1,266 research outputs found

    Maximal digital straight segments and convergence of discrete geometric estimators

    Get PDF
    Discrete geometric estimators approach geometric quantities on digitized shapes without any knowledge of the continuous shape. A classical yet difficult problem is to show that an estimator asymptotically converges toward the true geometric quantity as the resolution increases. We study here the convergence of local estimators based on Digital Straight Segment (DSS) recognition. It is closely linked to the asymptotic growth of maximal DSS, for which we show bounds both about their number and sizes. These results not only give better insights about digitized curves but indicate that curvature estimators based on local DSS recognition are not likely to converge. We indeed invalidate an hypothesis which was essential in the only known convergence theorem of a discrete curvature estimator. The proof involves results from arithmetic properties of digital lines, digital convexity, combinatorics, continued fractions and random polytopes

    Revisiting Digital Straight Segment Recognition

    Full text link
    This paper presents new results about digital straight segments, their recognition and related properties. They come from the study of the arithmetically based recognition algorithm proposed by I. Debled-Rennesson and J.-P. Reveill\`es in 1995 [Debled95]. We indeed exhibit the relations describing the possible changes in the parameters of the digital straight segment under investigation. This description is achieved by considering new parameters on digital segments: instead of their arithmetic description, we examine the parameters related to their combinatoric description. As a result we have a better understanding of their evolution during recognition and analytical formulas to compute them. We also show how this evolution can be projected onto the Stern-Brocot tree. These new relations have interesting consequences on the geometry of digital curves. We show how they can for instance be used to bound the slope difference between consecutive maximal segments

    Curvature Estimation along Noisy Digital Contours by Approximate Global Optimization

    Get PDF
    International audienceIn this paper we introduce a new curvature estimator along digital contours, that we called Global Min-Curvature estimator (GMC). As opposed to previous curvature estimators, it considers all the possible shapes that are digitized as this contour, and selects the most probable one with a global optimization approach. The GMC estimator exploits the geometric properties of digital contours by using local bounds on tangent directions defined by the maximal digital straight segments. The estimator is then adapted to noisy contours by replacing maximal segments with maximal blurred digital straight segments. Experiments on perfect and damaged digital contours are performed and in both cases, comparisons with other existing methods are presented

    Properties of Gauss digitized sets and digital surface integration

    Get PDF
    International audienceThis paper presents new topological and geometrical properties of Gauss digitizations of Euclidean shapes, most of them holding in arbitrary dimension dd. We focus on rr-regular shapes sampled by Gauss digitization at gridstep hh. The digitized boundary is shown to be close to the Euclidean boundary in the Hausdorff sense, the minimum distance d2h\frac{\sqrt{d}}{2}h being achieved by the projection map ξ\xi induced by the Euclidean distance. Although it is known that Gauss digitized boundaries may not be manifold when d3d \ge 3, we show that non-manifoldness may only occur in places where the normal vector is almost aligned with some digitization axis, and the limit angle decreases with hh. We then have a closer look at the projection of the digitized boundary onto the continuous boundary by ξ\xi. We show that the size of its non-injective part tends to zero with hh. This leads us to study the classical digital surface integration scheme, which allocates a measure to each surface element that is proportional to the cosine of the angle between an estimated normal vector and the trivial surface element normal vector. We show that digital integration is convergent whenever the normal estimator is multigrid convergent, and we explicit the convergence speed. Since convergent estimators are now available in the litterature, digital integration provides a convergent measure for digitized objects

    Curvature based corner detector for discrete, noisy and multi-scale contours

    Get PDF
    International audienceEstimating curvature on digital shapes is known to be a difficult problem even in high resolution images 10,19. Moreover the presence of noise contributes to the insta- bility of the estimators and limits their use in many computer vision applications like corner detection. Several recent curvature estimators 16,13,15, which come from the dis- crete geometry community, can now process damaged data and integrate the amount of noise in their analysis. In this paper, we propose a comparative evaluation of these estimators, testing their accuracy, efficiency, and robustness with respect to several type of degradations. We further compare the best one with the visual curvature proposed by Liu et al. 14, a recently published method from the computer vision community. We finally propose a novel corner detector, which is based on curvature estimation, and we provide a comprehensive set of experiments to compare it with many other classical cor- ner detectors. Our study shows that this corner detector has most of the time a better behavior than the others, while requiring only one parameter to take into account the noise level. It is also promising for multi-scale shape description

    Normals estimation for digital surfaces based on convolutions

    Get PDF
    International audienceIn this paper, we present a method that we call on-surface convolution which extends the classical notion of a 2D digital filter to the case of digital surfaces (following the cuberille model). We also define an averaging mask with local support which, when applied with the iterated convolution operator, behaves like an averaging with large support. The interesting property of the latter averaging is the way the resulting weights are distributed: given a digital surface obtained by discretization of a differentiable surface of R^3 , the masks isocurves are close to the Riemannian isodistance curves from the center of the mask. We eventually use the iterated averaging followed by convolutions with differentiation masks to estimate partial derivatives and then normal vectors over a surface. The number of iterations required to achieve a good estimate is determined experimentally on digitized spheres and tori. The precision of the normal estimation is also investigated according to the digitization step

    Interactive Curvature Tensor Visualization on Digital Surfaces

    Get PDF
    International audienceInteractive visualization is a very convenient tool to explore complex scientific data or to try different parameter settings for a given processing algorithm. In this article, we present a tool to efficiently analyze the curvature tensor on the boundary of potentially large and dynamic digital objects (mean and Gaussian curvatures, principal curvatures , principal directions and normal vector field). More precisely, we combine a fully parallel pipeline on GPU to extract an adaptive triangu-lated isosurface of the digital object, with a curvature tensor estimation at each surface point based on integral invariants. Integral invariants being parametrized by a given ball radius, our proposal allows to explore interactively different radii and thus select the appropriate scale at which the computation is performed and visualized

    Two linear-time algorithms for computing the minimum length polygon of a digital contour

    Get PDF
    AbstractThe Minimum Length Polygon (MLP) is an interesting first order approximation of a digital contour. For instance, the convexity of the MLP is characteristic of the digital convexity of the shape, its perimeter is a good estimate of the perimeter of the digitized shape. We present here two novel equivalent definitions of MLP, one arithmetic, one combinatorial, and both definitions lead to two different linear time algorithms to compute them. This paper extends the work presented in Provençal and Lachaud (2009) [26], by detailing the algorithms and providing full proofs. It includes also a comparative experimental evaluation of both algorithms showing that the combinatorial algorithm is about 5 times faster than the other. We also checked the multigrid convergence of the length estimator based on the MLP
    corecore