19,866 research outputs found

    Efficient enumeration of solutions produced by closure operations

    Full text link
    In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets \dots). To do so, we study the MembershipFMembership_{\mathcal{F}} problem: for a set of operations F\mathcal{F}, decide whether an element belongs to the closure by F\mathcal{F} of a family of elements. In the boolean case, we prove that MembershipFMembership_{\mathcal{F}} is in P for any set of boolean operations F\mathcal{F}. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since MembershipFMembership_{\mathcal{F}} is NP-hard for some F\mathcal{F}. We also study the problem of generating minimal or maximal elements of closures and prove that some of them are related to well known enumeration problems such as the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph. This article improves on previous works of the same authors.Comment: 30 pages, 1 figure. Long version of the article arXiv:1509.05623 of the same name which appeared in STACS 2016. Final version for DMTCS journa

    Do Hard SAT-Related Reasoning Tasks Become Easier in the Krom Fragment?

    Full text link
    Many reasoning problems are based on the problem of satisfiability (SAT). While SAT itself becomes easy when restricting the structure of the formulas in a certain way, the situation is more opaque for more involved decision problems. We consider here the CardMinSat problem which asks, given a propositional formula ϕ\phi and an atom xx, whether xx is true in some cardinality-minimal model of ϕ\phi. This problem is easy for the Horn fragment, but, as we will show in this paper, remains Θ2\Theta_2-complete (and thus NP\mathrm{NP}-hard) for the Krom fragment (which is given by formulas in CNF where clauses have at most two literals). We will make use of this fact to study the complexity of reasoning tasks in belief revision and logic-based abduction and show that, while in some cases the restriction to Krom formulas leads to a decrease of complexity, in others it does not. We thus also consider the CardMinSat problem with respect to additional restrictions to Krom formulas towards a better understanding of the tractability frontier of such problems

    Clones on infinite sets

    Full text link
    A clone on a set X is a set of finitary functions on X which contains the projections and which is closed under composition. The set of all clones on X forms a complete algebraic lattice Cl(X). We obtain several results on the structure of Cl(X) for infinite X. In the first chapter we prove the combinatorial result that if X is linearly ordered, then the median functions of different arity defined by that order all generate the same clone. The second chapter deals with clones containing the almost unary functions, that is, all functions whose value is determined by one of its variables up to a small set. We show that on X of regular cardinality, the set of such clones is always a countably infinite descending chain. The third chapter generalizes a result due to L. Heindorf from the countable to all uncountable X of regular cardinality, resulting in an explicit list of all clones containing the permutations but not all unary functions of X. Moreover, all maximal submonoids of the full transformation monoid which contain the permutations of X are determined, on all infinite X; this is an extension of a theorem by G. Gavrilov for countable base sets.Comment: 70 pages; Dissertation written at the Vienna University of Technology under the supervision of Martin Goldstern; essentially consists of the author's papers "The clone generated by the median functions", "Clones containing all almost unary functions, "Maximal clones on uncountable sets that include all permutations" which are all available from arXi

    Galois correspondence for counting quantifiers

    Full text link
    We introduce a new type of closure operator on the set of relations, max-implementation, and its weaker analog max-quantification. Then we show that approximation preserving reductions between counting constraint satisfaction problems (#CSPs) are preserved by these two types of closure operators. Together with some previous results this means that the approximation complexity of counting CSPs is determined by partial clones of relations that additionally closed under these new types of closure operators. Galois correspondence of various kind have proved to be quite helpful in the study of the complexity of the CSP. While we were unable to identify a Galois correspondence for partial clones closed under max-implementation and max-quantification, we obtain such results for slightly different type of closure operators, k-existential quantification. This type of quantifiers are known as counting quantifiers in model theory, and often used to enhance first order logic languages. We characterize partial clones of relations closed under k-existential quantification as sets of relations invariant under a set of partial functions that satisfy the condition of k-subset surjectivity. Finally, we give a description of Boolean max-co-clones, that is, sets of relations on {0,1} closed under max-implementations.Comment: 28 pages, 2 figure

    Clones with finitely many relative R-classes

    Get PDF
    For each clone C on a set A there is an associated equivalence relation analogous to Green's R-relation, which relates two operations on A iff each one is a substitution instance of the other using operations from C. We study the clones for which there are only finitely many relative R-classes.Comment: 41 pages; proofs improved, examples adde

    On the (un)decidability of a near-unanimity term

    Get PDF
    We investigate the near-unanimity problem: given a finite algebra, decide if it has a near-unanimity term of finite arity. We prove that it is undecidable of a finite algebra if it has a partial near-unanimity term on its underlying set excluding two fixed elements. On the other hand, based on Rosenberg’s characterization of maximal clones, we present partial results towards proving the decidability of the general problem

    A survey of clones on infinite sets

    Full text link
    A clone on a set X is a set of finitary operations on X which contains all projections and which is moreover closed under functional composition. Ordering all clones on X by inclusion, one obtains a complete algebraic lattice, called the clone lattice. We summarize what we know about the clone lattice on an infinite base set X and formulate what we consider the most important open problems.Comment: 37 page
    corecore