harvesting from ambient energy sources or have both options. Harvesting sustainable energy from ambient environment plays significant role in extending the operation lifetime of these devices and hence, lower the maintenance cost of the system, which in turn help make them integral to simpler systems. Both for battery-powered and harvesting capable systems, efficient power delivery unit remains an essential component for maximizing energy efficiency. The goal of this research is to investigate the challenges of energy delivery for low power electronics considering both energy harvesting as well as battery-powered conditions and to address those challenges. Different challenges of energy harvesting from low voltage energy sources based on the limitations of the sources, the type of the regulator used and the pattern of the load demands have been investigated. Different aspects of the each challenges are further investigated to seek optimized solutions for both load specific and generalized applications. A voltage boost mechanism is chosen as the primary mechanism to investigate and to addressing those challenges, befitting the need for low power applications which often rely on battery voltage or on low voltage energy harvesting sources. Additionally, a multiple output buck regulator is also discussed. The challenges analyzed include very low voltage start up issues for an inductive boost regulator, cascading of boost regulator stages, and reduction of the number of external component through reusing those. Design techniques for very high conversion ratio, bias current reduction with autonomous bias gating, battery-less cold start, component and power stage multiplexing for reconfigurable and multi-domain regulators are presented. Measurement results from several silicon prototypes are also presented.Ph.D

    Wide-band, Quasi-isotropic, km-range RF Energy Harvesters for Perpetual IoT

    Get PDF
    This research demonstrates, through real-world field-tests, an ambient RF (radio frequency) energy harvesting system, fabricated on low cost FR4 (flame retardant 4), capable of harvesting from all surrounding UHF-TV (ultra high frequency television) and FM (frequency modulation) towers across km ranges in all UHF-TV and FM frequencies simultaneously to perpetually power a WSN (wireless sensor node). The broader impact of this research is to encourage researchers in the field to focus their efforts on real-world usability, thereby advancing ambient RF energy harvesting towards widespread adoption. The system achieves -10 dB matching across the entire frequency bands. The FBW (fractional bandwidth) is as wide as 31 % for the UHF-TV portion and 23 % for the FM portion. For UHF-TV, front and rear antenna gains combined is 1 or greater across all θ and ϕ, allowing isotropic harvesting (omnidirectional for FM). The RF-dc efficiency is as high as 70 % (56 % for FM). The system is as sensitive as -18 dBm (-17 dBm for FM). The UHF-TV portion harvested as much as 231 μW across 5.83 km (885 μW across 1.53 km for FM). The alignment-free, channel-agnostic nature demonstrates potential for ambient RF energy harvesting's adaption by users outside of the RF community who are not expected to be familiar with antenna alignment and frequency selection.Ph.D

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Electrochemical Plug-and-Power e-readers for Point-of-Care Applications

    Get PDF
    Point-of-Care diagnostic tests enable monitor health conditions and obtain fast results close to the patient, reducing medical costs, and allowing the control of infectious outbreaks. The interest in developing Point-of-Care devices is increasing due to they are suitable for a wide variety of applications. This doctoral thesis focuses on the development of Plug-and-Power electronic readers (e- readers) for electrochemical detections and the demonstration of their possibilities as Point-of-Care diagnostic testing. The solutions proposed in this study make it possible to improve Point-of-Care tests whose premises are laboratory decentralization, personalized medicine, rapid diagnosis, and improvement of patient care. Developed electronic readers can be powered from a conventional system, such as a USB port or a lithium battery, or can be defined as self-powered systems, capable of extracting energy from alternative energy sources, such as fuel cells, defining Plug-and-Power systems. The designed electrochemical detection devices in this thesis are based on low-power consumption electronic instrumentation circuits. These circuits are capable of controlling the sensing element, measuring its response, and representing the result quantitatively. The implemented devices can work with both electrochemical sensors and fuel cells. Furthermore, it is possible to adapt its measurement range, enabling its use in a wide variety of applications. Thanks to their reduced energy consumption, some of these developments can be defined as self-powered platforms able to operate only with the energy extracted from the biological sample, which in turn is monitored. These devices are easy-to-use and plug-and-play, enabling those unskilled individuals to carry out tests after prior training. Moreover, thanks to their user-friendly interface, results are clear and easy to understand. This doctoral dissertation is presented as an article compendium and composed of three publications detailed in chronological order of publication. The first contribution describes an innovative portable Point-of-Care device able to provide a quantitative result of the glucose concentration of a sample. The proposed system combines an e-reader and a disposable device based on two elements: a glucose paper-based power source, and a glucose fuel cell-based sensor. The battery-less e-reader extracts the energy from the disposable unit, acquires the signal, processes it, and shows the glucose concentration on a numerical display. Due to low-power consumption of the e-reader, the whole electronic system can operate only with the energy extracted from the disposable element. Furthermore, the proposed system minimizes the user interaction, which only must deposit the sample on the strip and wait a few seconds to see the test result. The second publication validates the e-reader in other scenarios following two approaches: using fuel cells as a power element, and as a dual powering and sensing element. The device was tested with glucose, urine, methanol, and ethanol fuel cells and electrochemical sensors in order to show the adaptability of this versatile concept to a wide variety of fields beyond clinical diagnostics, such as veterinary or environmental fields. The third study presents a low-cost, miniaturized, and customizable electronic reader for amperometric detections. The USB-powered portable device is composed of a full- custom electronic board for signal acquisition, and software, which controls the systems, represents and saves the results. In this study, the performance of the device was compared against three commercial potentiostats, showing comparable results to those obtained using three commercial systems, which were significantly more expensive. As proof of concept, the system was validated by detecting horseradish peroxidase samples. However, it could be easily extended its scope and measure other types of analytes or biological matrices since it can be easily adapted to detect currents a wide range of currents.Las pruebas de diagnostico Point-of-Care permiten monitorizar las condiciones de salud y obtener resultados rápidos cerca del paciente, reduciendo los costes médicos y permitiendo controlar brotes infecciosos. El interés por desarrollar dispositivos de Point- of-Care está aumentando debido a que son aplicables a una amplia variedad de aplicaciones. Esta tesis doctoral se centra en el desarrollo de lectores electrónicos (e-readers) Plug-and- Power para detecciones electroquímicas y la demostración de sus posibilidades como pruebas de diagnóstico de punto de atención (Point-of-Care). Las soluciones propuestas en este trabajo permiten mejorar las pruebas Point-of-Care, cuyas premisas son la descentralización de laboratorio, la medicina personalizada, el diagnóstico rápido y la mejora de la atención al paciente. Los lectores electrónicos desarrollados pueden ser alimentados desde un sistema convencional, como puede ser un puerto USB o una batería de litio, o definirse como sistemas autoalimentados, capaces de extraen energía de fuentes alternativas de energía, como celdas de combustible (fuel cells), definiendo así sistemas Plug-and-Power. Los dispositivos de detección electroquímica diseñados se basan en circuitos de instrumentación electrónica de bajo consumo. Estos circuitos son capaces controlar el elemento de sensado, medir su respuesta y representar el resultado de forma cuantitativa. Los dispositivos implementados pueden trabajar tanto con sensores electroquímicos como con fuel cells. Además, es posible adaptar su rango de medida, permitiendo su utilización en una amplia variedad de aplicaciones. Gracias a su reducido consumo de energía, algunos de estos desarrollos pueden definirse como plataformas autoalimentadas capaces de operar solo con la energía extraída de la muestra biológica, que a su vez es monitorizada. Estas plataformas electrónicas son fáciles de usar y Plug-and-Play, permitiendo que personas no cualificadas puedan utilizarlas después de un previo entrenamiento. Además, gracias a su interfaz fácil de usar, los resultados son claros y fáciles de interpretar

    Developing Energy Harvest Efficient Strategies with Microbial Fuel Cells

    Get PDF
    Nowadays, thinking of energetic efficiency is to determine how to decrease consumption and to reuse resources. This is a major concern when addressing hydric resources. The consumption of drinking water is seeing an unaffordable growth and, although most of it is replenished to the environment, the water quality is affected by pollutants and impurities. As such, using wastewater, a by-product of our routine and way of life, as resource is an asset. Even more when thinking about the heightened energy costs of a wastewater treatment station. The hypotheses of this work show how to achieve this goal by using microbial fuel cells. The organic composition of this water increases its energy production potential, where the bacterial metabolism can be used to, simultaneously, produce energy and help to clean the water. This document is divided in 5 chapters. The strategic positioning of the theme happens in chapter 1. Chapter 2 explains how the main elements of microbial fuel cell technology can work and determine its operation. In chapter 3, the power management systems used with microbial fuel cells are presented and discussed, with the identification of optimization strategies. The second-to-last chapter corresponds to the experimental results discussion and validation, while focusing improved energy production efficiencies. The outputs of this chapter pilot the future work analysis on chapter 5, together with the main conclusions and research trends. The validity and usefulness of this work is cleared with an application example.Pensar em economia energética é, hoje, considerar soluções para a redução de consumo e reutilização de recursos. Esta preocupação é importante ao examinar a utilização dos recursos hídricos. O consumo de água potável está a crescer insustentavelmente e, apesar de grande parte desse consumo ser restituído ao meio ambiente, a qualidade da água é afetada por poluentes ou impurezas. A utilização de água residual, um produto da nossa rotina e qualidade de vida, como um recurso é, por isso, uma mais valia. É ainda mais evidente ao considerar os elevados consumos energéticos de uma estação de tratamento de água residual. As hipóteses abordadas neste trabalho mostram como é possível atingir este objetivo usando células microbianas de combustível. A composição orgânica desta água faz com que o seu potencial energético possa ser explorado, usando o metabolismo bacteriano para produzir energia e, simultaneamente, auxiliar na limpeza da água. Este documento está dividido em 5 capítulos. O posicionamento do tema ocorre no capítulo 1. O capítulo 2 observa os principais elementos da tecnologia das células microbianas de combustível, permitindo compreender o seu funcionamento e conhecer que variáveis afetam o seu funcionamento. No capítulo 3 são apresentadas as tipologias de abordagem à gestão energética para esta pilha bacteriológica, discutindo-se as vantagens e otimizações de cada sistema. O penúltimo capítulo corresponde à exploração de resultados experimentais e à validação de hipóteses, orientadas para a maior eficiência energética. Surgem assim recomendações que servirão para guiar os trabalhos futuros, discutidos no capítulo final. Este, o capítulo 5, conta ainda com a apresentação das principais conclusões e das tendências de pesquisa. O trabalho termina com um exemplo de aplicação que solidifica a validade e utilidade da aplicação desta tecnologia
    corecore