827 research outputs found

    Max-plus algebra in the history of discrete event systems

    Get PDF
    This paper is a survey of the history of max-plus algebra and its role in the field of discrete event systems during the last three decades. It is based on the perspective of the authors but it covers a large variety of topics, where max-plus algebra plays a key role

    Computation of the Transient in Max-Plus Linear Systems via SMT-Solving

    Full text link
    This paper proposes a new approach, grounded in Satisfiability Modulo Theories (SMT), to study the transient of a Max-Plus Linear (MPL) system, that is the number of steps leading to its periodic regime. Differently from state-of-the-art techniques, our approach allows the analysis of periodic behaviors for subsets of initial states, as well as the characterization of sets of initial states exhibiting the same specific periodic behavior and transient. Our experiments show that the proposed technique dramatically outperforms state-of-the-art methods based on max-plus algebra computations for systems of large dimensions.Comment: The paper consists of 22 pages (including references and Appendix). It is accepted in FORMATS 2020 First revisio

    Proceedings of the real-time database workshop, Eindhoven, 23 February 1995

    Get PDF

    Formal Analysis and Verification of Max-Plus Linear Systems

    Full text link
    Max-Plus Linear (MPL) systems are an algebraic formalism with practical applications in transportation networks, manufacturing and biological systems. In this paper, we investigate the problem of automatically analyzing the properties of MPL, taking into account both structural properties such as transient and cyclicity, and the open problem of user-defined temporal properties. We propose Time-Difference LTL (TDLTL), a logic that encompasses the delays between the discrete time events governed by an MPL system, and characterize the problem of model checking TDLTL over MPL. We first consider a framework based on the verification of infinite-state transition systems, and propose an approach based on an encoding into model checking. Then, we leverage the specific features of MPL systems to devise a highly optimized, combinational approach based on Satisfiability Modulo Theory (SMT). We experimentally evaluate the features of the proposed approaches on a large set of benchmarks. The results show that the proposed approach substantially outperforms the state of the art competitors in expressiveness and effectiveness, and demonstrate the superiority of the combinational approach over the reduction to model checking.Comment: 28 pages (including appendixes

    Design, Fabrication, and Testing of a 3D Image Reconstruction Process

    Get PDF
    This project involves optimizing a workflow for photogrammetry. This includes the redesign of an existing 3D scanning stage, the use of multiple Raspberry Pi cameras for image acquisition, as well as the selection of the best software and settings to use in order to render the 3D model. Once a 3D model is generated, it is brought into a model editing environment or sent directly to a 3D printer. Through the methods and product iterations explained in this project, the team was able to successfully create and 3D print realistic models of actual objects. The main objective was to develop a complete 3D image reconstruction package that is easier to use for the general user

    Alternatives for jet engine control

    Get PDF
    Tensor model order reduction, recursive tensor model identification, input design for tensor model identification, software development for nonlinear feedback control laws based upon tensors, and development of the CATNAP software package for tensor modeling, identification and simulation were studied. The last of these are discussed

    Print engine color management using customer image content

    Get PDF
    The production of quality color prints requires that color accuracy and reproducibility be maintained to within very tight tolerances when transferred to different media. Variations in the printing process commonly produce color shifts that result in poor color reproduction. The primary function of a color management system is maintaining color quality and consistency. Currently these systems are tuned in the factory by printing a large set of test color patches, measuring them, and making necessary adjustments. This time-consuming procedure should be repeated as needed once the printer leaves the factory. In this work, a color management system that compensates for print color shifts in real-time using feedback from an in-line full-width sensor is proposed. Instead of printing test patches, this novel attempt at color management utilizes the output pixels already rendered in production pages, for a continuous printer characterization. The printed pages are scanned in-line and the results are utilized to update the process by which colorimetric image content is translated into engine specific color separations (e.g. CIELAB-\u3eCMYK). The proposed system provides a means to perform automatic printer characterization, by simply printing a set of images that cover the gamut of the printer. Moreover, all of the color conversion features currently utilized in production systems (such as Gray Component Replacement, Gamut Mapping, and Color Smoothing) can be achieved with the proposed system

    NASA Tech Briefs, August 1991

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    NASA Tech Briefs, November/December 1987

    Get PDF
    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences
    corecore