2,229 research outputs found

    MANAGING CONTENTION AVOIDANCE AND MAXIMIZING THROUGHPUT IN OBS NETWORK

    Get PDF
    Optical Burst Switching (OBS) is a promising technology for future optical networks. Due to its less complicated implementation using current optical and electrical components, OBS is seen as the first step towards the future Optical Packet Switching (OPS). In OBS, a key problem is to schedule bursts on wavelength channels whose bandwidth may become fragmented with the so-called void (or idle) intervals with both fast and bandwidth efficient algorithms so as to reduce burst loss. In this paper, a new scheme has been proposed to improve the throughput and to avoid the contention in the OBS network. The proposed scheme offers the same node complexity as that in general OBS networks with optical buffers. Also, it avoids burst blockings in transit nodes, turning it into an efficient and simple burst contention avoidance mechanism. Simulation results show that the proposed scheme has improvement of 15% in terms of burst loss probability as compared to OBS existing schemes and also maximizes the throughput of the network without deteriorating excessively other parameters such as end to end delay or ingress queues

    Deflection Routing Strategies for Optical Burst Switching Networks: Contemporary Affirmation of the Recent Literature

    Get PDF
    A promising option to raising busty interchange in system communication could be Optical Burst Switched (OBS) networks among scalable and support routing effective. The routing schemes with disputation resolution got much interest, because the OBS network is buffer less in character. Because the deflection steering can use limited optical buffering or actually no buffering thus the choice or deflection routing techniques can be critical. Within this paper we investigate the affirmation of the current literature on alternate (deflection) routing strategies accessible for OBS networks

    Novel resource reservation schemes for optical burst switching

    Get PDF
    We propose to improve the throughput performance of optical burst switching by using regional controller nodes and window-based reservation. Both methods increase the information available to the intermediate nodes during scheduling decisions. Simulations show that the proposed reservation schemes provide significant improvement in the throughput performance compared with the original optical burst switching when the network is heavily loaded. © 2005 IEEE.published_or_final_versio

    Performance improvement methods for burst-switched networks

    Get PDF
    In this paper, we present a performance model of optical burst switching (OBS) that can explain the degradation of OBS throughput performance when the control packet processing time increases. We then use the proposed performance model to investigate three feasible methods to improve OBS performance without significantly increasing the implementation complexity: addition of simple fiber delay lines (FDLs), random extra offset time, and window-based channel scheduling (WBS). Additional FDLs can eliminate the negative impact caused by the variation of the offset time between control packets and data bursts. The random extra offset time approach does not require any additional hardware and computational capability in the nodes. If higher computational capability is available, WBS in general can provide better throughput improvement than that of random extra offset time when FDLs are used in the nodes to compensate the processing time. Simulation results show that a combination of the proposed methods can significantly improve OBS performance. © 2011 Optical Society of America.published_or_final_versio

    A Survey of Quality of Service Differentiation Mechanisms for Optical Burst Switching Networks

    Get PDF
    Cataloged from PDF version of article.This paper presents an overview of Quality of Service (QoS) differentiation mechanisms proposed for Optical Burst Switching (OBS) networks. OBS has been proposed to couple the benefits of both circuit and packet switching for the ‘‘on demand’’ use of capacity in the future optical Internet. In such a case, QoS support imposes some important challenges before this technology is deployed. This paper takes a broader view on QoS, including QoS differentiation not only at the burst but also at the transport levels for OBS networks. A classification of existing QoS differentiation mechanisms for OBS is given and their efficiency and complexity are comparatively discussed. We provide numerical examples on how QoS differentiation with respect to burst loss rate and transport layer throughput can be achieved in OBS networks. © 2009 Elsevier B.V. All rights reserved

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    How to enhance the efficiency of loss-less optical burst switching networks with the streamline effect

    Get PDF
    With the ongoing steady traffic increase in the Internet, the wavelength usage of the supporting optical networks is a critical network efficiency parameter. Therefore, this paper suggests a way how to efficiently and economically achieve this goal in the context of optical burst switching, a very promising technology that has been proposed to overcome the shortcomings of conventional WDM deployment, such as lack of fine bandwidth granularity in wavelength routing and electronic speed bottlenecks in the presence of bursty traffic. In order to mitigate the burst loss and achieve high network efficiency we adapt the loss-less paradigm defined by Coutelen et al. (2010), i.e., the CAROBS framework. In classical OBS networks, the streamline effect ensures a very low level of contention, i.e., efficient transmission, hence we define a routing guided only by the streamline effect. The resulting routing problem is formulated as an optimization model which is solved using a decomposition technique to increase the scalability of the solution process

    Simulation of CPRI traffic on Optical Ethernet

    Get PDF
    Evolution of mobile networks calls for novel ways of reducing delays while improving the network capacity. All application types require a system to utilize the expanding data. In the future, the projection is that quality of service (QoS) will be a key measurement of any network. Delay and jitter present a challenge to achieving the QoS needed. This is due to the loss of packets experienced during transmission and retransmission. Hence, the thesis proposes a Hybrid switching solution to increase the efficiency of transport networks for mobile data. This is done by designing a model that reduces the number of wavelengths needed to transport Common Public Radio interface (CPRI) over Ethernet while sharing the same optical resources for conventional backhaul traffic. CPRI over Ethernet is an ideal method to aid in better exploitation of the resources. The proposed strategy minimizes the loss of packets by making use of the available gaps during the transmission. Implementing such a model requires a Guaranteed Service Traffic (GST) class, which does not allow for packet loss and is treated as high priority traffic. Additionally, GST has a fixed low delay that makes it resilient to any form of network failures. Moreover, CPRI assists in saving costs by exploiting the unused wavelength capacity left by the GST traffic. Backhaul traffic can exploit this unused capacity to make the system compact. The thesis considers two classes of service levels with possible set of services that have QoS. These are CPRI over Ethernet (CPRIoE) and traditional packet-based Backhaul traffic. CPRIoE is considered as the GST traffic while Backhaul is the Best Effort (BE) traffic. Both traffics are transported over the same links, sharing wavelength resources. The results indicate the effectiveness of combining services in managing multiple flows, thus saving resources and optimizing the network
    corecore