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Introduction

The purpose of this workshop was to introduce the members (3 companies
and 2 research institutes) of the user committee and the team members (3
stafl and 2 PhD students) of the STW-project: Construction and perfor-
mance of real-time {ransactions to each other. The user group represents
a large group of (potential) users of real-time databases. During the work-
shop insight was gained in the requirements of the companies they represent.
Four talks were presented by different companies to state their requirements
on on-line databases. A talk was given by INRIA about maximum response
times of transactional systems. A representative of STW was present to
explain the tasks and procedures relevant for the members of the User Com-
mittee as laid down by the STW organization.

The project is motivated by two observations: (1) more and more re-
sponse times are specified for database accesses and (2) recently, real-time
applications demand so much structured data that database techniques are
needed to manage these data.

The specification of deadlines is necessary for real-time systems because
often the action on the process under control must be carried out before the
process under control enters a certain state. A well known example is the
activation of a manufacturing machine at the moment the manufacturing
object passes on the conveyor belt.

Database applications start to necessitate deadlines to satisfy customer
demands. The deadlines give guarantees on the performance of the on-line
database accesses. When the deadlines are not met, customer satisfaction
may drop such that customers turn to other installations where these dead-
lines are met. Considerable financial loss may be suffered when the deadlines
are not met. An example is: large quantities of money are transferred with
a slight delay.

For the purpose of this project the term real-time transactions is used
to indicate those transactions which need to meet their deadlines. A real-
time database is a database where real-time transactions are executed. The
performance of the database is no longer determined by the mean duration of
the individual transactions but by the number of transactions which meet
their deadline. Figure 1 shows that these two measures lead to different
results, Two density functions are represented. The first one has the lower
mean but a higher variance and a larger fraction of transactions that do
not meet their deadline than the second one. The mean of the elongated
distribution is smaller but the larger number of transactions which meet
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Figure 1: distribution of hypothetical transactions

their deadline is created by the narrow distribution. This figure indicates
that different techniques from the current ones are probably needed to satisfy
the real-time requirements of the database. During this project we will try
to calculate the distribution of the transaction execution times and develop
appropriate algorithms to increase the real-time performance.

In these proceedings, papers supporting the presented talks and copies
of the presented overhead sheets are bundled. Their contents represent the
interests of the users in the project and the current state of analysis done
by project members.

A first talk was given by L.J.M Nieuwenhuis of KPN Research, titled:
Database Requirements in Telecommunications Systems.

In this tlak the importance of databases for current and future telecom-
munications systems was discussed. Large amounts of information for net-
work management, service provisioning and billing and pricing are needed.
These applications put strong performance and reliability requirements on
the involved database systems. Proposed implementation strategies are
based on partitioning and replication. Partitioning is needed to support
simultaneous, real-time transactions and replication is needed to provide
reliability through fault tolerance. An overview of strategies with various
levels of consistency was presented.



The second talk was presented by J. van der Meer of Ericsson Telecom,
titled: Real-Time dalabases: present state and future expectations.

This talk provided a follow-up to the former talk. Given the low per-
formance of present day databases and given the specific characteristics of
the transactions requested for Intelligent Networks, Ericsson has started to
build a special purpose database based on the language Erlang. The pro-
tocols, the transaction characteristics and the performance requirements of
the database were presented.

The third talk was presented by A.A. Vreven of Rabofacet, titled:
Database requirements for on-line financial transactions.

A short overview of the needs of the Rabobank are discussed. The bank
is not interested in highly complex technical solutions but wants to handle
on-line transactions more cheaply than its competitors. For that purpose
the functional units of the database applications must be distributed over
a network of teller machines and other mainframes or workstations., The
Rabobank wants to know the performance consequences of these distribu-
tions.

The fourth talk was presented by P. Minet of INRIA/Rocquencourt,
titled: Mazimum response time in a real-time distributed transactional sys-
tem.

Distributed transactional real-time systems pose the triple problem of
serialisability, reliabiliy and timeliness. In the talk conditions necessary
for the realization of these systems are determined. In this way the system
constructor can verify beforehand whether the system will meet its timeliness
requirements and knows the length of the transaction wait-queues.

The fifth talk was given by I. Willers of CERN, titled: Database require-
ment for on-line analysis of High Energy Physics ezperiments.

A short introduction to CERN was given focussing quickly onto the on-
line analysis and a look at LHC where we see a growing need for computing
power and large quantities of data. The first steps taken in a project which
has begun with a case study of on-line event reconstruction using a parallel
in-memory database were discussed in detail. A data driven approach results
in the writing of scalable parallel programs and involves minimal changes to
legacy code.

The sixth talk was given by Maarten Bodlaender of TUE, titled: Real-
time distributed databases.

The talk consisted of two different parts. First the difference between
normal databases and real-time databases was addressed. The field of real-
time databases resulted from the joining of databases with real-time schedul-



ing systems. These different fields have different aspects that cannot be
trivially combined. Next, different ways were discussed on how these fields
can be integrated to create real-time databases. It is hard to create a gen-
eral purpose real-time database that satisfies all requirements that different
users have, A quick look was taken on the different features that real-time
databases could offer.

The seventh and last talk was presented by Simone Sassen from TUE,
titled: Performance Analysis for Real-Time Databases.

In this talk, the uncertainty in real-time databases was discussed. In
most applications of real-time databases, no exact information is available
about the arrival times, the sizes and the deadlines of future transactions.
Due to this uncertainty it is not sufficient to measure the performance of a
real-time database in terms of the average response time of a transaction;
one has to obtain an approximation for its distribution. The ultimate result
should be to find an approximation for the probability that a transaction
meets its deadline,



Overview of Databases Requirements for Intelligent Networks *
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Abstract

We discuss requiremnents and techniques for the Scr-
vice Data Point (SDP) in Intelligent Network (IN) ar-
chilectures in telecommunicetions sysiems. The SDP
must provide real-time, simulleneous access lo high
volume databases. We qive a short overview of SDP
requirements derived from currently developed and fu-
ture IN telecommunicalions services.

1 Introduction

The Intelligent Network (IN} architecture [2] has
Leen developed to improve the slow and costly process
of introducing new telecormmmunications services in to-
day’s Lelecommunications systems requiring software
updates in all switching systems of the public network.
The basic idea of the IN architecture is to shift the
service contrel out of the switches to a small number
ol Service Control Points (SCPs) somewhere located
in the public network. In an IN architecture, switch-
ing systems provide a set of basic switching functions.
New services can be introduced by adding a new ser-
vice control program in the SCP rather than updating
the software of the switching systems across the entire
netwark.

An example of an IN service is short number dialing
in a Virtual Private Network {(VPN). The IN service
request of a subscriber is detected by the switch, which
then routes the request, including the ‘short number’,
to the SCP. For each subscriber, the SCP maintains a
tabel in which the ‘short numbers’ are mapped on the
‘long numbers’. The SCP sends the ‘long numbers’
back to the switch, which proceeds with a normal call
setup, using the received information.

Obviously, the SCP needs a repository function to
storce the large amounts of data needed to provide var-
lous telecommunications services to all subscribers of
the public neswork.

The storage function of the SCP 1s provided by the
Service Data Point (SDP), the physical entiiy sup-
poriing the SCP. If we assume that in future each
subscriber will use at least a few IN services, an SDP
has to store enormous amounts of data. In practice,
an SCP processes a large number of service requests in
parallel. Obviously, the performance of the SCP and
SDP is directly related to the Quality of Service ex-
perienced by the service end-users. Consequently, the
SDIP can be characterised as a high capacity database
which has to support simultaneous, real-time transac-
tlons.

"Short Note Paper for Joint Workshop on Parallel and Dis-
tributed Real-Thne Systems. April 22 - 24, 1995, Santa Bar-
bara, California

The SDP (and SCP) have to meet high reliability
and availability requirements, as SDP faults may cause
network wide service failure affecting all subscribers.
In order to meet these requirements, the SDP imple-
mentations will be based on replication strategies to
support fault tolerance.

Hence, the requirements for the SDPs in IN are
challenging: highly reliable database systems must
provide simultaneous real-time access to a large num-
bers of users. These challenges make databases for
telecommunications systems an interesting subject for
academic and industrial research(8, 5, 6, 9].

The objective of this paper is to give an overview
of the required database functionality in IN networks
(Section 2). We then extend the requirements analy-
sis for future telecommunications services, e.g., mobile
communication (Section 3). The requirements analy-
sis justify future research on distribution, partitioning
and replication techniques for databases in various ap-
plications areas of telecommunications (Section 4).

2 1IN database requirements

Most of the requirements presented here, are from
an EURESCOM foresight study carried out 1n 1992[1].
Some observations are the results of an American
study by Nicholas Roussopoulos[7], presented at a
workshop in Germany in April 1994[5].

The requirements reported here are derived from
a number of IN services under development (Freep-
hone, Split Charge, and Virtual Private Network), and
future services (mobile services, UPT, directory ser-
vices) as well as a number of specific network manage-
ment services (accounting and billing):

Storage requirements The data involved is rather
simple and tabular representation suffices. The
amount of data to be stored is expressed in stor-
age capacity per million lines (since one SCP
database per million lines seems achievable) and
estimated to range from 1 to 100 Mbytes for cur-
rent services.

Access requirements For current services, simple
but fast retrieval is the main mode of operation.
The amount of data involved is relatively small,
for example for credit card calling 25 to 50 bytes
per access, while for freephone numbers a service
profile of about 2 Kbytes is retrieved.

Transactions requirements Most IN services will
use small, real-time, read-only transactions. As
far as consistency is concerned, requirements
cover the whole spectrum from degree (e.g., for
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Real Time Databases
Abstract

A shont description is provided of our, Ericssons Intelligent Network Application
Laboratory, view on the current possibilities of database technology. Especially
aimed at the use for telecommunication applications.

The aim was not to be extensive, we consider ourselves users of databases and
this document was written from that perspective.

Both inside and outside Ericsson other persons can be found who have much
more detailed knowledge of the database-inside technology.

Jan van der Meer

Manager Ericsson Intelligent Networks Application Laboratory
etmjvdm @ etm.aricsson.sa
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GENERAL

In Applications for Telecommunications in general two types of databases can be
found:

1 Handling real-time control information. In this case the contents of
the database is used to influence the setup of individual calls.
Examples are: Location database tor mobile phones, service
profile information for freephone or premium rate subscribers.

2 Handling management information. This can range from data
related to the network setup, node configuration, subscriber base
etc. to actual billing information.

Regarding retrieval speed and transaction capacity, the first type has received
most attention sofar. In the near future we expect that also the databases
providing data for management purposes, will be required to handle increased
retrieval speed and transaction capacity. The possibility to access the current
billing status of an individual user, can be an interesting service for users and oper-
ators.

Below the current status of technology, seen from an Ericsson perspective, is
briefly described. Followed by some more information on the two general data-
base types, and then the requirements to be put on database development.

Current technology status

Ericsson uses commercially available database systems in our telecom manage-
ment systems. It was felt that by this approach the latest state of technology could
be accessed. Although the systems perform as can be expected, we have prob-

lems with the provided capacity both in access speed and size.

For our Inteliigent Networks and Mobile products we have developed our own
databases. For both products access speed and reliability were important require-
ments. These databases were developed specifically for telecom applications,
and geared to provide maximum performance on the Ericsson proprietary
processing platform.

Our database implementations today handle 200 (for more complex queries) to
400 (for simple queries) transactions/sec. Access times are < 10 ms.

The processing platform is duplicated, clock synchronous system where both
sides execute the same code continuously. Thus switchover in case of problems
occurs without any impact on performance of the system, awareness of the appli-
cation and loss of any telephone call.

13
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The data is backed up on disk, where the backup frequency can be specified.
In general the following approach is taken:

1 General backup, one or two times a day
2 Important data, dumped once every hour
3 Data changes are logged between the general backup dumps.

The dumps are stored in order where, when a reload is required, normally the most
recent is selected. The operator can influence this selection, e.g. when software

modifications have taken place. ‘

The loading of the logged data-changes takes place under operator control, this

to prevent data that lead to problems from being loaded.

Ericsson is currently analysing how to handle the data for telecom applications.
Distributed databases are the most obvious answer. This technology is however
not yet mature enough.

Requirements

For telecom applications we see the following requirements:

1 Access times should be <100 ms for 95% of the queries, if the time
exceeds 200ms the transaction can be aborted.

2 if we assume that one record is required per user and/or terminal
we come to database sizes of >2.000.000 records.

3 The records should appear to be of variable size. it must be
possible to (dis)connect users to services and handle the
appropriate user-specific service data.

Users will nave a large amount of control over their service-data.

4 Security, apart from the obvious {one user cannot access data of
another user) different service providers are not allowed to access
data of users or services outside their domain.

One specific user could subscribe to services of different providers.
The network operator will not be allowed to access the service
provider specific user or service data.

5 Reliability, never lose anything.

Woe think that only a distributed database system can handle the requirement on
size. There are also other reason to go for distribution e.qg. reliability, access times,
geographical structure of the network.

The ahove list of requirements should not be considered as being complete, it is
mainly included here to get some ‘feeling’ of what is needed.

14
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Résumé :

Les systémes transactionnels répartis temps réel avec mise a jour en ligne de
données réparties posent le triple probléme de sérialisabilité/streté de fonctionnement/
ponctualité. Cet article utilise la théorie des jeux pour déterminer les conditions de
faisabilité pour de tels systémes. Ainsi le concepteur d’un systéme peut savoir a I’avance
si un jeu de transaction satisfera ses €chéances, il peut également obtenir un
dimensionnement correct des files d’attente du systéme.

Introduction

La conception d’applications réparties temps réel doit pouvoir étre prouvée
correcte avant méme d’avoir €té implémentée [LELA94]. L’absence de conception
prouvée correcte est a I’ origine d’échecs industriels retentissants. Exemple: I’abandon du
syttme de gestion de données de la station spatiale Freedom a colité 500 millions de
dollars.

Cet article montre comment déterminer le temps de réponse maximum pour un
systtme transactionne! réparti temps réel. La connaissance de ce temps de réponse
maximum permet de dire si un jeu de transactions respectera ou non ses échéances. Dans
la premiére partie, nous définissons le modéle retenu et résumons briévement P'état de
I’art. Dans la seconde partie, nous explicitons les hypothéses adoptées. La solution
algorithmique permettant de satisfaire simultanément les propriétés de sérialisabilité/
streté de fonctionnement/ponctualité est présentée. La derniére partie est consacrée a
I’expression du pire cas, pour des hypothéses de charge données, permettant d’énoncer
les conditions de faisabilité pour un jeu de transactions donné. Les conditions de
faisabilité expriment le fait que les transactions doivent avoir terminé leur exécution
avant leur échéance.
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1. Problématique

Les systémes transactionnels répartis temps réel avec mise a jour en ligne de données
réparties posent le triple probléme de sérialisabilité/slireté de fonctionnement/
ponctualité.

En effet, les transactions interférent en lecture/écriture a des instants non prévisibles, la
propriété¢ de sérialisabilité (équivalence a une exécution sérielle) [BHG87] est donc
suffisante pour maintenir la cohérence des données. De plus, dans un systéme temps réel,
les transactions doivent se terminer avant leur échéance, la propriété de ponctualité
(respect des échéances) doit donc &tre satisfaite. Comme dans tout systéme, il peut
survenir des défaillances (crash, omission...), la propriété de sfireté de fonctionnement
(propriété d’un systeme permettant & ses utilisateurs de placer une confiance justifiée
dans le service qu’il délivre) [OFTA94] est donc souhaitée.

1.1. Modéle retenu

Le modele transactionnel retenu se compose de clients et de serveurs interconnectés par
un réseau de communication (voir Figure 1).

client client client

serveur s serveur Sj serveur SJ

Figure 1 : Le modele transactionnel retenu.

Un client, sur réception d'un stimulus extérieur ou a la demande d'un utilisateur, génére
des transactions. Un serveur gére les objets (ressources locales rémanentes) dont il a la
charge.

Une transaction est un graphe d'actions sans cycle, chaque action est un programme
séquentiel exécutable sur un serveur, ce programme acceéde (lecture/écriture) aux objets
gérés par ce serveur. A chaque transaction est associée une échéance relative. Une
transaction d’échéance relative & générée a I’instant t doit étre terminée 3 I’instant t+3.
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1.2. Objectif

L'objectif est d'une part de concevoir un algorithme composite permettant de satisfaire
les trois propriéiés de sérialisabilité / sireté de fonctionnement / ponctualité. Cet
algorithme composite aura :

* une composante contrdle de concurrence pour obtenir la sérialisabilité,
* une composante tolérance aux fautes pour obtenir la streté de fonctionnement,
* une composante ordonnancement pour obtenir 1a ponctualité.

Ces trois composantes doivent étre compatibles pour garantir la vivacité (absence de
blocage) et un comportement correct du systéme. A titre d’exemple, considérons deux
transactions T1 et T2 d’échéance respective 81 et 82 et de priorité respective pl et p2.
Supposons de plus 81>02, pl>p2 et T1,T2 accédent & un méme objet en mode conflictuel
(exemple lecture/écriture, écriture/écriture). Un systéme utilisant un contrble de
concurrence favorisant dans un conflit la transaction avec la plus forte priorité (ici T1) et
un ordonnancement EDF, Earliest Deadline First échéance la plus courte en premier (ex:
EDF préemptif [LILA73]) favorisant T2 se bloquera: T2 ayant obtenu le CPU ne peut
accéder a I’objet demandé, accordé 2 T1.

L'objectif est d'autre part de dimensionner correctement ces systémes et prédire leur
comportement en situation critique de charge €levée. Plus précisément, il est nécessaire :

» d'exprimer des preuves temporelles permettant de garantir les temps de service
des transactions.

» d'établir des bornes supérieures sur les temps de réponse.
* d'exprimer des conditions de faisabilité et de stabilité.

1.3. Etat de I'art

Schématiquement, dans Ies systémes répartis temps réel, nous pouvons distinguer deux
approches dans |'état de l'art.

La premiére consiste a éviter les conflits entre transactions. Pour y parvenir, elle suppose
une connaissance a priori des instants d'arrivée des transactions. Ces transactions sont
géncrées périodiquement a des instants prédéterminés (voir par exemple [KOGR94],
[BEMA94]). Ceci correspond i des hypotheses trés fortes, hypothéses qui ne sauraient
étre acceptables dans tout systeme. Cette approche garantit 1a ponctualité et la siireté de
fonctionnement & condition que les hypothéses énoncées soient satisfaites en phase
opérationnelle.

La deuxiéme approche consiste & résoudre les conflits pouvant survenir entre les
transactions mais n'offre aucune garantie sur les temps de réponse. Par contre, elle
garantit les propriétés de sérialisabilité et de sireté de fonctionnement. Dans [JENS94]
par exemple, I’ordonnancement utilisé est de type “Best Effort”, il tend & maximiser le
gain exprimé a ’aide de fonctions de valeurs temporelles définies par I’ application.
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L'objectif de cet article est de proposer une troisi¢éme approche plus générale puisqu'elle
veut satisfaire simultanément les trois propriétés de sérialisabilité/slireté de
fonctionnement/ponctualité.

Pour garantir la ponctualité il faut recourir & un algorithme d'ordonnancement. En
environnement monoprocesseur non préemptif, l'algorithme NP-EDF (Non Préemptive-
Earliest Deadline First : échéance la plus courte en premier), a été prouvé optimal pour
un scénario de tiches apériodiques [GMR94]. Ce qui n’est pas le cas de “Rate
Monotonic” généralisé [SRS94].

2. Solution proposée
2.1. Hypothéses

Les hypothéses énoncées ci dessous sont nécessaires & I'expression du pire cas exposé
dans le paragraphe 3.

* Au niveau des clients, seule la densité maximale de génération des
transactions est connue. Elle s'exprime par la contrainte suivante :

Les clients ne peuvent pas générer plus de N transactions sur une fenétre temporelle
fixe de longueur D. Ce qui peut encore s'énoncer : sur une méme fenétre temporelle
glissante de longueur D, nous ne devons pas avoir plus de 2N transactions générées.

soit to=instant de génération de la 1ére fenétre

L LT
to ‘L +D to+nD’
Ifenétre 1 L Ifenétre nl

Y

fenétre glissante

Figure 2 : densité maximale de génération des transactions

* Les délais de transmission clients<->serveurs sont supposés bornés et les
bornes Min et Max sont connues.

* Au niveau d’une transaction sont connus I’échéance relative de la transaction et
son graphe. Dans un but de simplification, nous limitons notre étude au cas des
transactions dont le graphe comprend au plus une action par serveur. Dans le méme
but, les actions sont supposées indépendantes les unes des autres.
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* Au niveau d’une action, la durée d'exécution est supposée connue ou tout au
moins, nous connaissons une borne supérieure de cette durée d’exécution. Le
serveur sur lequel va s'exécuter I'action, est connu.

¢ [e nombre J de serveurs est connu.

2.2. Solution algorithmique
2.2.1. Préliminaire

* Maintenir la sérialisabilité permet de garantir un ordonnancement cohérent des
actions sur les serveurs. Or tous les serveurs n'ont pas la méme connaissance des
transactions en attente d'exécution. A la différence de [SRS94], la vue globale des
transactions 3 ordonnancer n’est pas obtenue par recours a une entité centrale. Un
consensus permet de garantir que tous les serveurs opérationnels partagent une
méme connaissance des transactions en attente d'exécution.

* L'ordonnancement des transactions doit permettre de garantir leurs échéances.
Nous avons choisi une solution & base d'ordonnancement non préemptif NP-EDF.
Cet ordonnancement est appliqué sur la liste des transactions résultat du consensus.
Cela permet ainsi d'obtenir un ordonnancement distribué cohérent basé sur les
échéances des transactions.

» La tolérance aux fautes nécessite généralement l'utilisation d'un consensus. Le

~

protocole de consensus adopté dépend du type de fautes & tolérer (ex. crash,
omission...) [DLS88] [HATO95].

En conclusion, la solution retentue est a base de consensus.

2.2.2. Principe

Lorsqu'un client génére une transaction, 1l diffuse aux serveurs concernés :

I'identificateur de la transaction,

I’échéance de la transaction,

la liste des serveurs impliqués dans la transaction,

la liste des actions qui devront €tre exécutées par ces serveurs (une action par
serveur).

Les serveurs stockent les transactions recues dans leur file Non-ordo des transactions
non ordonnancées (voir Figure 3).

Un consensus permet aux serveurs de partager la méme vue des transactions a
ordonnancer. Chaque serveur extrait de sa file Non-ordo les transactions résultat du
consensus, Il insére ensuite dans sa file Ordo les actions associées A ces transactions
ordonnées selon NP-EDF et exécute ces actions.
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client client client client

Transaction

Non-Ordo

Ordo

serveur s, " serveur s; serveur sj

Figure 3: Principe de fonctionnement
2.2.3. Consensus

2.2.3.1. Principe du consensus

Informellement, un consensus entre les serveurs permet aux serveurs de partager la
méme vue des transactions a ordonnancer. Le terme “consensus” est utilisé€ ici dans une
acception plus large que celle utilisée dans [HATO95], ou les processeurs corrects
décident d’une valeur proposée par ’'un d’entre eux.

Le consensus se déroule selon le principe sulvant:

+ chaque serveur propose les transactions qu'il a regues (i.e les transactions dans sa
file Non-Ordo);

* le résultat du consensus est formé par ’'union des transactions proposées par les
serveurs.

Il suffit qu’un serveur ait recu une transaction pour qu’elle soit proposée dans le prochain
consensus.

2.2.3.2. Invocation du consensus

Le consensus est supposé de durée connue C. Le délai inter-consensus est au minimum
de u. Ce parametre permet d’augmenter ’efficacité du consensus en augmentant le
nombre de transactions proposées en une invocation. Mais du point de vue temps réel, ce
paramétre augmente le temps de séjour d’une transaction dans la file Non-Ordo. Un
compromis est donc nécessaire.

L’invocation sporadique du consensus est étudiée dans [AGLL94] ol une transaction
attend au plus un délai pu avant d’étre proposée dans un consensus. La condition de
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stabilité est que toutes les transactions résultant du consensus o; sont terminées pour
I’invocation du consensus G;, 1.

Nous proposons dans cet article une adaptation de cette approche permettant d’obtenir la
condition de stabilité la plus faible possible.

Le consensus o1 est invoqué (voir Figure 4) dés lors que les trois conditions suivantes
sont réunies:

* les transactions de G;_; ont terminé leur exécution.
* il s’est écoulé un délai 2 p depuis I’invocation du consensus G;_y.
* il existe une transaction en attente d’ordonnancement.

transaction
C C
C i
-
Gi-1 G;
< 21 -
~ e
Cas a: délai inter-consensus 2}L
transaction
C C
| ) I -
Gj.p | <u - G;
-~ Fad
<« = >

Cas b: délai inter-consensus <t

xécution des
ExA ?ransactlons

Figure 4: Invocation du consensus.

3. Expression du pire cas

Le temps de réponse d’une transaction T;, générée dans une fenétre f, est déterminé par :

* Vi(0), le temps d’attente de T, avant d’étre ordonnangée (temps d’attente avant
consensus) : ce temps d’attente est maximisé lorsque la transaction arrive juste aprés
Finvocation du consensus, la transaction doit alors attendre le consensus suivant.
* X;(f), le temps pour que T; termine son exécution, T; ayant fait I’objet d’un
consensus : ce temps est maximum lorsque le consensus regroupe le plus grand
nombre possible de transactions.
C’est pourquoi nous évaluons le nombre maximum de transactions pouvant appartenir au
méme consensus. Nous pouvons alors en déduire les conditions de faisabilité pour un jeu
de transactions donné : les transactions doivent étre exécutées avant leur échéance.
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3.1. Consensus maximum

Considérons o, un consensus maximum en nombre de transactions. Par définition,
ce consensus fait interférer le plus grand nombre possible de transactions, compte-tenu
des hypothéses adoptées. Ce consensus est €galement maximum en nombre de fenétres :
une fenétre est dite appartenir 4 un consensus ¢ s'il existe une transaction générée dans
cette fenétre appartenant a .

Soit to I'instant de génération de la premicre fenétre temporelle (voir Figure 5).

Soit to+(k+1)D-0, I’instant de génération de la premigre transaction de G, avec
k entier positif ou nul et 0, réel positif ou nul,

Soit to+(k+w,,-1)D+8,,, Iinstant de génération de la derniére transaction de G,
avec wy=nombre de fenétres participant au consensus G, €t 05, réel positif ou nul.
Nous avons de plus, 0<8,,,+8,,,<D, sinon il serait possible de construire un comsensus
regroupant plus de w,, fenétres.

o .. to+(l-;+l1)D-Blm to+(k+lwm-l D+85,
| | | I | -

Fenétres temporelles

-
Serveurs

Figure 5: Consensus maximum’

En pire cas, la premic¢re transaction met un délai Max et arrive a I'instant tg, date
d’invocation du consensus Gp, consensus précédant Gp,,. La derniére transaction met un
délai Min et arrive 3 I'instant t,, date d’invocation du consensus Gy,

top =to+(k+1)D-0;, +Max et

tem=to+(k+w,-1)D+6,,, +Min.

Soit M=maxeycurs(durée d’exécution d’une fenétre).

Remarque: dans le cas particulier ol une transaction comprend exactement une
action par serveur et ou toutes les actions ont la méme durée d’exécution x5, M=Nx,,.

Nous distinguons deux cas, selon que la durée d’exécution des transactions de Cp
est supérieure ou inférieure a 1-C. Avec wy=nombre de fenétres participant au consensus
Op-

* Premier cas: C+Mw2p. Nous avons alors, tgn=tg+C+Mw,,, ce qui s’écrit
€ncore

to+(k+w,-1)D+6,,, +Min=to+k+1)D-6}, +Max+C+Mw,,.

d’ol (wm-2)D=A_ +C+Mw,-6,, avec AfMax-Min et 0,=0y,+62,.

Or w, est un entier. Cet entier est maximum pour:
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m

A+C+waJ
D

W= 24 A+C+wa ot
= —5 9m=A+C+wa—D[

* Deuxieme cas: C+Mw,<pt. Nous avons alors, tgp,=tgs+H, ce qui §’écrit encore :
to+Hk+w, -1)D+0,,,, +Min=to+(k+1)D-6,,, +Max+{L.
d’ou (w-2)D=A +l-8,, avec A=Max-Min et 0,,=0,+07,.
Or w, est un entier. Cet entier est maximum pour:
W = 2+[‘A_1LJet9 - A+u—D{£‘hEJ
D " D

m

Dol la formule générale donnant wp, et O:

A+ max (L, C+MWP)J
D

et

w =2+t

A+ max (U, C+Mw) J
D

a2}
n

A+ max (U, C+wa) —D[

to+(k+1)D-0,, est I'instant de génération au plus tdt d’une transaction participant
au consensus G,;. De méme to+(k+w,,-1)D+6,, est I’instant de génération au plus tard

d’une transaction participant au consensus O,.

Dans la suite de cet article, nous allons caractériser ce consensus maximum.

3.2. Calcul de wm.

Posons w, = 2+ [AJ;MJ et, = A+ —D[A_B_”J . Nous avons d’aprés les

formules du paragraphe 3.1, w=w.
Nous distinguons deux cas selon la valeur de wy:

* Premier cas: C+Mwg<p

A+
Wm=2+|_—p'J etfd = A+ —D{A_"'u
D m H D

Lemmel: Si C+Mw0<p alors

=

Considérons le consensus initial w;, wy est au plus égal a w, il ne satisfait donc

pas C+Mw >l Le plus grand consensus wy possible vaut wq car C+Mw, <.
Par récurrence, supposons w; < wg et montrons w;,; < wg. Comme w; < wg , nous

avons C+Mw;<y, et donc le plus grand consensus w;,, possible vaut wy,.
Donc w,=w est solution.
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* Deuxieme cas: C+Mwg>p

Lemme2: Si C+Mwo>j alers v, < ]-A_"'M)J et [w 2w,
D-M

Nous cherchons le plus grand wj Sw, tel que C+Mw2p et

A+ M
Wm=2+[ C+ WPJ

D
Or par définition wp< wp,. Nous en déduisons une borne supérieure sur wy;:
A+ C+Mw A+C+Mw, -0
m A an <
wm52+[_.___ ol w, <2+ 2 .

soitw (D-M)<2D+A+C-6,
A+C+2D—9m<A+C+2D
D-M - D-M

or M<D (voir lemme 3) d’ob w, <

douw <|A+C+2D
"L D-M
Une borne supérieure de w,, est donc [A_"' C+2D |
D-M
Montrons que dans ces conditions w, < [A_+ C+2D J

D-M

A+|.L+2D<A+C+2D
D D-M ~

Pour ce faire, montrons que
Ce qui s’écrit aussi (car M<D):
UD - MA-Mp - 2MD < CD soit encore: D{(u~C) <M (A+ U +2D) (1)

or, C+ Mw, >l et donc en remplagant wy par sa valeur nous avons:

[A+u+2DJ>H;4C d,oﬁ,A+u+2D>u—C

5 D 7 c¢ qui s’écrit comme (1) qui

devait &tre démontré.

Lemme3: La condition de stabilité est M<D,

Démontrons ce lemme.
« Premier cas : C+Mwy<U.

1K
pn-C pn-C)D c
Nous avons M < - < < D<D
2+|.Al-;uJ D+A+p | D+A
H
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* Deuxieme cas : C+Mwg>j.
La borne supérieure trouvée, ayant D-M en dénominateur, existe pour M<D. Ce
qui s’exprime encore par le fait que la durée maximale d’exécution d’une fenétre doit

étre inférieure strictement a la durée d’une fenétre (condition nécessaire de non
saturation des serveurs).

3.3. Calcul du temps de réponse maximum

Nous disposons donc de la valeur exacte de wy, et de 8, lorsque C+Mwg<y.
Nous disposons d’une borne supérieure de w, lorsque C+Mw>[1. Nous bornerons
0, par D.

Ceci se résume comme suit, avec wy = 2+ {A_tLLJ

D
2+té_+_UJ si C+Mwosu et A+M—DlA—+EJ = 6
D D
wm = 9 =
lA+ C+2DJ sinon
D-M D

Pour calculer le temps de réponse maximum d’une transaction, nous appliquons
alors Ja méthode décrite dans [AGLL94] basée sur la théorie des jeux. Chaque
transaction appartenant au consensus maximum est considérée isolément. L’ adversaire
va utiliser toutes les autres transactions du consensus maximum pour augmenter le temps
de réponse de cette transaction. Pour toute transaction T;, I’adversaire jouant contre T;
avec une transaction T}, va chercher 4 minimiser I’échéance absolue de Ty,. Il s’en suit
que Ty, est générée au plus t6t dans sa fenétre temporelle =, tandis que T, est générée au
plus tard dans sa fenétre temporelle f. Pour exprimer le temps de réponse maximum de la
transaction T;, nous utilisons la fonction Fi(h ; f, ). La fonction F;(h ; f, ©t) retourne 1 si
la transaction Ty, générée dans la fenltre Ile [1.w_] a une échéance absolue
supérieure 2 1’échéance absolue de la transaction T; générée dans la fenétre
fe [l.w,_] . w, et B ontété définis ci-dessus.

Fi(h;f, ) :
sif=w,,

s1m=1
818, > (wy, -2)D + 0 + §
retourne 1
fin s1

sinon
Si6h>(Wm-Tt)D+e+8i
retourne 1
fin si

fin si

33



sinon
sim=1 .
$id, > (f- DD + 9 + 9,
retourne 1
fin si
sinon
sidp>(f-t+1)D+§
retourne 1
fin si
fin si
fin st
retourne 0

En utilisant cette derniére fonction, il est alors possible d’obtenir une borne

supcrieure 1;;(f) de la position en file d’attente Ordo d’une action de la transaction Ti sur

le serveur $j-

Soit 3(s;) le nombre de transactions, parmi les N transactions d’une fenétre, dont
une action concerne le serveur Sj-

W

m

me (sj) - z Z F(hifm) pour S(sp) 0

n=1 T,emn
TheTief

r..{f)

i

I

ri; (f} = 0 pour S(s;) =0

On peut aiors exprimer X;(f), avec xy désignant la durée d’exécution maximum
d’une action.

Xi () = Ma'xserveursj (rij %) xO)

Remarque : Cette formule peut facilement étre étendue au cas ou la durée
d’exécution d’une action est variable.

Intéressons-nous maintenant a V;(f), temps d’attente de T; avant d’étre prise dans
un consensus, Ce temps d’attente est maximum lorsque T; est générée en t;(f)=début de
la fenétre f.

t(f) =ty + (k+f - D)D, pour f# 1 et {;(f) = tg + (k+1)D - 0y, pour f = 1.

Le consensus om se termine €n

g+ (k+ I)D-Blm +Max +max (U, C+Mw_} +C.

D’ou pour f # 1, nous avons : V;(f) = Max + max(f,C+Mw )+ C-(f-2)D -0y,

ceci est maximum pour 8y, = 0.

Pour f = 1, nous avons : V(1) = Max + max(i,C+Mw,,,) + C. En conséquence :

Vi(f) = Max + max(u,C+Mw )+ C - ¢(f-2)D,
avec@=0pourf=1let@=1pourf#1.
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Finalement B(i) désignant la borne supéricure du temps de réponse pour la
transaction T;, nous avons :

B(i) = max [max Xi(f)'*'vi(ﬂ_l
fell,wpl

3.4. Exemples mumériques

J=8=nombre de serveurs,

N= 80 transactions par fenétre,

D=1 seconde= taille de la fenétre,

C= 0,1 seconde= durée du consensus,

Max= Iseconde =délai de transmission maximum client<->serveur,
Min= 0,1seconde= délai de transmission minimum client<->serveur,
L= 1 seconde= délai minimum inter-consensus.

Chaque transaction comprend une action sur chaque serveur.
Chague action a une durée d’exécution maximale x.

3.4.1. Premier exemple C+Mw,<p

Xp=3ms= durée maximum d’exécution d’une action sur un serveur.
Les transactions doivent respecter les échéances relatives suivantes :
de T1 aT20: 2,7 secondes,

de T21 a T40: 2,9 secondes,

de T41 A T8O: 3,1 secondes

Nous avons alors M=Nx;=0,240 secondes
wy = 2+ [A; 1 | ce qui donne wg=3

90 = A+u- D[A%LJ ce qui donne 9;=0,9 seconde

Nous vérifions la condition C+Mwg<p
d’ol w,= 3 et 8,= 0,9 seconde. Le consensus maximum regroupe 3 fenétres et
donc 240 transactions.

Toutes les transactions vérifient leurs échéances. Le jeu de transactions fourni est
donc faisable. A titre d’exemple, le tableau suivant (voir tableau 1) donne le pire rang
d’une action de la la transaction T1 dans la file Ordo en fonction de la fenétre de
génération.
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Tableau 1: Rang de T1 dans Ordo

fenétre rang
1 100
2 180
3 240

3.4.2. Deuxieme exemple C+Mwgy>p

Xg=3ms= durée maximum d’exécution d’une action sur un serveur.
Les transactions doivent respecter les échéances relatives suivantes :
de Tt aT20: 4,2 secondes,

de T21 a T40: 4,4 secondes,

de T41 4 T8(O: 4,6 secondes

Nous avons toujours wg=3 et 8;=0,9 seconde.
La valeur de M devient M=Nx;=0,4 seconde.
La condition C+Mwg<pu n’est plus vérifiée.
La formule donnant w, est alors

w, = I-MJ ce qui donne w,, = 5.
D-M
Nous avons 0,,=1 seconde.
Le consensus maximum regroupe 5 fenétres et donc 400 transactions.
Toutes les transactions vérifient leurs ¢chéances. Le jeu de transactions fourni est
donc faisable. A titre d’exemple, le tableau suivant donne le pire rang d’une action de la
transaction T1 dans la file Ordo en fonction de la fenétre de génération.

Tableau 2: Rang de T1 dans Ordo

fenétre rang
1 100
2 180
3 260
4 340
5 400
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Conclusion

Les systémes transactionnels répartis temps réel sont par nature complexes.
L'approche présentée dans cet article permet de dimensionner correctement un systéme
transactionnel réparti temps réel. De plus, elle permet 2 un concepteur de déterminer
avant implémentation, la faisabilité d’un jeu de transactions donné. Les trois propriétés
de sérialisabilité/stireté de fonctionnement/ponctualité sont alors garanties.
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PORS (parallel on-line reconstruction system) is an on-line event reconstruction system
which uses the event reconstruction program of the CPLEAR high energy physics (HEP)
experiment at CERN. Central to the system is a parallel in-memory database. This database
is used as communication medium between parallel processes, which is possible because
of the high performance of the parallel in-memory database. The database is applied to
implement a farming strategy providing high CPU utilization. Farming is a simple example
of one of many communication structures which can be acquired by using the in-memory
database. The database provides structured storage of data with a short life time. PORS
serves as a case study for the construction of a methodology on how to apply fast parallel
in-memory databases and database techniques to HEP software, providing easier and
better structuring of HEP data, simpler development, maintainability and reusability of HEP
software, and straightforward parallelization of {existing) HEP software. PORS runs on a
SPARCcenter 2000 8-node shared memory computer and reconstructs events at 117 Hz.

1 Introduction

Parallel in-memory databases offer a powerful means of
communication, capable of facilitating parallelization of

software, while providing high performance. [n addition,
they fucilitate the structuring of data, and allow a scpara-
tion of logical data presentation (rom physical data repre-
sentation.

PORS is u case study which can perform on-line paral-
lel event reconstruction using the event reconstruction
program of the CPLEAR cxperniment at CERN, the Euro-
pean Laboratory for Pacticle Physics in Geneva, Swilzer-
land. This is accomplished using a parallel in-memory
datahase.

Event reconstruction is the process of converting raw
detector data into interpretuble physics results. Tradition-
ally. eveat reconstruction s performed ofl-line, ic. sepa-
rate from the experiment. PORS can perform on-line event
reconstruction, 1.¢. reconstruction during the experiment.
The main objective is o construct a methedology on how
to apply databases and database technigues 10 (existing)
HEP soltware. in order to;

¢ Acquire high performance by easily and efficiently
applying the power of parallel computers via database
techniques.

* Structure HEP data in an casy and consistent way by
using the entity-relationship (E-R) model ([5]). HEP
data compriscs run-time data, i.e. the temporary data in
a soltwure program’s memory space, as well as off-ling
data, t.e. permancnt data stored on hard disk.
Structured data facilitates development, maintainabil-
ity and reusability of HEP sofiware. Standardization of
data structures via the E-R model results also in less
software and hardware platform dependence.

= Puarallelize (existing) HEP softwarc with little effort.
Paratlel software should become less platform depen-
dent and easier adaptable. This is achieved by wvsing the
parallel in-memory database as a powerful communi-
cation medium for parallel processes, offering much
flexibility.

Within an in-memory database, the data reside in real

memaory in contrast with a disk-based database in which

the data reside on hard disk. Former attempts to apply
databases in on-line HEP applications failed due to a lack

10f9



HEP software Problems

of performance. Parallel in-memory databases can provide
this high performance.

This paper shows that the application of database tech-
niques can lead o logically structured software which still
has good performance. It will be argued that paralle] in-
memaory databases are a viable alternative 1o current non-
database sofiware development techniques.

The lay-out of the paper is as follows. First, some gen-
eral problems of HEP regarding compulting are described.
Relevant background of parallel databases is provided.
This is {ollowed by a description of the CPLEAR case
study (scction 4), and sonie of the design issues of the par-
allel in-memory database (scction 5). The case study is
evaluated, and advantages and disadvantages of applying
databases are enumerated (section 6), in view ol the prob-
lems mentioned belore. Finally, sonwe conclusions are
drawn (scction 7) and projections are given (scction 8).

An extended version of this paper can be found in [8].

2 HEP software Problems

This scehion describes gencral problems seen in HEP
experiments. These problems appear also in CPLEAR. the
HEP experiment used in the case study.

Need for high performance

For new HEP applications and i particular the Large Had-
ron Collider (ILHC) experiments at CERN, the estimated
increase of computing power requircmcnts for the coming
ten years ranges up 1o three orders of magnitude depend-
ing un the arca of application ([1]). Parallel processing
will become un essential way to tackic this problem.

This paper shows that datubase technigues and parallcl
in-memory databascs make it possible (o cfficiently and
casity exploil the power of parallel computers Tor the type
ol applications presented here.

No uniform way of structuring data

Data are often stored i an unstructured or not uniformly
structured way. This holds for run-time data as well as
maore permancently stored data. Data are often viewed and
treated as binary objects without any defined structure.
Permanent data are stored on sequential media, most com-
monly magnetic tape.

Software formats can be specific o an instiwute or cven
10 a HEP experiment. An example is Zebra, a library to
extend Fortran with more elaborute data structure facili-
tics, which is specific 1o CERN ([6]). Another example is
the OPAL ([7]) HEP experiment at CERN which has a set
of reconstructed event data stored on hard disk, on which

they defined their custom-made hist structures to retrieve
data. Also within a package like Zebra, there is a lack of
enlorced consistency. There is no uniform way of structur-
ing the data, no general method how to model the data.
Every programmer defines Zebra structures in an intuitive,
personal way.

The E-R model, gencrally used in relational databases,
helps o enforce structuring of data. Off-line data can be
structured and stored in a disk-based database. Run-time
data can be structured and stored in a parallel in-memory
database. This results in data structures which are less
hardware, soltware or application programmer dependent,
Less hardware dependent, since the logical database struc-
ture is separated from the physical implementation. Less
soltware dependent, since the resulting data will only be
dependent on the E-R model, not on the software applica-
tion from which they are coming. Less application pro-
grammer dependent, since application programmers are
guided in their choice of data structures, which results in
more uniformly moedelled data.

A reference 1o the ADAMO ([10]) system should be
made. In ADAMO, data structures can be modciled
according to the E-R model via a data definition language
(DDL). ADAMO provides a programming interface to C
and Fortran. In this respect it does the same as the database
presented here: it allows software programs to access data
in a structured way with powerful statements (queries). In
comparison to ADAMO, our system allows concurrent
access and it can be used on a parallel computer.

Hardware dependence of high performance parallel
programs

A probiem in parallel software is that to obtain good per-
formance, the machinc architecture has to be taken into
account ([2], [3]). Thercfore, applications become
machine dependent. Often the inter-communication pat-
tern is lixed and explicitlly defined. Changes in the hard-
warc conliguration lead to adaptations of the
communication patlern.

Currently available tools, Iike communication para-
digms PVM ({4]) or MPL are still not capable to combine
a good abstraction level with high performance ([3]). This
reduces the software’s maintainability and portability.

It is argucd that a parallel in-memory database can be a
powerful conununication medium which provides abstrac-
tion without loosing much performance, and it also pro-
vides means for data distribution which PYM does not
have. Therefore, it is a viable alternative to the currently
available message passing tools.

20f9
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Parallel in-memory databases

Parallelizing existing software
Currently, many companics have much sequential soft-
ware which is not parallchized, since they foresce that the

gain does not compensate for the work and difficulties of

parallelization {[2]). This situation especially holds for
HEP covironments. Farming ol the sequential program is a
solution which is not always satislactory.

The database methodology helps tackling this problem.
The database method conserves the original structure of an
application. This is especially relevant lor physicists, since
they work onr the reconstruction programs themselves. In
the case study, this is accomplished as follows: the 1/O
statements are replaced by database statements. PYM i
used in oa similar manner. This method only works for
farming. For more claborate ways of coarse grain parallel-
ism, like pipe-lining, the interface routines between the
modules of the sequentid program are replaced by data-
basc access routines. Synchronization between modules
will be data driven.

A database provides data parallelism in an casy way,

basc takes care of the data consistency.

3 Parallel in-memory databases

Relational databases

The purpose of a database is (o store and retricve data cffi-
ciently and conveniently. [n a relational database. a collec-
tion of tables is used to represent dina and relationships
among the data, The SQL query Tanguage offers four types
of access routines (o retrieve information from a database
and to change its contents: seleet, delete, tnsert and update.
[ndices are used o decrease scarch times through database
tables. Logically associated access routines ure gathered in
transactions. A transaction is the unit of database action,
ie. L8 atomic.

Parallel databases

A paratlel database allows concurrent access. Parallel
transactions can destroy database consistency. Concur-
rency control algorithms preserve database consistency in
the context of parallel transactions ([5]).

In-memory databases
An m-memory database is a database in which the data
reside in real memory. Parallel in-memory databases can
be implemented on different hardware architectures, for
cxample shared memory or distributed memaory.

When comparing in-memaory databascs with disk-based
databases, dilferent design ixsues are relevant. For a disk-

based database, disk access is by far the most expensive
operation. Therefore, the major goal is to minimize this.
For in-memory databases the access time on real memory
is relatively small. Therefore, cost of maintaining database
structures is 4 more relevant facter.

Data distribution and the E-R model: separation of
concerns
In a parallel database implemented on a distributed mem-
ory computer, the data reside in the memorics of multiple
processing elements (PEs), Fetching data by a PE from
another PE requires an inter-PE communication, Inter-PE
communications arc expensive operations in comparison
to accesses to local PE memory. This makes data distribu-
tion an issue (o minimize inter-PE communications and
therefore increase performance.

A design rule is to completely separate the physical data
distribution from the logical table structure of the data-
base. So the data distribution 1s not reflected in the table
structure; table structure is solely dependent on the E-R
model. This separation of the logical view (i.e. the user
view ol the database) and the physical representation of
the data in the database has two advantages:

» [t facilitates portability and maintainability. It allows
the implementor to change physical aspects of the data-
base without changing the applications. For example, a
database implemented on different types of hardware
platforms will have the same interface 10 access the
data,

= It makes the decisions about data modelling not depen-
dent un physical aspects of the database which are
hardware dependent. This helps 1o model the datain a
uniform way, only dependent on the semantics of the
dala, and not dependent on details of imptementation.

Minimizing inter-PE communications and separating logi- -
cal view from physical representation are conflicting
requircments which complicate the design of an in-mem-
ory database,

Transaction scheme and concurrency control

An application using the database, like PORS, consists of
multiple processes which all access the database, The data
access pattern of an application is the way the processes of
the application access the database.

By cxamining this data access pattern of a process, a set
of transactions is designed to retrieve the required data.
The set of all transactions of all processes of an applica-
tion is called the transaction scheme. The transaction
scheme determines the lay-out of the in-memory database.
This lay-oul comprises table definitions, data distribution
und process distribution.

On-line event reconstruction using a parallel in-memory database

40

30f9




Case study: on-line event reconstruction for CPLEAR

Transactions of different processes may be executed in
parallel. With this in mind, possible data conflicts are
determined. The data conflicts are evaluated and an appro-
priate type of concurrency control is chosen to preserve
data consistency. Advantage of this method of choosing
concurrency control is that the overhead of the concur-
rency control will be low, since it does not have Lo deal
with atl possible data access patterns.

The steps described above form an important design sirat-
cgy which supports the high performance of the databasc.
Summarizing, the destgn strategy comprises that transac-
tion scheme and type ol concurreacy control are oplimized
against the data access pattern ol the application. In
figure 1, the described steps are depicted. The steps should
be carried out it a new application 18 1o be uscd with the
datahase inan optimal Fashion, ICis intended to distinguish

clagses of applications each for which a suitahle type of

concurrcney control exists, thus avoiding that for every
new application the complete diagram of figure 1 needs (o
he followed.

FIGURE 1. How to integrate an application with the in-

memory database

l specification ol application ]

|

, examine data aceess paltern |

R

deterntine possible design transaction
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concurrency
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of in-memory DB

4 Case study: on-line event
reconstruction for CPLEAR

The case study is an example ol the integration of the
application CPREAD, event reconstruction program lor
the CPLEAR HEP experiment, with the parallel in-mem-
ory database obtaining on-line parallel event reconstruc-
tion. The cuse study comprises the design and
implementation ol the database and the integration ol the
application with the dutabase. It should be noticed that the
parallel in-memory datahase is reusable; 1t can be used in
conjunction with applications other than CPLEAR.

The case study is an implementation on a shared mem-

ory compuler. it is a pilot system for the complete project
with the full functionality not yet implemented. It there-
fore shows litlle of the potential functionality of the data-
basc. The implementation on a distributed memory
machine witl show more of its functionalily, since data
distribution becomes important, and the power of queries
will be exploited. The case study is described in detail in
[2].

CPLEAR & CPREAD

CPLEAR is a HEP experiment at CERN which investi-
gates the C-P violation phenomenon. The experiment has
run for a couple of years and about 100 people are
tnvolved. CPREAD is a 260k lines Fortran source code
program which s used to reconstruct events produced by
CPLEAR. About 100 Gbytes of data have to be recon-
structed annually. At run-time, the program size is 13
Mhytes. CPREAD is often changed and adapted.

Description of the system in operation

Figure 2 shows the system. It is implemented on an 8-node
shared memory computer, The dotted box comprises the
database. The database 1ogether with the database library
(DB library) form the reusable part of the system.

The CPLEAR event generator is a source of CPLLEAR
event data. [t inserts Zebra ([6]) blocks with raw (i.e. non-
reconstrucled) events into a table, say table 1, of the in-
memory databasc, at a specific rale. CPREAD workers
(the [arm workers) try 1o retricve Zebra blocks with raw
events from (his table. If a worker’s request fails, because
there are no data available, 1t restarts its request after a
specific time. A worker reconstructs the cvents and recon-
structed valid events together with reconstruction informa-
tion are inserted into another table, say table 2, of the in-
memoty database, Writers try to retrieve accepted events
from table 2 o write them to permanent storage. If a
wrirer’s request fails, because there are no data available
10 be written 1o permanent storage, it restarts its request
aller a specific time.

How is it prevented that an event s retrieved multiple
tumes by the workers? This is accomplished via the trans-
action scheme (sce section 5). The transaction scheme pro-
vides data driven furming with high CPU utilization. Just
by connecting workers Lo the database a farm is formed.

It should be noticed that there s no master in the system
which controls the placcment of data. The absence of a
master in the database will enhance its scalability (see sec-
lion 5).

Permanent storage can be a file system on hard disk or
the Oracle 7.1 parailel database. In the case of a file sys-
tem, the data are stored in one or more files. In the case of
the Oracle databasc, the SQL*loader tool 1s used to insert

4 of 9
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Case study: on-line event reconstruction for CPLEAR

FIGURE 2. On-line event reconstruction for CPLEAR using a parallel in-memory database
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data into the Qracle database. This ool provided by Ora-
cle, makes it possible to insert data into the Oracle datu-
base at o high rate. Only data with a long lifctime, i.c.
reconstructed events, are stored on permanent storage.
Data with a shori life-time only reside in the in-memory
catibase.

Each worker resides on its own processor. Since the
overhead ol the CPLEAR cvent generator and writers is
celatively small in comparison 1o the load of a CPREAD
worker. one waorker {or every processor of the machine
gives the best performance. The lead-balancing ol pro-
cesses over processors s luken care ol by the operating
sysiem. or is done by the user expiicitly.

AL run-lime, weorkers o writers can he added or
removed from the system, e the farm size can be
changed dynamically. This docs not lead 0 any data
inconsistencies or data loss. 1L is a standard leature of the
databuse: the database allows processes 10 connect or dis-
connect at run-time.

The in-memory database resides i memory which is
shared by all processes accessing the database. 228 library
is a library linked (o all processes accessing the in-mem-
ory databuse. It provides database access routines, coneur-
reney control and connects the process o the database.

AL start-up, a file called dara_dictionery is used (o build
the database. [L containg mformation aboul the lay-out of

the database (table definitions, column definitions, etc.).

Hardware

The system is implemented on a SPARCcenter 2000
shared memory computer. It has 512 Mbytes shared mem-
ory and cight 40 Mhz SPARC processors with 2 Mbytes
cache cach. Cache memory is local to a processor. Off-
cache means global o all processors.

Performance

Multiple processes concurrently try to access the same
table of the database. This table contention forces pro-
cesses sometimes Lo wait. Administration of the database
causes overhead. Executing access routines can cause
searches, This overhead is relatively more important for an
in-memory database than for a disk-based database, since
the time to fetch the data items themselves is in the same
order as accessing an index. Measurement of this overhead
shows datubase performance.

This scction gives some figures to show how the data-
basc approach performs in comparison to former non-
database methods which have high performance, but are
more hardware dependent.

Figurc 3 shows the performance of PORS: the cvent
reconstruction rate as function of the number of CPREAD
waorkers. In (his case, reconstructed data are written to files

On-line event reconstruction using a parallel in-memory database

50f9



Case study: on-line event reconstruction for CPLEAR

FIGURE 3. Event reconstruction rate as function of the number of CPREAD workers
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on disk. A standard stand-alone CPREAD worker, i.c.
without using the database, can reconstruct cvents at a rate
of 15.5 Hz on the SPARCcenter computer {(in this case it
uses one processor). So assuming that (ull scalability is
possible, 8 processors would process events at 124 He.
The system docs process cvents at 187 Hz with 8 proces-
sors. S0 7 Hz are lost by the everhead caused by the data-
base. ft should be kept in mind that when farming would
be implemented without a DI, there would be an overhead
ulso.

Some remarks on the figure with respect to scalability
are given, These explain the decrcased pesfonmance for

the measurements with the higher number (= 6.7,8) of

CPREAD workers in comparison to the theoretical case:

» The SPARCceenter has an automatic oud bulancer. Thid
means thai for the measurcments with the lower num-
ber (= 1.2,3,4,5) of CPREAD warkers, processes of
other users. writers and event generator are running on
the “free™ processors, i.¢. the processors where no farm
waorker runs. This means that o CPREAD waorker has &
processor for its own and performance degradation is
only caused by waiting for databasc access.

For the higher number of CPREAD workers, the pro-
cessors are shared between CPREAD furm workers,
event generator, writers, system processes, and pro-

3 4 5
number of CPREAD workers

cesses ol other users (although it was taken care for
that none of the other users has put a heavy load on the
machine during tests). This gives a skewed view,
because the measurements with a higher number of
CPREAD workers therefore show a relatively bad per-
formance.

¢ For the higher number of CPREAD workers the
SPARCcenter pages. This gives a skewed view since
[or the higher number of workers not just the database
overhead is causing performance degradation, but also
the hard disk activity caused by the paging.

» For the higher number of CPREAD workers the limited
memory bandwidth of a shared memory machine
inight be visible.

Some typical execution times for access routines during
run-time of PORS are provided. The results of the same
tests without PORS running are equal. The provided tim-
ings arc averages. This is for a table of two columns which
contiined about 100 rows. The first column has type inte-
ger, Lhe second column has type binary and has a size of
23 Kbytes.
* select: 1 microsec.
This select uses the index on the first column to per-
form the scarch. The sclect returns a pointer; so the
copying of the data is not included.

6of9
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Design aspects

« delete: 7 microsee.
A delete also comprises an update of the indices. there-
fore 1t 1akes longer than a select.

= update: 0,11 millisec,
This is an update of the firat column of a row, i.¢. an
integer.

= insert: 3.2 millisce.
The difference i tune with the other routines comes
rom the fact that 23 Kbytes have to be moved from
one memory location to another.,

= memeopy ol 23 Kbytes: 3.2 millisce.
To get a better view on the performance ol the insert
routineg, the tine to perform a memory copy of 23
Kbytes ts shown,
An insert routine comprises 1 memory copy. To explain
the results for the insert, also the time a memory copy
takes is measured. [t can be seen that the time an insert
takes 18 fully dependent on the time a memory copy takes;
databuse overhead is not visible. This is o property of the
SPARCcenter computer: copying global variables takes
relatively long. Locad variables can reside in the cache and
thercfore are copied much {aster. The memaory copy ol
tocal vartable of 23 Khytes takes 1.5 millisce.

To ebtain a hetter view on the database overhead, also
measurements with smaller data items are carried oul. The
measurements are done for a table of one row with one
integer column. For this type of table it is relatively simple
to measure in-cache and off-cache results, Sccondly, a
table with small data items shows database effects more
clearly, since the time 1o copy one tnteger to another mem-
ory location is insignificant,

1.0 microsec.

* In-cache: select;

delete: 2.1 microsec.

upcate: 4.0 microsce.

insert: 5.3 microsce.
o Off-cache:  select: 5 microsec.
msert: 18 microsce.

A comparison of the in-cache figures for the different rou-

tines shows that they are consistent with the amount of

administration that has to be done by the voutine. These
results show much clearer that database overhead is not
big. Measurcments ol off-cache delete and off-cache
updale are not possible.

Eventual connection of the system to CPLEAR
Al present, the system is not connected to the CPLEAR
experiment to perform on-line event reconstruction. Nee-

essary adaptations are the construction of an interface
between experiment and system, and an increase of the
permanent storage slze.

5 Design aspects

Some interesting design aspects of the case study are dis-
cussed.

Transaction scheme

The transaclion scheine 1s the set of all database transac-
tions of all processes which together determine the execu-
tion {low of the parallel program. In the CPLEAR case
study the fransaction scheme serves, among others, the
following purpose: how can it be avoided that a Zebra
block is reconstructed multiple times,

An approach with counters is used, since it provides
more concurrency than an approach where table locking is
uscd. Zebra blocks are numbered by the generator in a
consceulive increasing sequence by means of an identifi-
cation number, i.e. a column “ID” is added. A CPREAD
worker acquires an [D number from a counter (a table with
one row of onc column 1s used as a counter) and incre-
ments the counter by one. With the acquired ID the worker
can retrieve the corresponding Zebra block. Since there is
no other process which might access this Zebra block, no
concurrency control on the data items is needed. The only
requircd concurrency control is on the access of the
counter. This mcans that table access is more concurrent.
Access to the counter is purely sequential, but since
accessing a counter takes only 5 microsec., this hardly
influences scalability in a negative way.

At the output side of CPREAD, exactly the same proce-
dure can be followed: a writer acquires an ID {rom a
counter and retrieves the corresponding event Lo write it to
disk. The accepled events are tagged by an ID number by
the CPREAD weorkers. These 1D numbers form a consecu-
tively increasing sequence.

Distributed nature: no master
A design rule for the in-memory database is that the con-
cept of a central master is avoided. So every process
makes its own decisions. The advantage of this approach
is that it enhances the scalability of the system, since a
master can become a bottleneck.,

The farming is data driven. This means that a worker
asks for data when it is ready to process data. So there is
no master which decides to which worker data are sent.

Transport of data to the right process is done via the
transaction scheme. Every process takes its own decisions.

On-line event reconstruction using a paraflel in-memory database
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What do we gain?

6 What do we gain?

By cvaluating the case study, advantages and disadvan-
tages of applyimg datahases are cnumerated; they are cval-
uated against the problems mentioned in seetion 2.

Performance requirements

A parallel in-memory database can give high performance.
This perforntance allows the database Lo store data used by
the experintent while 1t 1s running without becoming a hot-
tleneck.

Avoid superfluous copying of data

Data can be shared between multiple processes insicad of

cvery process having its own local copy. Concurrency
control takes care that data consistencey is preserved. This
offers an casy way 10 obtain data paralichsim.

Incorporating a commercial database

By integrating a commercial database like Oracle into the

system for oft-line purposes, there arce a lot of additional

advantages:

» structured storage of permanent data

+ conformance 1o industrial standards

» data represceatatton 1o the user is platform independent

= network access among ditferent platforms

o it oflers ols (e.g. graphics or statistics tools) which
are ready to use and which are directly applicable 1o
the data

Communication paradigm
A parallel in-memory database can serve as a powerlul
communication paradigm. It can be seen as a layer which
makes applications more soft- and hardware independent.
In comparison to PYM, the database approach ofTers more
power. hecause SQL queries can specify data requests
more precisely than the primitives of PYM. This allows
casy implementation of rather complex control structures,
which in s turn provades flexibility. These control struc-
tures (like farming, buffering or monitoring system perior-
mance) do not have (o be implemented explicitly, They are
thhicrent to using a database. The database offers o data
driven approach in which the availubility of data controls
execution of the parallel program, Control of paraliclisim
of the application ts obtained viu the concurrency control
algorithm which preserves data consisiency. Examples
are:
+  Farming. The case study shows that for farming on a
shared memory machine, the data driiven approach
takes care that CPU ulilization is lagh. I there is «

worker ready (o receive data, and data is available,
these data will be immediately available for that
worker,

s Buffering. Databases provide Nexible buffering which
is casy to sct-up and easy Lo change even at run-time.
For example by specifying an appropriate data distri-
bution on a distributed memory machine, data can be
sent in advance: instead of retrieving the data from
another PE at the moment they are really needed, the
data can be stored on that PE beforchand, By using a
database, this can be accomplished by just specifying a
table to reside on a specitic PE. In this context, a data-
base should be viewed as memory space manager,
rather than storage medium: it provides powerful tools
o casily specify where data should reside.

» Monitoring. The database offers facilities to easily
monitor the sysiem. For example the data distribution
among the PEs on a distributed memory machine can
he monitored. Queries can answer questions like:
“should more data be sent to some PE?.

Summarizing, by using a database flexibility is gained.
Adapting a query takes less effort than changing the
implementation of the application. Most features can be
implemented without using a database, but they will be
hard coded, or if flexible, the implementation takes a lot of
effort. The database approach provides this flexibility
implicitly,

7 Conclusions

The case study showed that by applying a database, con-
trol structures (data driven farming, dynamically changing
farm size) were avatlable without being explicitly imple-
meated. Performance turned out to be quite scalable.

By connccting the workers to the database, and choos-
ing an appropriate transaction scheme, data driven farming
is established in which availability of the data controls the
exceution {tow of the program. CPU utihzation is high.
Without being explicitly implemented, it ts possible 10
dynamicaliy change the farm size.

The case study left many features of the database
unused. The coarseness of the data granularity did not
show the strong points of the E-R approach and communi-
cation ability ol the database. The implementation on a
shared memory computer left features like data distribu-
tion in combination with non-uniform memory access
untested and not revealed,

Performance. The on-line event reconstruction is able to
reconstruet events at 117 Hz. This is only a loss of 7 Hz
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Future work

against the theoretical maximuom of 124 Hz if full scalabil-
ity 18 assumed. Database overhead turns out 10 be small.
Propertics of the SPARCcenter machine turn out to be
important.

8 Future work

at CERN, for his help in reviewing this paper. We would
like to thank CPLEAR for providing access (o the
CPREAD program. This work was hosted by the ESPRIT
GPMIMD project group at CERN.
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Further parallelization of the case study

The case study will be extended with parallel track fitting,

Track fitting is a part of the reconstruction process per-

formed by CPREAD in which particle tracks are calcu-

lated from the detector data, This part will be parallelized,

i.e. there will be track-fit workers where cach can perform

a track-fit. Communicatien between track-1it workers and

CPREAD workers will e done via the dulabase.

This parallelization goes hand in hand with an increase
ot the data granularity 1o a sub-cvent level. The aim of this
study is as [ollows:

» The tnereased parallelism should provide a reduced
latency and less memaory usage. The reduced memory
usage comes from reduced ¢ode replication,

« ltis aheavy test Tor the approuch 1o use a database as a
means of communication, The number of communica-
tions increases and the size of the communicated data
packets decreases.

= lutests in practice whether the ditabase approach lacil-
itates the parallelization ol a picee of existing software.

Port the system to three types of hardware platforms
The implementation on a shared memory machine
(SPARCcenter 20060 s already accomplished. The system
will be ported to distributed memory computers (Mceiko
CS-2. and possibly IBM 5P-2). [{ available in time, the
virtual shared memory mode of the Meiko CS-2 will be
exploited. In this mode, the local memories of the PEs
form one contiguous address space.

The ports will be carried out 1o determine which are the
important design aspects for cach type of architecture to
buitd a paraltel in-memaory database.

Test portability to other applications

The database sysicm will be integrated with other applica-
tions, to test how promised features ol the dalabase
approach work in practice.
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Chapter 1

An introduction to (real-time)
distributed databases

Real-time distributed databases extend the power of centralised and distributed
databases. Mechanisms are provided to incorporate the notion of time within
the database semantics.Though databases already have a notion of time, since
they try to compute as fast as possible, this is not sufficient in time-critical en-
vironments. In this chapter an overview of the differences between centralised,
distributed and real-time databases is provided. Note that it is possible to con-
struct a real-time centralised database as well as a real-time distributed database.

1.1 Centralised databases

The theory of centralised databases is well-developed, see for example [Pap79],
[KR81], [YA88], [Vid83], [Vid91]. In general, arbitrary actions on a database
have to satisfy the following two requirements: they must not disturb the logical
consistency of the database and they must be efficient. The primitive actions that
can be applied to the database are read and write actions. These actions access
a single data item to either read or change its value. To be able to reason about
database actions a transaction is defined as a collection of primitive actions (i.e.
Read, Write) that is applied to the database.

Even when each transaction on the database leaves the database in a consis-
tent state, a collection of transactions that is executed in an interleaved fashion
can destroy that consistency. The (partial) order in which transactions are exe-
cuted is called a schedule. If two transactions are unordered, their basic actions
can be executed in any interleaved fashion. In articles [Pap79], [Vid85], [Vid91]
correct schedulers are defined that order the transactions in such a way that
database consistency is preserved. '

The most important notion that has been developed is serializability: if a
partially ordered schedule is serializable (proven equivalent to a totally ordered
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schedule), database consistency is ensured. Note that articles [GM83] and [GS85]
illustrate that the class of serializable schedules is a strict subset of all consistency-
preserving schedules.

Naturally, the transactions on a database must be efficient. Often, large
amounts of data must be manipulated when complex transactions are performed
on the database. The order in which certain basic steps are applied to the
database has a great influence on the execution time of the transaction and a
transaction manager that executes transactions in an efficient way is needed. In
articles [IK94], [SY82] and [JK84] transaction management and query optimiza-
tion are treated in depth.

1.2 Distributed databases

Recently, the wide-spread availability of computer networks calls for distributed
databases. These databases try to exploit the properties of a computer network
to increase the reliability, concurrency, capacity and speed of databases. A book
that combines most aspects of distributed databases is [OzsuV91].

Why these enhancements can be expected from a distributed database is
shown easily. Reliability can be increased because information can be replicated
over multiple sites, thus lowering the probability that the crashing of a site leads
to loss of information.

Because the database is actually divided into several smaller databases, it is
often possible that small tasks are only performed at one or a few sites, leaving
the other sites available for other tasks. This feature increases the amount of
concurrency in the system, as multiple users can access the database at the same
time.

In the current information age, large databases are needed to store all the
information needed in complex organisations. However, the current state of hard-
ware technology limits the size of a database a single computer can handle. The
trend in computer architecture is towards a local area network of computers of
intermediate size. These architectures are more powerful and are able to store un-
limited amounts of data, as the size of the database can be expanded by adding
an extra computer to the local area network. Therefore, mechanisms must be
provided to deal with this fundamentally different architecture.

When a database is distributed over more than one computer, the compu-
tational power of the individual computers ceases to be the bottleneck of the
architecture. While the maximal speed of a centralised database is dependent
on technology of its CPU, this is not the case for distributed databases. This is
because computations can be divided over the computers in the network. If a
structural overload of the system occurs, it is possible to add more computation
power to the system by adding extra computers to the network.

The bottleneck of the distributed database design is the communication cost.
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If an information intensive transaction is processed that needs to access large
parts of the network, the costs of communication rise rapidly. Even worse: the
more computers participate in the distributed database, the more communica-
tion will be needed. Part of the research in distributed databases is directed at
minimizing the communication cost of transactions that are performed on the
distributed database.

1.3 Real-time databases

Databases have been used in various ways, but most applications of databases
have been administrative. Databases typically try to fulfill two basic require-
ments:

e Operations on the database have to preserve the consistency of that database.
e The transaction throughput of the database should be as high as possible.

In real-time systems the computer interacts with an outside world that is
constantly changing. Real-time systems often deal with temporal data, e.g. data
that is only valid for a certain interval in time. This means that old data is as
good as no data (i.e. Take data about the position of a moving object at some
moment t. After several seconds the data will no longer reflect the position of
the object in the real world. The data is no longer valid). Likewise, if a computer
controlling a bridge decides that at time-interval [t,1+d] it must be open because
a ship will then pass, we don’t want that bridge to be open long before time ¢ or
after time ¢ + d, for this would hold the traffic longer than necessary. These two
examples illustrate two extra conditions that we impose on real-time databases
to preserve logical consistency:

o Internal data that represents the status of objects in the real world should
accurately reflect the real status of the objects within an acceptable margin.

o Transactions of the database may only be executed in a certain time-
interval. Most important, all transactions have a deadline after which the
transaction fails.

In real-time databases schedulers should dispatch transactions such that they
meet their deadlines. Therefore transactions that are nearing their deadline
should be scheduled before other transactions. And in overtaxed systems that
cannot meet all deadlines, we want to ensure that certain important transactions
never fail, thus sacrificing other, less important transactions.

While in classical databases the primary goal is to preserve the database con-
sistency, this is not always the case in real-time databases. For some applications
it is more important that a transaction completes before its deadline than it is
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to preserve the database integrity. Therefore, current research is investigating
the tradeoff between consistency and speed, see [KR92] or [KM93]. In a lot of
applications, inconsistency can be tolerated as long as it is bounded.

1.4 Comparing the various database types

Each database-structure has been designed for a specific environment and with
specific goals in mind. Low-cost centralised databases are very well suited for
administrative purposes. The theory has been well-developed and 2PL (two-
phase locking, a scheduling mechanism) is used all over the world.

Distributed databases offer all the services of a centralised database. More
than a centralised database they offer concurrent access by multiple users. Data
replication can make a distributed database more reliable than a centralised
database. Distributed databases can easily be upgraded, as a good database
design will allow for adding computers and storage to the distributed network.

Real-time databases explicitly deal with the notion of time. In applications
where computers are used to control some environment they offer essential ser-
vices. The most important service they provide is the meeting of transaction
deadlines. A real-time database guarantees that, if the system is not overloaded,
all transactions will finish execution before their deadline.

A priority mechanism can also be offered by Real-time databases. When the
database cannot complete all transactions in time, it tries to ensure that trans-
actions with higher priorities still meet their deadline. Thus real-time databases
are also useful in areas where critical processes must be monitored along with
less critical activities.

1.5 Organization of this paper

In the next nine chapters the main issues in real-time distributed database design
will be briefly introduced. In no way an attempt is made to give a complete
overview of the field, but hopefully the reader develops some global insight in the
strengths and weaknesses of real-time distributed databases.

Chapter two is the justification of the research area, it provides a high level
description of what services a real-time database offers and the resources that it
needs to do so.

Chapters three to eight give introductions to different issues that relate to
real-time distributed databases. In chapter nine it is observed that testing and
comparison techniques used to date are fairly ad hoc and could use a more sys-
tematic approach. Chapter ten concludes with a summary of the issues that still
need development in order to produce efficient real-time databases.
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Chapter 2

What can a real-time database
do for you?

The database design that has been used in many applications is a centralised,
non-real time database. It provides access to the database to a limited number
of users at the same time. Data-consistency is ensured and the database tries to
execute as efficiently as possible. Distributed databases allow the databases to be
implemented on a more general system architecture. They increase the reliability
and availability of the database.

Real-time databases, centralised or distributed, deal explicitly with the notion
of time. Data items in the database can reflect objects in the real world. These
data items have to be updated by the real-time database, to maintain a correct
view of the real-world. Also, the changing of a data item in the database may
have effects in the real-world, for instance the movement of a robot-arm.

2.1 Real-time scheduling

To interact correctly with the environment, the real-time database allows trans-
actions on a database to be scheduled according to some time based criterion. For
each transaction t an interval [s;, d;] can be specified such that the transaction ¢
will not be executed before starting-time s;, and ¢ will be finished before deadline
d.

If the information stored in the real-time database is used to derive an action
that should be taken by the database somewhere in the future, it is possible to
schedule this action. At the appropriate time it will be executed. This is best
illustrated by an example. Suppose that inputs from an automated factory have
been used to conclude that between 2am and 3am the workload is low enough
to shut off the machines. With a real-time database it is possible to schedule
two transactions, one at 2am and one at 3am that shut down and restart the
machines, respectively. It can be seen that the real-time database can be used to
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interact with the environment, controlling parts of it.

It is important to realize that a number of different implementations of real-
time systems are possible. These implementations could offer different services
to the users, depending on the application of the real-time database. In the next
sections some properties that a real-time system could provide are investigated.
However, although these properties are often useful, they have their drawbacks.
Therefore, not all real-time databases will offer all these properties. It should be
clear that real-time databases must be tailored to suit each individual application.

2.2 Transaction priorities

In the ideal situation all transactions that are executed by the real-time database
compute correctly and meet their deadlines. Unfortunately this is often not a
very realistic assumption, the database can be confronted with an overload of
transactions that all have to be completed within reasonable time. Even if the
database is very efficient and fast, it could occur that it is unable to meet all
deadlines.

In these situations, a number of transactions have to be cancelled. To provide
the user with some control over the cancelling of transactions, each transac-
tion is given a priority by the user. Now transactions with high priorities take
precedence over transactions with low priorities if the database cannot meet all
deadlines.

In general, this leads to an abort of an executing transaction, to allow high
priority transactions to complete in time. The work that was already done by
the aborted transaction is wasted. So a priority based scheduler degrades the
throughput of the system. Although several schemes to reduce this degradation
of throughput have been proposed, none of them do fully solve this problem.
If throughput of the system is more important than the timely execution of
individual transactions, user priorities should not be used.

2.3 Performance of real-time databases

In not-realtime databases the performance of the database 1s judged by its trans-
action throughput. This criterion is not satisfactory for real-time databases, as
it does not take the deadlines of transactions into account. The performance of
a real-time database is expressed in the number of transactions that meet their
deadlines.

There is a sharp distinction between these two notions of performance. Ac-
cording to the real-time performance criteria, a database that processes thousand
transactions in one hour, but misses each deadline by a few seconds is less effi-
cient than a database that processes only hundred transactions which meet their
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deadlines. If the classic notion of database performance is used this would not
be the case.

In the next two subsections two interesting techniques that can be used to
increase the performance of the real-time database are mentioned.

2.3.1 Sacrificing correctness for performance

Whereas correctness is the main issue in classical databases, it is often more
desirable to have some (partially) incorrect result on time than a correct result
that arrives too late. Correctness can be traded for an increase in speed, raising
the probability that transactions meet their deadlines. Of course, this is very
application specific, but it is an interesting tradeoff that should not be forgotten.

A number of techniques have been proposed to bound the amount of inconsis-
tency that can be allowed without invalidating the database to a point where it
does no longer produce sensible output. For instance, it is not a big problem if a
door-controlling computer opens the door once in a while without anyone present
to enter the door. However, if it remains closed when people are waiting to enter,
it is unacceptable. Another clear example is a climate controlling system. If it
heats the room to 25 degrees, we find it irritating. But when the climate control
decides that the room should be heated to 40 degrees, we shut it down as soon
as possible! :

2.3.2 Sacrificing generality for performance

A quite different approach that is used to increase the speed and throughput
of real-time databases, is restricting the generality of the actions that can be
applied to the database. As real-time databases are often applied for very specific
purposes, this does not have to restrict the power of the database too much. If
information about the types of transactions that will be processed by the database
is available in advance, it is often possible to produce more eficient schedulers.
This increases the performance of the database.

As a small example, suppose that it is known in advance that there is only one
(periodic) transaction that writes to a data item. Other transactions only read
the data item. With this information about the access behaviour of transactions,
efficient scheduling of the transactions in question is possible. In fact, if a multi-
version database is implemented, no concurrency control is needed at alll The
writing and reading transactions can execute completely concurrent *.

This technique can not be used in environments where no knowledge is avail-
able in advance or in environments where the transactions have no ‘nice’ prop-
erties that can be exploited for this purpose. Notwithstanding these negative
observations, this can be a useful method to improve the database performance.

1For more information about multi-version databases see for instance [Wei87]
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Chapter 3

Atomic transactions

One of the most important properties of database management systems is guar-
anteed data consistency. There can be various syntactic and semantic constraints
on the information stored in the database. The technique that is generally used
to enforce these constraints is the notion of atomic transactions.

3.1 Defining transactions

A transaction is a set of operations that is applied to the database in a cer-
tain order. Programmers of transactions have to ensure that the execution of a
transaction on a consistent database leaves that database in a consistent state.
Transactions are ‘atomic’, because either all the effects of a transaction are car-
ried out, or the transaction doesn’t take place at all. Other transactions will
either see all effects of an atomic transaction, or no effects at all. In this way, the
database consistency is preserved if all transactions are executed in a sequential
way.

At some point, a transaction has to decide whether to complete the execution
or to abort. This is called committing the transaction. Once a transaction has
been committed, it is certain that all its effects are visible to other transactions.

3.2 Constructing transactions
It has been observed that information about transactions that is known in advance
sometimes enables more efficient scheduling of transactions. Transactions are

required to leave the database in a consistent state. In this section it is specified
how transactions can be constructed.
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3.2.1 Linear transaction model

The classic way to represent a transaction is as a list of read and write actions on
data items. These actions are executed in a specified order. It is assumed that
a transaction does some computation depending on the data items it reads and
that some of the results of this computation are written back to data items in the
database. Computations are not explicitly represented in this model. Typically,
a read action or a write action accesses only a single data item in an atomic
way (i.e. if the transaction fails, it does so between two basic actions, not during
a basic action).

Linear transactions as a computation-model

The representation of transactions defined above is very well suited for reasoning
about the scheduling of transactions and about interleaving of executions. This
is because most scheduling is based on the “reads-from” relation. In general,
transactions interact with each other by reading and writing data items. By
representing a transaction as just a sequence of reads and writes the constraints
of this interaction are explicitly captured.

The reads-from and writes-writes relations

The reads-from relation between transactions is defined as follows: a trans-
action ¢; reads from ¢, if #; reads a data item X whose actual value has been
written by ¢;. Analogously a writes-writes relation exists between #; and #; if
t; overwrites the value of a data item X that has been written by ..

3.2.2 Nested transaction model

The transaction model presented in the previous section imposes only a simple
structure on transactions. Worse, it supposes that each transaction is a sequential
execution of basic actions. To express more general (concurrent) transactions
while maintaining a strong grasp on the structure of transactions, the nested
transaction modelis introduced. Each transaction is represented as a hierarchy
of transactions nested in transactions. Before, database consistency was required
before and after the execution of a transaction. During the transaction, the
database could be in an inconsistent state.

It is possible to require that each sub-transaction is a complete transaction
itself: if it finds the database in a consistent state, it will leave the database
in a consistent state. If this choice is made, the number of ways in which a
transaction can be fragmented into sub-transactions is reduced. Thus it is harder
to define transactions. On the other hand, it becomes possible to allow parts of
a transaction to be used by the rest of the database while other parts are still in
progress. Each sub-transaction can be regarded as a complete transaction. It can
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therefore commit without waiting for other transactions, as it leaves the database
in a consistent state. A more fine-grained concurrency control is possible when
sub-transactions are complete transactions themselves.

Nested transactions as a computation-model

In the nested transaction model a transaction is represented by a tree structure,
where the leaves of the tree are the basic read and write events. This is a quite
natural way to represent transactions. A lot of our programming languages are
constructed as trees, where procedures are nodes and function-calls are links
between nodes. Leaves are made up from the language-primitives.

If nodes that sequentially execute their children and nodes that execute their
children in parallel are allowed, a very generic computation model is obtained.
Some additional synchronisation between concurrent computations in different
nodes can be obtained by communication between these computations. Allowing
parallel execution within a transaction increases the amount of concurrency that
the system allows, thus improving the performance of the system.

Use of nested transactions in a distributed network

Another benefit of nested transactions is that it is easy and natural to implement
the distribution of transactions with them. The sub-transactions that have to
execute on other sites than the initial transaction can be represented by sub-
trees of the transaction-tree.

By representing the computation of each site by a sub-transaction, the exe-
cution of a transaction is defined by the execution of the sub-transactions and
the communication between them. Communication between sites is often a bot-
tleneck in distributed systems. By making the distinction between sites explicit
in the model, it is possible to analyse the message complexities of transactions in
terms of communication between sub-transactions.

59



Chapter 4

Concurrency control

Modern system designs have made it possible to execute processes concurrently,
thus increasing the throughput of the systems. By concurrent execution of trans-
actions the number of transactions that can be processed in a period of time is
increased.

It is not possible to execute all transactions at the same time. A transaction
that uses the result of another transaction has to wait until that result becomes
available. Also, two transactions that both try to access a critical section (for
example a printer) cannot run concurrently.

If two transactions are executed in parallel we imagine that their basic steps
are executed in an interleaved fashion, not exactly at the same moments. This
eases reasoning about concurrent transactions.

4.1 Concurrency and consistency

There is a strong relation between the amount of concurrency allowed by the
databases and the maintenance of data-consistency. Transactions are designed
in such a way that the execution of a single transaction leaves the database in a
consistent state,

It is much harder to satisfy the consistency requirement if transactions are
processed in an interleaved fashion. Other transactions can interfere with the
execution of a single transaction, thus invalidating its execution. An example of
this is given in figure 4.1. The consistency requirement is that accounts A and
B sum to zero. However, due to the incorrect interleaving of basic actions of two
transactions, this consistency is destroyed.

An explanation of the figure is probably helpful. Normally, a transaction is
modelled as a sequence of read and write actions on data items. To show that
arbitrary interleaving of transactions destroys the consistency of the database
the internal computation of the transactions 1 and 2 is represented by the small
statements. For each data item it accesses, a transaction has an internal vari-
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Time line — -

Transaction 1 | R(A) R(B) swichab W(A) | W(B) !
inemal variables E a=100 a=-100 i E |:
; b=-100 b=100 ! : ;
Transaction2 |  R(B) 'R(A)  swichab W(A) | W(B) °
internal variables E E a=-100  a=-100 i E
' b=-100 ! b=-100 ' !
A: 100 -100 100 -100
B: -100 -100 100 -100

Figure 4.1: CONCURRENT TRANSACTIONS DESTROY CONSISTENCY

able representing that data item. If a transaction reads from the database, the
result is stored in the corresponding internal variable. Four different “snapshots”
show what the state of the database is. As would be expected, the database
consistency is disturbed during the execution of the database. The database is
still inconsistent after both transactions have finished execution. Therefore the
schedule is incorrect.

The schedule show in 4.1 is incorrect because transaction 2 reads part of
its data while transaction 1 is executing. During this execution the database
consistency is not guaranteed, so transaction 2 can read from a (temporarily)
inconsistent database. The correct execution of a transaction is only specified
if a transaction reads a consistent database, no comsistency requirements are
placed on a transaction that reads from an inconsistent database. As can be seen
from the example transaction 2 is capable of destroying the database consistency.
Therefore a method to determine whether transactions can execute in parallel is
needed. This is called concurrency control.

4.2 The serializability concept

A sequential execution of transactions always preserves the consistency of the
database. This leads to the notion of serializability. A schedule s is called
serializable if there exists some sequential schedule that has an equivalent effect
on the database and executes the same transactions. In general the reads-from
and writes-writes relationships of s should be preserved, and the final state of the
database should be the same. This is called conflict serializability.

Theorem 4.1 A serializable schedule is a consistency preserving schedule.

61



Only an intuitive proof of the theorem is given. Two unrelated transactions can
be executed concurrently or in a sequential way, without disturbing the database
consistency. Consistency can only be broken by transactions that do have a reads-
from or writes-writes relation. If these transactions are executed in an interleaved
fashion the database consistency can be destroyed. Exactly this behaviour is pre-
vented by the serializability requirement. Conflicting transactions are scheduled
either before or after each other, but not interleaved.

To be able to maximize the amount of concurrency in the database, as many
as possible schedules should be allowed.

Note however that there exist consistency-preserving schedules that are not
serializable. Therefore, the set of serializable schedules is only a proper sub-
set of the set of consistency preserving schedules. Checking that a schedule is
serializable has been proven to be NP-complete.

A schedule is legal for a certain scheduler if it can be generated with that
scheduler. Existing efficient schedulers all restrict the set of legal schedules to a
subset of the serializable schedules, in order to reduce the complexity of generating
legal schedules.

4.2.1 View serializability

It can be argued that the writing of a data item X that is never read before it is
written again is useless. As no one has observed the writing of X, there would be
no difference if the first write of X had never taken place. To represent this, the
notion of view serializability is defined. A certain schedule is view serializable
if 1t is equivalent to a sequential schedule that executes the same actions and
preserves the reads-from relation between the transactions. Also the final states
of the database should be the same. Note that the writes-writes relation between
transactions is no longer important. Again, proving that a concurrent schedule
is view serializable is NP-complete in the worst case.

It is interesting to note that if some writes are actually useless, the entire
execution of these writes can be skipped. This assumes of course, that the over-
writing transactions do no fail to complete their execution and abort.

4.2.2 Final-state serializability

Where view serializability abstracted from useless writes, final state serializabil-
ity observes only the final state of a database. Intermediate states during the
execution of a schedule are regarded as temporary states. Only the final result of
the database is important. This assumption will probably not hold in real-time
databases, where transactions can have a visible effect, not only on the database
state but also on the real world.

A schedule is final-state serializable if it is equivalent to a sequential sched-
ule that executes the same transactions. Equivalence of the schedules is now
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defined as equivalence of the final database states that result from executing the
schedules.

4.2.3 Constructing workable schedules

Solving an NP-complete problem every time a set of transactions has to be sched-
uled is not a feasible option. Therefore, efficient schedulers that allow only
a subset of the serializable schedules to be generated have been constructed.
These schedulers can be regarded as heuristic methods to solve the NP-complete
scheduling problem. Although they do not provide optimal concurrency, they
introduce an acceptable overhead on the system.

A short description of the widely used two phase locking protocol is given
and the difference between pessimistic and optimistic protocols is examined. Note
that the two phase locking protocol serves as an implementation of the two phase
locking scheduler.

Two Phase Locking

It is assumed that the scheduler is given a set of transactions T and a partial
order < on T. Transactions #; is ordered before ¢, if (wlog.!) t; reads or writes
a data item X that has been previously written by ¢,.

Suppose t; < t2. The two phase locking protocol forces ¢, to wait until ¢; has
finished, by locking data item X. A locked data item cannot be accessed by any
other transaction, and ¢, does not release the lock until it is about to finish.

For simplicity it is assumed that only one transaction can have a lock on a
data item, although optimizations can be made. So transaction ¢, has to wait or
must abort, unless ¢; releases the lock on X.

Serializability is not yet enforced by this simple locking mechanism, but with
a slight adaptation it will. Two phase locking (2PL) received its name from this
adaptation: the protocol consists of a locking phase and an unlocking phase.

A transaction acquires all the locks it needs to execute in the locking phase.
In the unlocking phase, a transaction releases its locks. Once the transaction
is in the unlocking phase, it cannot obtain locks anymore.

The two phase locking protocol prevents the following, not-serializable be-
haviour: transaction #;, locks X, writes X, releases X. Transaction 1; locks,
reads, writes and releases X. Transaction ¢, locks X again and reads it. This
is not serializable: {; reads X from ¢;. Therefore, t; must be executed after ¢;.
But t; reads X from ?,, so it should occur after ¢3! This is a contradiction, so
the scheduled transactions are not serializable.

The scheduler does not prevent deadlocks. Deadlocks may occur if two trans-
actions need data items X and Y. Transaction ¢; has acquired a lock on X and

lwithout loss of generality
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needs access to Y, transaction ¢; has acquired a lock on ¥ and needs access to
X. Both must wait for the other transaction.

Optimistic versus pessimistic schedules

Two phase locking is a perfect example of a pessimistic protocol. It assumes
that a lot of conflicts between transactions occur. Therefore, it does not execute
a transaction until it is absolutely sure that it does not conflict with any other
transaction in progress. This is ensured by the locking mechanism.

However, in a large database the chance that a conflict over a piece of infor-
mation occurs between two transactions may be very low. If almost no conflicts
occur transactions must unnecessarily wait for the locking of their own data items
before they are allowed to execute. This observation has led to the construction
of optimistic schedulers.

An optimistic scheduler first executes the transactions and then validates
whether the transaction was executed according to a serializable schedule. If
a conflict between two transactions occurs, one of them is aborted just before
commit. It is still a point of study to determine under what conditions optimistic
schedulers out-perform pessimistic schedulers.

Time stamps

Another well known method of scheduling uses time-stamps. Each transaction
receives a unique time-stamp at some point. Now two transactions that both
access the same data item have to be executed in an order that depends on the
value of their time stamps. Time stamp schedulers can either be optimistic or
pessimistic, depending on the moment that transactions receive their time-stamp
and the moment that these time stamps are checked.

4.3 'Weakening serializability

Determining if a schedule is a serializable schedule is an NP-complete problem.
Efficient schedulers that produce serializable schedules never provide optimal con-
currency because they use only heuristic solutions of the serializability problem.
Also serializability does not completely capture the notion of consistency. To
increase the amount of concurrency that schedulers allow, different approaches
to database-consistency have been explored.

4.3.1 Epsilon Serializability

The first approach to mention is the notion of epsilon serializability. Epsilon
serializability is a generalization of classic serializability. It explicitly allows some
limited amount of inconsistency in transaction processing. This increases the
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concurrency allowed by the database as some not-serializable schedules are per-
mitted. In particular, read-only transactions are allowed to run concurrently with
update transactions. This might result in a inconsistent view of the database,
but the database consistency is not affected. In general, Epsilon serializability
bounds the amount of inconsistency that transactions are allowed to see.

Implementation outline

With each state of the database an amount of inconsistency is associated. This
is defined as the distance of the state to a consistent state. Assume that a func-
tion distance(u,v) exists that defines the distance between every pair of states u
and v. The database state space is metric if the distance function is symmet-
ric and satisfies triangle inequality (for all states u,v,w holds: distance(u,v) +
distance(v,w) > distance(u, w)).

Now an epsilon-serializable schedule allows read-only transactions to run con-
currently with update transactions if the amount of inconsistency they introduce
is bounded by some import-limit. Likewise, an update transaction has some
export-limit that specifies the maximum amount of inconsistency that it can ex-
port to concurrent, conflicting reading transactions. What limits can be allowed
is dependent on the application that uses the real-time database.

Note that reducing the limits to zero gives us the classic serializable schedule.
Pessimistic approximations of the amount of inconsistency can be computed if
the database state space is metric.

4.3.2 Similarity Serializability

Similarity serializability is based on the observation that in real-time systems
data items will never exactly match the status of objects they are describing,.
Similarity is a binary relation on the domain of a data object. Intuitively, two
objects are similar if they are almost the same.

A schedule is view similar to another schedule if it schedules the same trans-
actions and if these transactions read similar data. So intuitively, a transaction
would in both schedules receive almost the same input. View similar schedules
are only one version of schedules that are based on similarity. Whether two values
are similar depends on the nature of the application of the real-time database.

Similarity of time

This concept is introduced to real-time database systems for the notion of time.
Two measurements of an object that were taken at approximately the same time
can be regarded as similar. This allows the use of slightly older values for read
actions, even while the new values are being measured. This eases the problem
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of scheduling transactions in real-time. A discussion is presented in the chapter
about time management.

4.4 Restricting transactions

Advance knowledge about the behaviour of transactions can enable us to do
more efficient scheduling. All previous schedulers used the reads-from relation to
govern the scheduling of conflicting transactions. However, if for example it is
known that all data items are written by only one transaction, all transactions
can execute concurrently if a version management scheme is implemented. In the
next subsection the version management mechanism is explained.

By restricting the types of transactions allowed in the database the NP-
complete serializability problem can be circumvented and efficiently produce
highly concurrent schedules. This does of course limit the power of transac-
tions. In the next section an example of a scheduler that exploits this property
is provided.

4.4.1 Version management

A common transaction is the read-only transaction. Typically the user re-
quires information and is not going to change the state of the database. The
common occurrence of the read-only transaction justifies the separate treatment
that is given here.

In a distributed database several transactions can be issued at roughly the
same time. It is often not very clear in what order transactions should be pro-
cessed. Therefore, if both a read-transaction and a write-transaction are issued
and both transactions access the same data item, it does not matter in what
order they are serialized. So for a read-only operation it makes no difference if it
reads the most recent value or a slightly older one! Bearing this in mind, read-
only transactions can be optimized by running them concurrently with update
transactions.

Multi-version databases

To be able to serialize read-only transactions multiple versions of each data item
are kept. Now if a read-only transaction is scheduled, it reads the latest, com-
pleted version of the data items it needs that are available at the moment the
read-only transaction is scheduled. Update transactions can write newer versions
of the data items that are being read, but this does not influence the outcome
of the read-only transaction. With this construction it is always possible to seri-
alize a read-only transaction. These transactions can always proceed with their
execution.
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Discarding versions

The existence of more than one version of each data item in the database places
a huge demand on the resources that it can use. If old versions of data items
are not discarded, the amount of data that needs to be stored by the database
will grow out of bounds. A mechanism that discards versions that will not be
necessary anymore is needed to make multi-version databases a viable option.

Depending on the exact scheduling mechanism a number of implementations
is possible. A general solution is to keep the latest version always in the database
and to keep track of the number of transactions that are still using an older
version. If transactions are not allowed to be scheduled late (i.e. if a transaction
arrives late it is aborted) old versions can be discarded as soon as no read-only
transaction uses them anymore.

4.5 Handling deadlock and lifelock

Two important problems that should not be forgotten when designing schedulers
are the problems of deadlock and lifelock. In a distributed database system
these events cannot be locally detected. It is possible that a transaction ?; waits
on i in site a, while t; waits on ¢, in site b. To be able to detect and do something
about deadlock in a distributed system communication between the different sites
of the database is needed.

4.5.1 Deadlock

If the database system makes use of some locking scheme to enforce serializable
behaviour, deadlock may occur if two transactions lock a subset of the data
items that they both need. No transaction acquires all its data items, so no
transaction can proceed. They both wait on each other to release the locks they
need. Deadlock can be prevented by checking that the “waits-for” dependencies
introduced by the locking scheme are partially ordered. This means that no cyclic
waiting may occur. If such a cycle exists, one of the transactions that is part of
the deadlock has to be aborted. This checking is done by maintaining a so-called
dependency graph. Vertices in the dependency graph denote transactions, and
edges between vertices denote “waits-for” relations. An excellent overview of the
theory of deadlock detection can be found in [Kna87).

Distributed deadlock

A deadlock in a distributed database can extend over more than one site. The
information that is known about transactions at a single site is not sufficient to
detect deadlocks. Several methods have been designed to detect deadlocks. A
few methods are named without going into details.
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¢ Transaction timeouts. If an upper bound of the transaction execution time
is known, deadlock can be detected with the use of timers. If a transaction
fails to terminate in time, a deadlock has occurred.

e Constructing a global dependency graph. If all sites send their local depen-
dency graph to one site, all dependency graphs can be combined to produce
a global global dependency graph.

e Chasing dependencies. If a site notices that a transaction it is processing
is dependent on a transaction that is executing at another site, it sends the
relevant dependency information to that site. If that site concludes that a
cycle occurs (with aid of the received information), the deadlock is detected.

Methods to resolve the deadlock need to follow the detection. The methods are all
based on the aborting of one or more transactions that are part of the deadlock.
A problem in this area are “shadow deadlocks”, i.e. the detection mechanism
decides to abort transactions before deadlock has actually occurred.

4.5.2 Lifelock

Deadlock cannot occur in optimistic schedules, as transactions never wait. How-
ever, lifelock might occur. Lifelock is the situation that, although the database
keeps processing transactions, a single transaction is never processed. Suppose
that an executing transaction always finds out in the validation phase that it con-
flicted with a committed transaction. It has to abort the execution and resched-
ule.

Lifelock can be prevented if the scheduler can choose the transaction it aborts.
In general, a transaction has to abort because it conflicts with a set of other
transactions. If it is possible to abort this conflicting set, lifelock can be prevented
by aborting the transactions that have aborted the least. This ensures that the
oldest transaction in the system is not aborted. Eventually each transaction
will be the oldest in the system or it will have committed. So eventually each
commits.
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Chapter 5
Reliability

Databases are meant to store information over long periods of time. With our
current state of technology it is unrealistic to assume that the database system
will never fail. Hardware errors, communication failures, software errors, almost
anything can happen. It is possible to design hardware that uses redundancy to
decrease the probability of a hardware failure. Likewise, software techniques are
shown that prevent failures of the system to leave the system in an inconsistent
state.

5.1 Failure models

Many different types of failures can occur, as was written in the introduction of
this chapter. Two types of failures are recognised, based on the severity of the
failure:

¢ Fail-stop failures. If a fail-stop failure occurs in a system, the system
simply halts with its computation. After an unknown period, it restarts or
continues its computation. When a system is able to continue its compu-
tation without losing its program state, the failure is called an omission.
Omissions preserve the program state, but some results (messages) may
have been lost. After a fail-stop failures, the program state has been lost
and the system has to reboot. The time that a site needs to recover can be
arbitrarily long. ‘

e Fail-insane failures. When a fail-insane failure occurs in a system, the
system doesn’t stop, but it executes in an unpredictable way.

Fail-insane failures are more severe than fail-stop failures. The proof of this is
simple: a fail-insane system can decide to behave like a fail-stop system. But it
can also decide to continue the computation, acting quite normal but twisting its
output. Conclusions based on this output will be incorrect. There is no fool-proof

69



way of telling if a system behaves correctly, as the checking algorithm itself may
produce incorrect output.

5.2 Maintaining consistency

In the previous chapter atomic transactions have been defined. The effects of an
atomic transaction are either implemented entirely, or not at all. This property
is used to maintain the consistency of the database. In this section methods
to implement the behaviour of atomic transactions are examined. Transaction
atomicity is preserved even when the system fails in the middle of a transaction.

5.2.1 Recovery from fail-stop failures

If the system fails in the middle of a transaction, this could lead to an inconsistent
database. This happens for example when the system fails after half of the writes
of a transaction have been carried out.

So the database has to be repaired when the system recovers. In the worst
case, all main memory has been erased by the failure. Stable storage is needed to
reconstruct the previous system state. Stable storage is a storage device (hard-
disk, tape, etc.) that is failure-free. This is often implemented in hardware.

The undo/redo mechanism

In order to recover from failures all relevant transaction information is stored
in a sequential file on stable storage. This file is called the log. Now before
the results of a transaction are written, the previous values of the database are
saved in stable storage. Then a “begin transaction” message is written to the
(sequential) stable storage. Next, the updates of the transaction are actually
carried out. When all updates have been applied to the database, “transaction
finished” is written to stable storage.

The claim is that with this extra information, the atomicity of transactions
can be ensured. Suppose the system has failed. Now when the database recovers,
it reads its stable storage until it reaches the last “begin transaction” message. If
an “end transaction” message follows, the system failed after completion of the
transaction. Nothing needs to be corrected, the system is in a consistent state. If
no “end transaction” message has been written to stable storage, the transaction
was still in progress. All its writes are undone, by rewriting the previous state of
the database that was saved on the stable storage.

The writing to permanent storage! may take place after a transaction has
committed. If the system fails after the commit but before the actual write to

!With permanent storage the normal database storage (hard-disk) is meant. Note that the
writing to stable storage is never delayed.
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stable storage, it is impossible to undo the transaction. When this happens the
log is used to redo the transaction.

This is the simple, centralised implementation of atomic transactions. Adap-
tations have to be made in a distributed environment but they will still be based
on the existence of logs.

5.2.2 Handling fail-insane failures

Fail-insane failures are much harder to handle. The assumption of stable storage
can not be made, as a fail-insane computer can overwrite its own storage. A
solution could be a stable write-once, read-many storage. In this way, all correct
actions of the system are preserved. It would be very hard to analyze this stor-
age on recovery, because there will be no sharp boundary between the correct
behaviour and the fail-insane behaviour of the system. I personally know of no
results in this direction.

In a centralized system nothing can be done once a fail-insane failure occurs.
One has to pray that it does not wipe out the entire database. Fail-insane failures
can be handled to some extent in distributed databases. Replication of data
prevents information to be destroyed by one fail-insane site.

5.2.3 Voting on actions

The adverse effects of fail-insane sites can be negated by voting on actions taken
by the distributed database. An action on the database will only be executed by
all sites if at least a majority of the sites concludes that it is a legal action. For
these schemes to be successful, it is necessary that there is a bound on the number
of sites that may fail-insane at the same time. Typically, at least a majority of
the nodes participating in a vote must be correct.

5.2.4 Input certification

A noteworthy technique is that of input certification. An insane site that
participates in a protocol does not need to send the same information to all sites.
This can sometimes result in different conclusions in different correct sites. If the
system tries to come to a global decision, this cannot be tolerated.

To prevent insane sites from sending different messages to different sites when
they should be broadcasting a single message, a broadcast & from a site s that
arrives at site ¢ is not passed on to the controlling system. Rather, site ¢ sends
a message (s,b) to all other sites. This message effectively states “I received
broadcast b from site s”. Now if a node receives the same (s, b) message from at
least half of the sites in the network, it accepts this message as a correct message.
In this way, a fail-insane node can only send the same message to all nodes in
the network.
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5.3 Availability of the database

Another issue of dependability is the availability of the database. If a centralized
database fails, the information stored is no longer available. But in a distributed
network access to the remaining database sites in the network can still be pro-

vided.,

5.3.1 Fault tolerance

By introducing redundancy in the database it is possible to make the system more
fault tolerant. A very simple scheme that is used to build reliable computers is
replicating the entire database X times. This X-redundant system can now
handle X — 1 system crashes. If recovery mechanisms are provided, the system
can handle X — 1 system crashes at roughly the same time.

5.3.2 Distributing data

There are several ways to store data in a distributed database. If the database is
not redundant, each item is stored at a single site, the crashing of a site will pre-
vent access to items stored at that site. In a lock-based system transactions that
accessed data stored in the crashed site have to be aborted. Only transactions
that use data items stored in surviving sites can continue execution.

Replicating data

Instead of the crude mechanism of replicating the entire database, single data
items can be replicated and stored at more than one site. If one site fails, other
sites are still able to provide access to all the information in the database.

There are several problems with this approach. Of course, replication of data
reduces the overall capacity of the database. Algorithms that were simple and
elegant in the not-replicated version become much more involved, if the system
incorporates replicated data.

For instance assume that a transaction running at site ¢ has locked a data item.
Subsequently the site crashes. A mechanism has to be provided that releases all
locks held by transactions on a crashed site. If no such mechanism exists the
failure of a single site will prevent access to large parts of the database and no
performance is gained from the replication of data.

So the design of the concurrency control mechanism should explicitly deal
with the distribution of data. In the chapter on distributed systems, protocols
that make use of replicated data to increase availability are discussed.
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Chapter 6

Distributed systems

Distributed databases are useful because they enhance the reliability and avail-
ability of databases. They allow more concurrency than centralised systems and
appeal to object-oriented programming approaches.

However, there is a price to be paid for these extra features. The database
controlling protocols are more complex than in centralized databases and com-
munication between sites is often a bottleneck. For instance, implementing a lock
in a centralised database can be realised with simple semaphores. Implementing
a lock in a distributed database requires the exchange of lock information be-
tween sites. If information about a lock is distributed over more than one site
(to increase availability), the message cost grows in proportion.

In this chapter a few protocols are presented that are specially designed for
distributed systems. This is meant to provide some insight in the complexities
that arise in distributed systems.

6.1 Atomic commit protocols

One of the first problems that is unique for the distributed environment is the
global commit. In a centralised database a transaction commits by writing
a single message to stable storage. How this could be implemented in dis-
tributed databases is not instantly clear. A transaction consists of several sub-
transactions. For each site that participates in the transaction a separate sub-
transaction is defined. A protocol is needed to ensure that either all sub-transactions
commit or that all sub-transactions abort. This is known as an atomic commit.
All sites should agree on the same decision.

Decisions made by a site are un-reversible, and should be available within
finite time. Finally, a transaction should commit if all of its sub-transactions
commit, and no failure occurs. This property prevents the obvious solution of
always aborting transactions.
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6.1.1 Blocking

One additional feature that is important for the functionality of an atomic commit
protocol is the so called non-blocking property. A protocol is blocking if
the failure of a site that participates in the protocol blocks further execution.
In particular: the protocol cannot abort and has to wait for recovery of the
crashed site. The non-blocking property is not easily implemented. Theoretical
results show that it cannot be guaranteed if no time-out mechanism or hardware
detection of site failures exists. Therefore it is assumed in the rest of this chapter
that such a failure-detection mechanism exists.

6.1.2 Two phase commit protocol

This is a simple, blocking protocol that offers just the basic services that we
demand from an atomic commit protocol. It works as follows: The initiating site
sends messages containing the necessary information for the sub-transactions to
all sites. Once a site has finished its local computation it either aborts and sends
“aborting” to the initiating site or it sends “ready”. The initiating site receives
all messages. If at least one message 1s an “aborting” message, the initiating sites
sends “abort” to all participating sites and aborts. Otherwise it sends “commit”.
All participating sites receive the message and abort or commit accordingly.

6.1.3 Uncertainty of sub-transactions

Uncertainty is a fundamental property of (sub-)transactions. At the beginning
of an execution the sub-transactions are not certain whether the transaction will
commit or abort. The computation can still go both ways. At some point in
the computation, the decision is made to either abort or commit by each site.
Once it is possible that some site has decided on either of the two, no site may
decide on an action without information about the decision in the other sites, for
otherwise two different decisions could be taken.

With this property in mind, let us analyse the behaviour of the simple two
phase commit protocol. At the beginning, no site is allowed to decide to commit.
All sub-transactions can safely decide to abort. Therefore as socon as some site
fails, the remaining sites abort the transaction.

The analysis becomes interesting once it becomes possible that some site
has decided to commit. In the two phase commit protocol, the first site that
decides to commit is the site where the transaction was initiated. Suppose some
participating site p has sent its “ready” message to the initiating site and the
initiating site fails before p has received the decision. Site p is now uncertain
whether it has to abort or commit. Using some broadcast protocol it can try to
gain certainty from other participating sites.
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Suppose the initiating site is the sole failing site. The total set of messages
that were sent to the initiating site can be gathered, so the decision that was
taken by the initiating site can be deduced. If at least one other site failed, this
does not apply. The remaining sites miss relevant information so they cannot
infer what the initiating site was about to decide. When all remaining sites are
uncertain, no site can decide whether to abort or to commit. The protocol is
blocked.

It can be seen that the initiating site is never uncertain, so it can always
decide on a course of action. This is because the initiating site is the first site
that is allowed to decide to commit. Therefore, as long as the initiating site has
not failed, the protocol is not blocked. Likewise, the protocol is not blocked if
some remaining site has not yet sent its “ready” message or if some remaining
site has already received the decision. The only scenario in which the two phase
commit protocol becomes blocked is the scenario just described.

6.1.4 Non-blocking commit protocols

It is possible to construct commit protocols that have the non-blocking property.
Instead of showing and analysing an entirely new protocol, it is briefly shown
how improving a basic step of the two phase commit protocol does provide the
non-blocking property.

Recall that the only scenario in which the standard two phase commit pro-
tocol is blocking, is when the initiator fails and at least one other site does the
same. These two sites could have committed before they failed, so the remaining
sites cannot abort. This is because they are uncertain about the decision of the
initiator. Implementing an atomic broadcast suffices to realise the non-blocking
property. An atomic broadcast is a broadcast where either all sites receive the
message, or no site receives the message.

Achieving non-blocking with atomic broadcast

Now the initiator does not decide on commit until it has finished its atomic
broadcast. If it crashes before it has broadcast the decision, it has not yet taken
that decision, so the other sites can abort. If it crashes after the broadcast,
all sites will have received the decision. Observe that in the previous protocol,
delaying the decision till after the broadcast was not sufficient to provide the
non-blocking property. This is because a participating site that received the
“commit” message and subsequently failed could be the only site that committed
if the initiator failed in the middle of the broadcast.
The implementation of an atomic broadcast is beyond the scope of this overview.

It suffices to say that it can be achieved at an increased delay in time and with
a higher message cost.
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Figure 6.1: NOT-TWO PHASE LOCKING BEHAVIOUR

6.1.5 Global synchronisation

In many distributed algorithms a global synchronisation point is needed. An
example of that is the commit protocol. The initiating site knows that all par-
ticipating sites have progressed to a certain point (they have all sent their status
messages), before it broadcasts its decision. So before sites decide to commit, all
sites have at least responded once. Note that reasoning about time in distributed
environment is a little more complex than presented here, as sites have no real
notion of “global time”.

Several different algorithms have been constructed that achieve global syn-
chronisation. The algorithm described above is dependent on its initiating site.
Other variants have been designed that increase robustness, decrease time com-
plexity or decrease message complexity.

Distributed two phase locking

To be able to design a distributed version of the two phase locking protocol a
global synchronisation protocol is needed. Recall that essential for the two phase
locking protocol was the existence of a locking phase and an unlocking phase.
Suppose the two phase locking protocol is used to schedule a distributed
transaction. It is not sufficient to ensure a local two phase behaviour, as the
sites are not synchronised in time. In picture 6.1 an example is given of not-
two phase locking behaviour that arises because the sites are not synchronised.
Sub-transactions 77 and T execute on different sites that are not synchronised.
Because of communication delays or because of the difference in speed of the two
sites the sub-transactions do no start and stop their locking and unlocking phase
at the same moment. The phases are so far apart that T; begins its locking phase
after Ty has finished its unlocking phase. Another transaction A could now read
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the results of 7} and write the data items that T, is going to use. This not-
serializable behaviour exists because transactions have no global synchronisation
point between the locking and unlocking phase.

6.2 Availability of data

Data that is stored in the database should be accessible at all times. Even if some
of the sites fail, one would like to manipulate data. This is clearly impossible if
data is stored at a single site. However, if data is replicated over multiple sites,
it will be available as long as at least one of the sites remains functional.

Although data replication increases the availability of data, it introduces prob-
lems for maintaining correctness. Recovery management is needed to update sites
that recover from crashes, as changes will have been made to data items that are
also stored at the recovering sites. But most important, the concurrency control
algorithms have to deal with the replication of data.

Access to a data item is no longer centralised at a single site, but is distributed
over the network. Producing correctness preserving schedules requires commu-
nication between the sites in the network. A number of distributed concurrency
control algorithms are mentioned.

A simple strategy

Each copy of a data item is treated as a separate data item. If a transaction wants
to read or write an item it has to obtain locks on all copies. Obviously this leads
to a high communication and storage cost without an increase in concurrency
or availability. To design an efficient concurrency control algorithm, mechanisms
are needed that increase concurrency and provide access to data even if a few
sites fail.

Single read-lock strategy

A minor adaptation to the previous scheme is that a transaction that just reads
a data item X only locks the local copy of X. In this way, read actions can be
executed concurrently. Write actions still conflict with other writes and reads.
Read actions are not blocked if a site fails, write actions have to lock all copies
and cannot proceed.

Primary copy strategy

This section is concluded with presenting a simple version of the primary copy
protocol. This protocol maintains a high level of availability, even if some sites

fail.
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For each data item a primary site is defined. The copy of the data item
stored there is the primary copy. All other copies are backup copies. Transactions
request read and write locks only at the primary site. Therefore, actions are not
blocked as long as the primary site remains functional. Other adaptations of the
primary site protocol deal with the crashing of the primary site. Still, the simple
primary copy strategy is an improvement over the single read-lock strategy where
an arbitrary site failure would block the protocol.

6.2.1 Network Partitioning

If the network that is the foundation for a distributed database becomes parti-
tioned it would be nice if the two separated parts of the database would remain
functional. Information that has only been stored in one partition is unavailable
for the other partitions of the database. Transactions that act on this information
can only execute if they are issued in the same partition.

So network partitioning cripples the performance of the database in the un-
replicated case. But problems are not over if the available data in the database
is replicated. If update transactions are applied to data while the network is
partitioned, it is possible that two different values are assigned to copies of the
same data item. If the network is connected again the database is no longer
consistent. Only read-only transactions are allowed in all partitions while the
network is partitioned. Update transactions can be allowed in one partition.
If updates would be allowed in more than one partition, two or more different
copies of one data itemn can exist. If updates are only allowed in one partition,
all other partitions can use the old copy of the data item. (As the network is
partitioned, it is certain that transactions running in different partitions can be
serialised by putting all the transactions from the read-only partitions before the
update-partition).
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Chapter 7

Time management

In conventional databases information is static: as long as no transaction changes
the information, it does not change. This is not the case in real-time databases.
Often, information loses value as it grows older. This is especially the case when
the information in question is a representation of the real world (hence the name
real-time databases), as the real world changes in time. Likewise, if two pieces
of information are gathered at completely different times, they do not relate to
each other.

7.1 Temporal consistency

From the observations just made temporal consistency can be formulated in
two components:

e Absolute consistency. A direct relation must exist between the state of
the environment and its representation in the database. If the system has
an incorrect view of the environment its actions will be nonsensical.

¢ Relative consistency. Data derived from the environment must be tem-
porally consistent with the other data that has been derived.

Examples of both absolute and relative temporal consistency are given. Sup-
pose a computer is used to monitor the amount of people in a room. If it counts
the number of people every five seconds, it will always have a good approximation
of the number of people in the room. If it counts once every hour and everybody
leaves after thirty minutes, the representation in the computer would no longer
reflect the real world, it would be inconsistent.

Now suppose the computer monitors two rooms. First it counts all people
in room one in five seconds, then all people in room two. However, while the
computer was counting, people were switching rooms. If both counts were ten,
can it be concluded there were twenty different people in the rooms? If the rooms
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are adjacent about five people could have switched, so only fifteen different people
are needed to arrive at our result. The two counts would not be temporally
consistent.

But when the rooms are fifty meters apart, almost no one could have crossed
that distance in five seconds, so there are indeed twenty different people. The
results of the two counts are then indeed temporally consistent, i.e. the fact that
in the real world people cannot be in two rooms at the same time combined with
the data allows the computer to conclude that there are at least twenty different
people present.

7.1.1 Absolute consistency

Information that reflects the real world is only valid for a certain interval in
time. The length of this interval is dependent on the nature of the object that is
represented and the amount of inconsistency that is allowed by the system.

If an object is changing rapidly, the interval during which information is valid
will be short. If the database requires that information about an object may only
deviate five percent from the real status of the object, the information may have
to be refreshed more often than when it is allowed to deviate ten percent.

So far, it has implicitly been assumed that the behaviour of objects is pre-
dictable. If an object can suddenly change its entire state, it is impossible to
prevent inconsistencies to exist in the database. Likewise, linear behaviour of
the information about objects has been assumed. When a small change in data
reflects a major change in the state of the object, even small inconsistencies in
data can lead to totally wrong conclusions. For example, if a five degree error
is allowed in the temperature of water, the difference between ice and water if it
is just below freezing point cannot be specified. While for normal temperatures
a deviation of five degrees might be acceptable, it is not acceptable around the
freezing point of water.

If it is impossible to refresh the information stored in the database often
enough to maintain an acceptable representation of the real world, one can use
the predictable behaviour of objects to extrapolate the history of an object. If
bounds on the speed with which an object can change its status are known,
numerical methods can be used to bound the error that is made in the prediction.

7.1.2 Relative consistency

Related data about objects in the real world is only consistent with each other
if the data was gathered at approximately the same time. This is called the
relative consistency of data. As with absolute consistency, relative consistency is
dependent on the speed with which the represented objects are changing and the
amount of error that is permitted.
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But where absolute consistency is only preserved for a small interval in time,
relative consistency is a permanent property of a pair of data items. Data items
are consistent if they have been gathered within a specific period of time from
each other.

Relative temporal consistency is not a transitive relation, if A and B are
temporally consistent, and B and C are temporally consistent, it is not necessary
that A and C are temporally consistent.

This is easily illustrated. Suppose data items are temporally consistent if their
age does not differ by more than five seconds. Now A is gathered at time 10. B
has been gathered at time 14. Clearly, A and B differ only 4 seconds and they
are temporally consistent with each other. Now C has been gathered at time
17. B and C differ only 3 seconds, so they are consistent, But A and C differ 7
seconds, and they are not relatively consistent.

7.2 Time critical scheduling

In a real time environment transactions will have a time-interval associated with
them. The real-time database must ensure that each transaction is executed
within its own time-interval.

7.2.1 Time based scheduling

The problem of scheduling a set of transactions that all have time-intervals in
which they have to be processed on a database with limited computation power
is NP-complete. This does not even take into account that the transactions also
have to be executed in such a way that the database consistency is preserved.
Finding a serializable schedule, the most common notion of database consistency,
is in itself an NP-complete problem. It is therefore unrealistic to assume that the
optimal solution to the time based scheduling problem can be found.

Behaviour under overload

If too many transactions have to be processed in a time interval, there will be no
solution of the scheduling problem. The database is unable to process all trans-
actions in time. We would like a scheduler that even under these circumstances
processes as many transactions within their intervals as possible.

Transaction execution length

To do any intelligent scheduling, information about the execution length of trans-
actions is needed. If no such knowledge is present the optimal strategy is to sched-
ule transactions as early as possible. The notion of slack time is important. The
amount of slack time that a transaction has is the length of the interval in which
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it is allowed to execute minus the amount of time that it needs to execute. A
correct schedule is easier to find if transactions have a lot of slack time.

7.2.2 Missing deadlines

In an overloaded system, the scheduler will not be able to execute all transactions
within their associated time-intervals. Where in normal databases it is possible
(though not desirable) to queue incoming transaction until workload decreases
and the system catches up, in real-time databases the value of a transaction
will dwindle away once its deadline has been missed. Dependent on the type of
transaction three types of deadlines are recognised: soft, firm and hard deadlines.

Soft deadlines

Transactions with soft deadlines do not lose their complete value once they
have passed the deadline. Instead, the value of a transaction that has passed its
soft deadline slowly dwindles away. The most famous example of this is the large
project (be it bridge-building, software construction, whatever). The number of
times that projects do not make their deadlines is staggering. However, most of
them are still completed. It is often better to have finished a project too late,
than not to have finished it at all. Clearly, a project cannot go on forever. I
no goal is within sight, eventually funding will be stopped, the project will be
cancelled, its value is decreased to zero.

Firm deadlines

Transactions with firm deadlines do lose all their value once the deadline has
passed. There is no use in continuing the transaction. Examples of this are
all around us. Think of going to the supermarket. If you are half-way to the
supermarket and it is closing time, there is absolutely no sense in continuing
your trip.

Hard deadlines

The last type of deadline that is recognised is the hard deadline. If a database
fails to execute a transaction with a hard deadline in time, not only does the
transaction lose all value, but this failure imposes a heavy negative value on the
system. Examples of this lie for instance in computer-controlled security systems.
A crude example is the computer monitoring a nuclear power plant. Once the
reactor temperature rises above a certain limit, the computer must activate the
emergency cooling system. If the computer fails to react in time, a major disaster
might occur.
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7.3 Priority scheduling

The existence of different types of transactions that each have a different impact
on the system, should their deadline be missed, leads to the introduction of
transaction priorities. Clearly the priority of the emergency cooling system is
higher than the priority of the daily memo delivery program. The mechanism of
priorities can be provided as a service to the users of the real-time database or
it can be an implementation of the different types of deadlines that transactions
have. On the other hand, priorities can also be used as part of the implementation
of a scheduling protocol. For instance in the “Earliest Deadline First” protocol,
transaction priorities are defined as the inverse of their deadlines.

7.3.1 Defining priorities

Before priorities for all transactions are defined, it must be defined what these
priorities exactly mean. In most literature, if transaction ¢; has a higher prior-
ity than ¢, #; will always have precedence over ¢;. It is also possible that the
scheduler tries to maximize the total sum of priorities of transactions that are
executed. That would mean that a transaction of priority five could be aborted
by five transactions of priority one.

Imagine a vending machine. Its goal is to earn as much money as possible.
Now if it spends too much time with a customer that is about to buy a very
expensive article, it can better spend that time selling cheap articles to multiple
customers.

The normal priority scheme, where transactions of higher priority always take
precedence is more suited to implement critical processes, so in the remainder of
this chapter such a priority scheme is used.

7.3.2 Handling priorities

Suppose that in a very general scheduler a high priority transaction has a conflict
over a data item with a low priority transaction. One transaction has to wait or
abort. Suppose too that the low priority transaction is already being executed.
Two options are clear: aborting the low priority transaction, or letting the high
priority transaction wait. |

Aborting low priority transactions

A transaction with a high priority takes precedence over transactions with low
priorities. A simple implementation to enforce this rule is to abort all low prior-
ity transactions that conflict with a high priority transaction. This mechanism
ensures that the transaction with the highest priority will always be allowed to
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execute. There are several drawbacks to this scheme. First of all, even transac-
tions that were very near commit point are aborted. This results in a large waste
of database resources and reduces the overall throughput of the system. Several
schemes have been designed to remedy this problem to some extent. In general,
they abort transactions that are in early stages of their computation and allow
transactions to finish if they are nearly done.

The second problem is that low priority transactions can be life-locked by this
mechanism, if there are a lot of high priority transactions. Often if a transaction
with a low priority is aborted several times, its priority will rise. Take for example
maintenance: missing one maintenance checkup is not very important. However,
regular maintenance is essential for a system to keep functioning in a reliable
way. Maintenance cannot be postponed indefinitely. This results in a “race for
priority” that can disrupt the entire priority scheme.

Priority inversion

If a high priority transaction that is not yet nearing its deadline has a conflict
with a low priority transaction, is does not need to abort that transaction.

Instead of aborting the low priority transaction, it runs to conclusion. But
as the high priority transaction is now waiting on a low-priority transaction, it
is effectively blocked as the low priority transaction will have to wait on higher
priority transactions.

To remedy this problem it has been suggested that the low priority transaction
inherits the high priority of transactions that are waiting for it to finish. However,
this means that a (once) low priority transaction is now allowed to abort medium
priority transactions, This is called the problem of priority inversion.
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Chapter 8

Integrating operating system &
database design

Normally when researchers start investigating a subject, an abstract representa-
tion of a real problem is formulated. The research focuses on one aspect, instead
of looking at the big picture. Once a solution to such an abstract problem is
found, this solution is translated back to the real environment and implemented.

Most of the time it is assumed that real-time databases are built on some
operating system that offers storage services. The properties of these operating
systems are only roughly defined. If the analysis of the database is combined
with the analysis of the operating system, more realistic assumptions about the
reaction time of the operating system can be made. This enhances the time-
control and the precision in which the length of transactions can be predicted.

Operating systems offer file storage services, much in the same way that
databases offer more fine-grained storage services. By combining the database
with the operating system this replication of services can be avoided, thus reduc-
ing the overhead imposed by the system.

These two observations justify the combining of database design and operating
system design. In this chapter it will be investigated what can be gained from
this combination.

8.1 Data caching

To increase the efficiency of the hard-disk it is useful to keep some of the infor-
mation on the hard-disk stored in main memory. Even if the same information
1s accessed multiple times, only two disk accesses are needed. One to get the
information from the hard disk and one to update the hard disk before the main
memory is erased. This technique is called data caching.

In large database systems, the cache cannot hold all information that is re-
trieved from the hard-disk. At some moment, information stored needs to be
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erased to make room for new data items that are not yet in the cache. The
efficiency of the caching-mechanism depends on the selection of data items that
are removed from main memory and stored back to disk.

It is important to take the disk cache explicitly into account during real-time
database design. There are two major drawbacks that have to be considered:

¢ System crashes. If at some moment the system crashes and the main mem-
ory is wiped, all changes to data items that were cached are lost. If the
disk is cached, it is not certain that a write to the disk is instantly carried
out. The recovery mechanism has to be adapted to cope with this extra
complication. In general all transactions will be redone whose results might
have been lost in the crash.

o Transaction time bounds. In a real-time system tight bounds on the ex-
ecution time of transactions are necessary to do intelligent scheduling of
transactions. If the behaviour of the caching mechanism is not analysed
only the worst case scenario can be assumed: the cache is full, data has
to be written back to the disk before the new data is retrieved and stored
in the cache. So although caching does increase the performance of the
hard-disk, it degrades the worst-case analysis as for a single read operation
at least two disk-accesses will be needed instead of one.

8.2 Virtual memory

Another technique that is frequently used in operating system design is virtual
memory. The actual main memory of a computer is often not large enough to
completely hold very large programs. The CPU can only access a very small por-
tion of that memory at the same time (typically one or two locations). Therefore
large parts of the main memory will not be accessed for some time.

The technique called virtual memory makes use of this property by allowing
programs to use more main memory than what is actually available. If a program
accesses memory that does not exist, the (virtual) memory manager stores a
currently unused part of main memory on hard-disk and offers the now free
mernory to the program. If main memory that is stored on hard disk is accessed
by a program, the memory is retrieved and some other part of main memory is
swapped to the hard-disk.

The virtual memory mechanism actually uses the hard disk as slow main
memory. To make optimal use of the available (fast) main memory several swap-
ping algorithms are possible. Nevertheless, virtual memory degrades the speed
of main memory access.

A tradeoff between available memory and memory speed might be envisaged,
if the degradation of speed would be a gradual process. But this is not the
case. Memory access is a fast as normal until a program (or transaction) accesses
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memory that is stored on hard disk. That memory access initiates the swapping
of memory to and from the hard disk. This is disastrous for a worst case analysis
of the execution time of transactions.

8.3 Conclusion

As illustrated by the examples above, a lot of practical problems surface if the
solutions to database problems are exported from an experimental environment
to a real environment. Especially, the worst-case execution time of a transaction
is affected by disk-10. Without previous knowledge about transactions, cache hits
and page swapping cannot be predicted. As in real-time databases timeliness is
often more desirable than fault tolerance, a main-memory system with delayed
writes to disk may be more effective.
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Chapter 9

Analysis of database designs

In real-time database management systems, it is not so important that the
database has a high transaction throughput, but rather that each individual
transaction has a high chance of completing before its deadline. Although these
two notions overlap, they are not the same, as has been illustrated in an earlier
chapter.

9.1 Existing results

The analysis of the efficiency of real-time database designs has been rather rudi-
mentary. Almost all articles that deal with efficiency give simulation results. Al-
though simulations can be very useful for comparisons between schedulers they
lack the thoroughness of the analytical approach. Relative few articles have been
written that analyse not-realtime database efficiency instead of using simulations.

In article [YDL93] both two phase locking and pure optimistic concurrency
control are analysed using Poisson processes. This paper presented an analyti-
cal approximation of the average transaction length, given that the transactions
arrive at the scheduler as a Poisson process. Unfortunately the analysis of the
two schedulers is mixed, which muddles the article. This distracts from some
important assumptions that where made to arrive at the result.

To be able to say anything about the probability that a transaction will finish
before its deadline, the average execution time is insufficient. The analysis of
the complete probability distribution instead of the average execution time is in
general much more involved.

9.2 Comparison problems

An analysis of a scheduler should result in a set of success probabilities for an
arbitrary transaction under a given workload. This probability will depend also
on the transaction length and the size of the database. Even if a distribution
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can be specified, it is not easy to compare the efficiency of different real-time
schedulers. This is because the efficiency of a scheduler depends on a number of
parameters:

1.

Centralised versus distributed environment. The communication de-
lay introduces problems that are very specific for distributed systems. At
the same time, distributed systems offer more computation power. It is
clear that distributed systems are unsurpassed if availability is the crite-
rion.

Read-only queries versus updates. More efficient scheduling is possible
if read-only queries are treated as a special type of transaction. Dependent
on the application of the database (mostly the percentage of transactions
that are read-only transactions) this optimization will be more or less useful.

Real-time scheduling versus normal scheduling. The performance
criteria for real-time databases and normal databases differ. A comparison
between a real-time database and a normal database is therefore complex,
but it might be useful to analyse the behaviour of a real-time schedule in a
non-realtime environment and vice versa.

Priority based or not. A real-time scheduler can offer a priority mech-
anism to the users, to give them some influence over the behaviour of the
scheduler under a high system load. Of course, this affects the efficiency of
the scheduler.

Conflict-rate. Schedulers behave differently under different system loads.
A scheduler can be very efficient under a low system load, but lose perfor-
mance as soon as the system load increases. Another scheduler can have a
rather constant performance, not perfect under relatively low system loads,
but handling well under high loads.

Amount of possible deadlocks. Some schedulers do not prevent the
possibility of deadlock. While this permits them to execute more efficiently,
deadlocks have to be detected and resolved. Dependent on the nature of
the transaction system, deadlocks can be allowed to exist for some time
before they are resolved. Especially in a distributed system this reduces
the message cost that is associated with deadlock detection.

Variance of transaction lengths. Several schedulers perform well as long
as all transactions are of the same execution length, while degrading when
lengths of transactions vary. For instance, pure optimistic concurrency
control can lifelock long transactions if a steady stream of short transactions
enters the system. T'wo phase locking would not suffer from this problem.
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8. The level of reliability and availability that is required. Reliability
and availability of the database are desirable properties, but they come at
a cost. A distributed scheduler that implements no global commit protocol
is unreliable in case of site failures, but is very efficient. A distributed
scheduler that uses the two phase commit is less efficient but reliable, but
suffers from blocking, thus reducing availability. A scheduler that uses
the three phase commit protocol is both reliable and does not suffer from
blocking, but the three phase commit protocol introduces more overhead
than the other two approaches.

9. Required advance knowledge about transactions. Schedulers that
rely on access invariance!can overcome the problems of lifelock and deadlock
easily. Consequently a more constant response time can be guaranteed. The
rate-monotonic scheduler is a perfect example. This scheduler knows that
all transactions are periodic, with deadlines equal to the beginning of the
next period. All transactions can be preempted and continued later. The
last assumption distinguishes the allowed transactions of the rate monotonic
scheduler from transactions that are normally allowed by databases.

9.3 Conclusion

Very few articles deal with the efficiency of transaction schedulers in an analytical
way. In the field of real-time systems, where transactions lose their value once
their deadline has passed, guarantees about transaction execution times are even
more important than in normal databases.

In normal databases, the throughput of the system is of primary concern.
Such throughput can be easily measured in a testing environment. In real-time
systems, the execution time of each individual transaction is important and more
elaborate testing techniques are necessary. At the same time, the analysis of the
transaction execution time becomes more involved, as the average execution time
no longer suffices.

It will probably be hard to give sharp analytical results, as the problem has
remained almost without results for so many years. Research should start with
analysing simple schedulers with certain restrictions on the transaction types and
frequencies. Nevertheless, the field of real-time schedulers does need a fundamen-
tal basis, that cannot be completely provided by test-results.

1'The data items needed by a transaction are known in advance.

90



Chapter 10

Research issues

After presenting this overview of the field of real-time distributed databases it is
time for some reflection. Although a lot of good results are already available in
the separate subfields it is not instantly clear that we are now able to build the
optimal real-time database with these mechanisms. In this chapter the overview
is completed by pointing out the areas where further research is still needed. This
will be contrasted by a short summary of results that are already known.

10.1 From user-interface to implementation

The real-time distributed database stores information that corresponds to the real
world and offers various services to its users. Instead of restricting the notion of
users to humans, users can range from other computers to air passing a pressure
valve. This wide range of users has no knowledge of the database structure and
high level services have to be provided.

These services are typically provided by transactions that have been pro-
grammed in advance. Transaction programmers deal with input/output devices
and prefer to represent actions in an abstract language, independent from the
underlying implementation of real-time databases. Algebraic or relational lan-
guages exist that allow arbitrary complex database transactions (for example
SQL). Classic languages do not deal with real-time aspects and languages that
do take real-time into account are just beginning to emerge.

The translation from algebraic {or relational) operators on an abstract rep-
resentation of the database to actual distributed transactions is the domain of
transaction managers. Different translations of an algebraic expression can differ
exponentially in execution time and message costs of the resulting transactions
{(in a distributed environment). Finding the optimal transaction corresponding
to an algebraic expression is NP-hard. Several heuristic Transaction Managers
have been developed that offer good approximations.
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10.2 Transaction scheduling & correctness

To increase the efficiency of transactions it is beneficiary to execute transactions
in parallel. However, the database consistency is defined only between transac-
tions. During a transaction, a temporary database inconsistency is allowed to
enable efficient execution. If transactions are allowed to execute concurrently,
transactions might read data that are temporally inconsistent and act as if the
data are consistent. Permanent inconsistencies can occur. To determine whether
two transactions can execute concurrently the database system provides a trans-
action scheduler.

The transaction scheduler tries to maximize the amount of concurrency (exe-
cuting transactions in parallel) while it preserves the database consistency. Again,
finding the optimal schedule is NP-complete. FExisting transaction schedulers
preserve consistency at the cost of reduced concurrency. As these schedulers are
simple approximations of the optimal schedule, they can be improved.

10.2.1 Transaction classes

It has been observed that for several classes of transactions the scheduling prob-
lem is not NP-complete at all. A taxonomy of transaction classes that have nice
properties that allow the scheduler to generate optimal schedules efficiently can
be very useful but does not (completely) exist. A well-known class consists of
read-only transactions. All read-only transactions can execute concurrently.

10.2.2 Periodic transactions

A lot of scheduling research has gone into the the scheduling of transactions with
hard-realtime constraints. These transactions are not allowed to fail, they have to
run to completion within their execution interval or otherwise the entire schedule
is incorrect. A lot of these schedules were constructed at pre-runtime. Therefore
the complete set of transactions that was to be scheduled was known in advance.
Often the scheduled transactions are periodic, i.e. a transaction is at regular
intervals or sporadic, i.e. a transaction is run at regular intervals, but may skip
some of these runs.

The periodic nature of transactions can probably be exploited as well in soft
real-time scheduling systems. In soft real-time, the number of successful trans-
actions is optimized. It is permitted that some transactions fail to meet their
deadlines, as long as it is a small percentage of the total number of transac-
tions. An optimal soft-realtime schedule can always be found, opposed to a hard
real-time schedule that may not exist. An optimal real-time schedule of periodic
transactions should probably guard against life-lock.
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10.2.3 Allowing inconsistencies

Other research tries to increase the amount of concurrency allowed at the cost of
introducing inconsistency in the database. Such a scheduler can be useful if the
amount of inconsistency introduced is somehow bounded. Especially in real-time
databases it cannot be avoided that inconsistency in data gathered from the real
world occurs. Therefore this seems a natural way to increase concurrency.

10.3 Real-time transaction scheduling

In a real-time database, transactions are only allowed to execute within certain
time intervals. A scheduler that not only preserves data comsistency but also
ensures that all transactions are executed in their interval has to be provided.
The problem of generating a schedule that executes all transactions within their
intervals in an environment with limited resources is NP-complete.

Ordinary schedulers can be slightly modified to incorporate deadlines. Un-
fortunately most schedulers behave badly under high system loads. An ordinary
scheduler will try to execute all transactions. If the system load is high, this will
mean that all transactions run to completion, but also that almost all transac-
tions will have missed their deadlines. A real-time scheduler must decide to abort
transactions that miss their deadlines in order to complete a (constant) number
of transactions in time.

A lot of research has been directed at hard real-time scheduling. In hard real-
time, not even a single transaction is allowed to fail. This is a very restrictive
constraint, that often cannot be realised. Also a common assumption is that
transactions can be pre-empted, that is put on hold and resumed later. This is
quite contrary to the correctness constraints of databases, where the database
consistency is temporarily disturbed during a transaction. It therefore seems
more logical to use the existing correctness preserving algorithms as a starting
point instead of using the real-time scheduling algorithms as a starting point for
real-time database schedulers.

10.3.1 How many resources are required?

Surprisingly little analytical studies have been published about transaction ex-
ecution times, and I know no analytical results in real-time scheduling. The
performance of a soft-realtime transaction scheduling mechanism can be defined
by the probability that a transaction executes within its time interval. Several
simulation studies have been made to determine these probabilities, but no an-
alytical analysis of transaction schedulers are available. An analytical analysis
would present us with a set of hardware requirements, as well as clear assumptions
on the behaviour of the users of the real-time database.
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Associated with this probability it is interesting to specify the relation between
the performance of the real-time database and the hardware that supports the
database. If for a given real-time scheduler this relation can be specified an
estimate of required resources can be given analytically for a given problem.

10.3.2 Disk-based systems

As mentioned in the previous chapter, a lot of timing problems arise when the
underlying operating system optimizes disk access by buffering, or when virtual
memory is implemented. Periodic cache-flushes could be scheduled when no
transactions are in progress. This would prevent unreliable reaction times of the
operating system, at the cost of an extra transaction (the flushing of the cache)
that has to be scheduled.

10.3.3 Combining correctness and timeliness

Scheduling transactions in such a way that consistency of the database is pre-
served while offering optimal concurrency and scheduling transactions within
their execution intervals are related. As these problems are tough to solve on
their own, they are often treated separately. In real-time databases, a scheduler
has to be provided that takes both requirements, correctness and timeliness into
account. The current approach is to use existing, correctness preserving sched-
ulers and prove that under a restricted workload sufficient transactions meet their
deadlines.

10.4 Distributed transactions

The distribution of a database can increase the availability, reliability and ca-
pacity of the database. This does come at a cost. First of all, communication
between the different sites of the database becomes an important factor of time-
delay. Secondly, scheduling of distributed transactions becomes more involved
because of distributed deadlocks, global correctness and routing problems.

10.4.1 Communication delay

As mentioned, communication delay is an important factor in distributed databases.
Therefore algorithms that were fairly trivial in a centralised database have to be
optimized in the distributed environment. A way to reduce message costs is to
replicate data over the different sites, but this introduces new consistency prob-
lems. Several solutions have been proposed and exist, but the field is still under
development.
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10.4.2 Query optimization

The transaction manager that optimizes transactions to reduce the number of
execution steps of a transaction has to be adapted. The size and the number of
messages between sites is more important. A simple optimization is to compute
selections on tables at the local sites.

10.4.3 Fragmentation of the database

Important design choices are made when the database is distributed over the
available sites. To what extent should the information in the database be repli-
cated? What is a good fragmentation of the information in the database? The
answer to these choices depends on the topology and capacity of the sites that
are cooperating to form the distributed database.

The problem to fragment a database in such a way that with a uniform access
distribution the workload is optimally divided over the sites is NP-complete.
It 1s therefore interesting to investigate what extra knowledge about the access
behaviour of the database is needed to come up with good distributions of the
database. An interesting starting points is for example knowledge about the
access points of data items. If a data item is only accessed by users from one or
two sites, it is natural to store the requested item on at least one of these sites.

The relation between fragmentation and replication can be studied. Of course,
access times are optimal in the fully replicated case. However, if a lot of updates
take place in the database, the replication of data introduces extra overhead
to maintain correctness instead of speeding up transactions. To what extent a
database should be replicated to provide the optimal access behaviour is an open
question.

10.4.4 Synchronising sites

The scheduler can receive new transactions at more than one site. Existing
(centralised) schedulers that make use of unique time-stamps have to ensure that
time-stamps issued at different sites are unique and somehow related (thus time-
stamps issued at roughly the same time should have roughly the same value).
In general, important execution steps of transactions should be synchronised
over all sites. This means that algorithms have to make sure that all sites have
finished such an important step before they proceed to the next step of the
transaction. Examples are synchronisation between the locking and unlocking
phase in two phase locking, and the commitment of transactions. Unpredictable
results will follow if a transaction commits on one site and aborts at another site.
Adapted algorithms for distributed databases have been provided for most
existing (centralised) database mechanisms. It is hard to provide algorithms that -
are efficient, reliable and offer graceful degradation of the database in case of
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failures, but there is already a large library of generic algorithms that provide
good communication protocols between sites in a distributed network.
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Abstract

In this talk we focus on uncertainty in real-time databases. In most
applications of real-time databases, no exact information is available about
the arrival times, the sizes and the deadlines of future transactions. Due
to this uncertainty it is not sufficient to measure the performance of a real-
time database in terms of the averege response time of a transaction; one
has to obtain an approximation for its distribution. The ultimate result
should be to find an approximation for the probability that a transaction
meets its deadline.

Performance Requirements

As has been explained in the talk of Maarten P. Bodlaender, real-time databases
have to satisfy both database and real-time requirements.
Database requirement:

e execution of transactions must preserve consistency.

Real-time requirements:
e some transactions can only be executed in a certain time interval
¢ transactions must meet their deadlines.

The purpose of the performance analysis for real-time databases (RTDB’s) is
to look at schedulers that preserve the consistency of the database and to in-
vestigate how well the real-time requirements are satisfied.

Performance questions that could be of interest are: (1) which percentage
of the transactions meets its deadline, (2) what is the transaction throughput
of the RTDB, (3) how teliable is the RTDB (how small is the probability of
deadlock), and so on. Motives for an interest in question (1} are

- to offer a high customer service level
(Rabobank, PTT Telecom, Ericsson)— 80% ?
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- it is very important for the control of (physical) processes, where deadlines
may be quite firm
(ECT, research project at INRIA) — 99% or even 99.99% 7

To be able to give an answer to performance questions it is necessary to
investigate the response time of a (type of ) transaction in the system. Having
a good approximation for the average response time and the standard deviation
of the response time could already enable us to judge if the RTDB can meet
a performance level of about 90%. However when one wants to distinguish
a level of 99% from 99.9%, a very accurate approximation of the probability
distribution of the response time is needed. It is not very likely that we will be
able to find such an accurate approximation for the response time distribution,
but the aim is to at least derive approximations that are good enough for RTDB
design where performance levels of about 90% or 95% are required.

How to Model?

Uncertain factors that influence the response time distribution are:

1. The arrival instants of transactions.
In a real-time environment it is usually not known beforehand when ar-
rivals of transactions will take place. There may be some type of trans-
action that comes within regular (known) intervals; other transactions
arrive irregularly, which has to be modelled as a stochastic process.

2. Sizes of transactions (# data items needed + amount of work).
These may also vary per transaction (type). The more data items are
needed, the more data contention can occur so the longer the response
time of the transaction might be. The amount of work a transaction
requires can vary since this involves e.g. communication times and com-
puting times. A probability distribution for the size and the amount of
work of the transactions is needed.

3. Deadlines and priorities of transactions.
Jobs with high priority will increase the response time of lower priority
jobs.

4. Arrival locations of transactions (in distributed databases).
Which percentage of the transactions arrives at which location?

5. Data-item popularity.
If there are some popular data-items that are used by a lot of transactions
and (for example) 2-phase locking is used to protect the data, the response
times of these transactions can grow quite large since these transactions
must wait for the popular data-items to become available. If there are no
popular data-items (uniform data-access) the influence of data contention
on the response times might be very small.

6. Transactions can trigger new transactions.
This would mean that the times between arrivals are not independent.
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RTDB

Figure 1: THE RTDB As A BLACK BOX

How the above factors should be modelled depends on the specific appli-
cation. To be able to formulate a good model for deriving an approximation
for the distribution of the response time, it is vital to know which of the above
elements play an important role in the various applications of the user group,
and which elements can be ignored. For instance: is the data-access uniform,
are the transactions of about the same size and type, what is the conflict prob-
ability between two transactions, and do transactions arrive regularly?
Hopefully this workshop and further discussions with the members of the user
committee can contribute to getting a clear view of what the important elements
are for each of the applications of the user committee.

Performance Analysis by Use of Queueing Models

A way of deriving approximations for the response time of transactions is by
stochastic modelling. If we see the response time as a stochastic variable that
is influenced by the elements mentioned in the previous paragraph, we can use
queueing theory for approximating the response time distribution.

Queueing models have their origin in the study of design problems of
automatic telephone exchanges and were first analysed by the queueing pioneer
A K. Erlang in the early 1900s. In the last 30 years, quite some progress has
been made in the theory of queueing models. They have been applied e.g. to the
design of computer systems, telecommunication networks and many problems
in manufacturing. Our feeling is that they can be very useful for evaluating the
performance of real-time databases.

The most abstract way of seeing a real-time database system is as in Figure
1. Transactions are entering the system, and after having spent a time S in the
system they leave. What happens inside the ‘black box’ is not clear and will
depend on the application. The response time 5 may consist of both waiting
time (on locks or hardware) and service time (for the actual execution). For
a good approximation of the response time a more detailed view of the database
system (the black box) is needed. How many processors are available at which
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sites? Where are the data-items located? Which locking protocol is used?
Modelling the database system as a queueing system requires information on
when and where in the system transactions have to wait, and which service
discipline is used.

Suppose we had only one type of transaction with fixed transaction size,
and we made the following assumptions:

¢ The transactions arrive independently of each other.

¢ The time between 2 arrivals is exponentially distributed. In other words,
the arrival process is a Poisson process.
This assumption is often used in queueing models. Reasons are:

1. it is an excellent approximation in the case of a large number of
potential customers where each customer has a very small probability
of arriving in a specific time interval (think of the 7 million people
that have a telephone: each of them has a very small probability of
making a phone call in a specific period of (say) 1 second);

2. it has computationally attractive properties that simplify an analysis,
e.g. the memoryless property.

Note that the assumption of a Poisson arrival process may not be reason-
able if there is a great regularity in the arrival of transactions.

¢ The service time of a transaction is exponentially distributed.
This assumption is usually not a good approximation but because of the
nice properties of the exponential distribution it is often taken to start
with.

On the last page of this text, three representations of the real-time database
system are given, based on the above assumptions.

I The top one is the most rigorous way of simplifying the database system
and is easiest to analyse. The database can handle only one transaction at a
time (the service discipline is FCFS), and all other transactions wait in a queue.
For this model an exact expression exists for the distribution of the response
time. When deadlines are taken into account by giving the transaction with
the earliest deadline the highest priority, it is still possible to find (an approxi-
mation for) the distribution of the response time.

II The second figure releases the assumption of only one server. It assumes
several parallel servers and thus can handle more transactions at a time. When
more than k transactions are present, only k& can be served and the remainder
has to wait in a queue. For this queueing model an exact expression for the
distribution of the response time is known. For generally distributed service
times approximations for the response time distribution are available.
However when the locking protocol is taken into account, approximating the
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response time becomes more tedious. Because then a transaction that is exe-
cuting at server 1 could have to wait for some data-itern currently in use by the
transaction executing at server k.

II1 The last figure shows a model for optimistic concurrency control that
we have been investigating in more detail. It is assumed that each transaction
demands some CPU-time (where the CPU is a single server that can handle
only one transaction at a time, the rest has to wait in a queue), after which
some computations have to be done at another site or processor (represented as
an infinite server, so without capacity restrictions). After each visit to the CPU
the transaction leaves the system with some probability or goes through another
cycle with 1 minus that probability. A transaction that tries to leave enters a
validation phase, in which it checks if a conflicting transaction committed during
its execution. If no conflicting transaction committed during the execution of
the validating transaction, the transaction can commit and leave the database
system. Otherwise, the transaction goes back to the CPU and has to be rerun.

An approximate analysis of the system has resulted in the conclusion that
the system is not ergodic, i.e. if the number of transactions allowed in the
system is not restricted to some value N, there may be an infinite number of
transactions cycling in the modelled system. Consequently, the performance of
the system (the throughput of the system) decreases to zero as the number ¥
of transactions allowed tends to infinity. For any choice of input values for the
conflict probability and the speeds of the servers, it can be shown that this is
the case.

The behaviour of the system is intuitively understandable, for the probabil-
ity that a transaction has to be rerun depends on the number of transactions
that has committed during its execution. Now, as the number of transactions
in the system is larger, it is more likely that a conflicting transaction has com-
mitted during the execution of the transaction that tries to validate, so the
higher is the probability that the validating transaction has to be rerun. This
makes the system even fuller and eventually more transactions are entering the
system per unit time than are leaving, resulting in a throughput that diminishes
to zero.

A typical illustration of the degrading performance is given in the plot below.
Here we also see that there is a value of N for which the throughput of the
system is maximal.
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