202 research outputs found

    LDPC codes associated with linear representations of geometries

    Get PDF
    We look at low density parity check codes over a finite field K associated with finite geometries T*(2) (K), where K is any subset of PG(2, q), with q = p(h), p not equal char K. This includes the geometry LU(3, q)(D), the generalized quadrangle T*(2)(K) with K a hyperoval, the affine space AG(3, q) and several partial and semi-partial geometries. In some cases the dimension and/or the code words of minimum weight are known. We prove an expression for the dimension and the minimum weight of the code. We classify the code words of minimum weight. We show that the code is generated completely by its words of minimum weight. We end with some practical considerations on the choice of K

    Slices of the unitary spread

    Get PDF
    We prove that slices of the unitary spread of Q(+)(7, q), q equivalent to 2 (mod 3), can be partitioned into five disjoint classes. Slices belonging to different classes are non-equivalent under the action of the subgroup of P Gamma O+(8, q) fixing the unitary spread. When q is even, there is a connection between spreads of Q(+)(7, q) and symplectic 2-spreads of PG(5, q) (see Dillon, Ph.D. thesis, 1974 and Dye, Ann. Mat. Pura Appl. (4) 114, 173-194, 1977). As a consequence of the above result we determine all the possible non-equivalent symplectic 2-spreads arising from the unitary spread of Q(+)(7, q), q = 2(2h+1). Some of these already appeared in Kantor, SIAM J. Algebr. Discrete Methods 3(2), 151-165, 1982. When q = 3(h), we classify, up to the action of the stabilizer in P Gamma O(7, q) of the unitary spread of Q(6, q), those among its slices producing spreads of the elliptic quadric Q(-)(5, q)

    Identifying codes in vertex-transitive graphs and strongly regular graphs

    Get PDF
    We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2ln(vertical bar V vertical bar) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that reach both bounds. We exhibit infinite families of vertex-transitive graphs with integer and fractional identifying codes of order vertical bar V vertical bar(alpha) with alpha is an element of{1/4, 1/3, 2/5}These families are generalized quadrangles (strongly regular graphs based on finite geometries). They also provide examples for metric dimension of graphs

    Ovoids and spreads of finite classical generalized hexagons and applications

    Get PDF
    One intuitively describes a generalized hexagon as a point-line geometry full of ordinary hexagons, but containing no ordinary n-gons for n<6. A generalized hexagon has order (s,t) if every point is on t+1 lines and every line contains s+1 points. The main result of my PhD Thesis is the construction of three new examples of distance-2 ovoids (a set of non-collinear points that is uniquely intersected by any chosen line) in H(3) and H(4), where H(q) belongs to a special class of order (q,q) generalized hexagons. One of these examples has lead to the construction of a new infinite class of two-character sets. These in turn give rise to new strongly regular graphs and new two-weight codes, which is why I dedicate a whole chapter on codes arising from small generalized hexagons. By considering the (0,1)-vector space of characteristic functions within H(q), one obtains a one-to-one correspondence between such a code and some substructure of the hexagon. A regular substructure can be viewed as the eigenvector of a certain (0,1)-matrix and the fact that eigenvectors of distinct eigenvalues have to be orthogonal often yields exact values for the intersection number of the according substructures. In my thesis I reveal some unexpected results to this particular technique. Furthermore I classify all distance-2 and -3 ovoids (a maximal set of points mutually at maximal distance) within H(3). As such we obtain a geometrical interpretation of all maximal subgroups of G2(3), a geometric construction of a GAB, the first sporadic examples of ovoid-spread pairings and a transitive 1-system of Q(6,3). Research on derivations of this 1-system was followed by an investigation of common point reguli of different hexagons on the same Q(6,q), with nice applications as a result. Of these, the most important is the alternative construction of the Hölz design and a subdesign. Furthermore we theoretically prove that the Hölz design on 28 points only contains Hermitian and Ree unitals (previously shown by Tonchev by computer). As these Hölz designs are one-point extensions of generalized quadrangles, we dedicate a final chapter to the characterization of the affine extension of H(2) using a combinatorial property

    Newton polygons and curve gonalities

    Full text link
    We give a combinatorial upper bound for the gonality of a curve that is defined by a bivariate Laurent polynomial with given Newton polygon. We conjecture that this bound is generically attained, and provide proofs in a considerable number of special cases. One proof technique uses recent work of M. Baker on linear systems on graphs, by means of which we reduce our conjecture to a purely combinatorial statement.Comment: 29 pages, 18 figures; erratum at the end of the articl

    Near polygons and Fischer spaces

    Get PDF
    In this paper we exploit the relations between near polygons with lines of size 3 and Fischer spaces to classify near hexagons with quads and with lines of size three. We also construct some infinite families of near polygons

    Identifying codes in vertex-transitive graphs and strongly regular graphs

    Full text link
    We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2 ln(|V|)+1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that reach both bounds. We exhibit infinite families of vertex-transitive graphs with integer and fractional identifying codes of order |V|^a with a in {1/4,1/3,2/5}. These families are generalized quadrangles (strongly regular graphs based on finite geometries). They also provide examples for metric dimension of graphs

    Non-intersecting Ryser hypergraphs

    Full text link
    A famous conjecture of Ryser states that every rr-partite hypergraph has vertex cover number at most r−1r - 1 times the matching number. In recent years, hypergraphs meeting this conjectured bound, known as rr-Ryser hypergraphs, have been studied extensively. It was recently proved by Haxell, Narins and Szab\'{o} that all 33-Ryser hypergraphs with matching number ν>1\nu > 1 are essentially obtained by taking ν\nu disjoint copies of intersecting 33-Ryser hypergraphs. Abu-Khazneh showed that such a characterisation is false for r=4r = 4 by giving a computer generated example of a 44-Ryser hypergraph with ν=2\nu = 2 whose vertex set cannot be partitioned into two sets such that we have an intersecting 44-Ryser hypergraph on each of these parts. Here we construct new infinite families of rr-Ryser hypergraphs, for any given matching number ν>1\nu > 1, that do not contain two vertex disjoint intersecting rr-Ryser subhypergraphs.Comment: 8 pages, some corrections in the proof of Lemma 3.6, added more explanation in the appendix, and other minor change

    Incidence geometry from an algebraic graph theory point of view

    Get PDF
    The goal of this thesis is to apply techniques from algebraic graph theory to finite incidence geometry. The incidence geometries under consideration include projective spaces, polar spaces and near polygons. These geometries give rise to one or more graphs. By use of eigenvalue techniques, we obtain results on these graphs and on their substructures that are regular or extremal in some sense. The first chapter introduces the basic notions of geometries, such as projective and polar spaces. In the second chapter, we introduce the necessary concepts from algebraic graph theory, such as association schemes and distance-regular graphs, and the main techniques, including the fundamental contributions by Delsarte. Chapter 3 deals with the Grassmann association schemes, or more geometrically: with the projective geometries. Several examples of interesting subsets are given, and we can easily derive completely combinatorial properties of them. Chapter 4 discusses the association schemes from classical finite polar spaces. One of the main applications is obtaining bounds for the size of substructures known as partial m- systems. In one specific case, where the partial m-systems are partial spreads in the polar space H(2d − 1, q^2) with d odd, the bound is new and even tight. A variant of the famous Erdős-Ko-Rado problem is considered in Chapter 5, where we study sets of pairwise non-trivially intersecting maximal totally isotropic subspaces in polar spaces. A combination of geometric and algebraic techniques is used to obtain a classification of such sets of maximum size, except for one specific polar space, namely H(2d − 1, q^2) for odd rank d ≥ 5. Near polygons, including generalized polygons and dual polar spaces, are studied in the last chapter. Several results on substructures in these geometries are given. An inequality of Higman on the parameters of generalized quadrangles is generalized. Finally, it is proved that in a specific dual polar space, a highly regular substructure would yield a distance- regular graph, generalizing a result on hemisystems. The appendix consists of an alternative proof for one of the main results in the thesis, a list of open problems and a summary in Dutch
    • …
    corecore