Many reasoning problems are based on the problem of satisfiability (SAT).
While SAT itself becomes easy when restricting the structure of the formulas in
a certain way, the situation is more opaque for more involved decision
problems. We consider here the CardMinSat problem which asks, given a
propositional formula ϕ and an atom x, whether x is true in some
cardinality-minimal model of ϕ. This problem is easy for the Horn
fragment, but, as we will show in this paper, remains Θ2-complete (and
thus NP-hard) for the Krom fragment (which is given by formulas in
CNF where clauses have at most two literals). We will make use of this fact to
study the complexity of reasoning tasks in belief revision and logic-based
abduction and show that, while in some cases the restriction to Krom formulas
leads to a decrease of complexity, in others it does not. We thus also consider
the CardMinSat problem with respect to additional restrictions to Krom formulas
towards a better understanding of the tractability frontier of such problems