

Proceedings of the real-time database workshop, Eindhoven,
23 February 1995
Citation for published version (APA):
Stok, van der, P. D. V., & Wal, van der, J. (Eds.) (1995). Proceedings of the real-time database workshop,
Eindhoven, 23 February 1995. (Computing science reports; Vol. 9527). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c49cf751-4181-4c9a-bd8e-70a705ee5e11

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology
Department of Mathematics and Computing Science

Proceedings of the Real-Time Database Workshop 1

by

editors: P.D.V. van der Stok and 1. van der Wal

23 February 1995

1 supported by STW in connection with project EIF33.3129

editors: prof. dr. I.C.M. Baeten
prof. dr. M. Rem

Computing Science Report 95/27
Eindhoven, August 1995

Proceedings of the
Real-Time Database Workshop 1

editors: P.D.V. van der Stok J. van der Wal

23 february 1995

isupported by STW in connection with project EIF33.3129

Summary

Introduction
P.D.V. van der Stok & J. van der Wal

Database requirements in telecommunication systems
L.J.M. Nieuwenhuis

Real- Time databases, present state and future expectations
J. van der Meer

Database requirements for on-line financial tmnsactions
A.A. Vreven

Maximum response time in a real-time distributed tmnsactional system

1

5

12

15

P. Minet 22

Database requirements for on-line analysis of High Energy Physics experi
ments
I. Willers

Real-time distributed databases
M. Bodlaender

Pe,formance analysis for real-time databases
S.A.E. Sassen

3

47

103

Introduction

The purpose of this workshop was to introduce the members (3 companies
and 2 research institutes) of the user committee and the team members (3
staff and 2 PhD students) of the STW-project: Construction and perfor
mance of real-time transactions to each other. The user group represents
a large group of (potential) users of real-time databases. During the work
shop insight was gained in the requirements of the companies they represent.
Four talks were presented by different companies to state their requirements
on on-line databases. A talk was given by INRIA about maximum response
times of transactional systems. A representative of STW was present to
explain the tasks and procedures relevant for the members of the User Com
mittee as laid down by the STW organization.

The project is motivated by two observations: (1) more and more re
sponse times are specified for database accesses and (2) recently, real-time
applications demand so much structured data that database techniques are
needed to manage these data.

The specification of deadlines is necessary for real-time systems because
often the action on the process under control must be carried out before the
process under control enters a certain state. A well known example is the
activation of a manufacturing machine at the moment the manufacturing
object passes on the conveyor belt.

Database applications start to necessitate deadlines to satisfy customer
demands. The deadlines give guarantees on the performance of the on-line
database accesses. When the deadlines are not met, customer satisfaction
may drop such that customers turn to other installations where these dead
lines are met. Considerable financial loss may be suffered when the deadlines
are not met. An example is: large quantities of money are transferred with
a slight delay.

For the purpose of this project the term real-time transactions is used
to indicate those transactions which need to meet their deadlines. A real
time database is a database where real-time transactions are executed. The
performance of the database is no longer determined by the mean duration of
the individual transactions but by the number of transactions which meet
their deadline. Figure 1 shows that these two measures lead to different
results. Two density functions are represented. The first one has the lower
mean but a higher variance and a larger fraction of transactions that do
not meet their deadline than the second one. The mean of the elongated
distribution is smaller but the larger number of transactions which meet

1

Number
deadline

Execution time

Figure 1: distribution of hypothetical transactions

their deadline is created by the narrow distribution. This figure indicates
that different techniques from the current ones are probably needed to satisfy
the real-time requirements of the database. During this project we will try
to calculate the distribution of the transaction execution times and develop
appropriate algorithms to increase the real-time performance.

In these proceedings, papers supporting the presented talks and copies
of the presented overhead sheets are bundled. Their contents represent the
interests of the users in the project and the current state of analysis done
by project members.

A first talk was given by L.J.M Nieuwenhuis of KPN Research, titled:
Database Requirements in Telecommunications Systems.

In this tlak the importance of databases for current and future telecom
munications systems was discussed. Large amounts of information for net
work management, service provisioning and billing and pricing are needed.
These applications pnt strong performance and reliability requirements on
the involved database systems. Proposed implementation strategies are
based on partitioning and replication. Partitioning is needed to support
simultaneous, real-time transactions and replication is needed to provide
reliability through fault tolerance. An overview of strategies with various
levels of consistency was presented.

2

The second talk was presented by J. van der Meer of Ericsson Telecom,
titled: Real- Time databases: present state and future expectations.

This talk provided a follow-up to the former talk. Given the low per
formance of present day databases and given the specific characteristics of
the transactions requested for Intelligent Networks, Ericsson has started to
build a special purpose database based on the language Erlang. The pro
tocols, the transaction characteristics and the performance requirements of
the database were presented.

The third talk was presented by A.A. Vreven of Rabofacet, titled:
Database requirements for on-line financial transactions.

A short overview of the needs of the Rabobank are discussed. The bank
is not interested in highly complex technical solutions but wants to handle
on-line transactions more cheaply than its competitors. For that purpose
the functional units of the database applications must be distributed over
a network of teller machines and other mainframes or workstations. The
Rabobank wants to know the performance consequences of these distribu
tions.

The fourth talk was presented by P. Minet of INRIAjRocquencourt,
titled: Maximum response time in a real-time distributed transactional sys
tem.

Distributed transactional real-time systems pose the triple problem of
serialisability, reliabiliy and timeliness. In the talk conditions necessary
for the realization of these systems are determined. In this way the system
constructor can verify beforehand whether the system will meet its timeliness
requirements and knows the length of the transaction wait-queues.

The fifth talk was given by I. Willers of CERN, titled: Database require
ment for on-line analysis of High Energy Physics experiments.

A short introduction to CERN was given focussing quickly onto the on
line analysis and a look at LHC where we see a growing need for computing
power and large quantities of data. The first steps taken in a project which
has begun with a case study of on-line event reconstruction using a parallel
in-memory database were discussed in detail. A data driven approach results
in the writing of scalable parallel programs and involves minimal changes to
legacy code.

The sixth talk was given by Maarten Bodlaender of TUE, titled: Real
time distributed databases.

The talk consisted of two different parts. First the difference between
normal databases and real-time databases was addressed. The field of real
time databases resulted from the joining of databases with real-time schedul-

3

ing systems. These different fields have different aspects that cannot be
trivially combined. Next, different ways were discussed on how these fields
can be integrated to create real-time databases. It is hard to create a gen
eral purpose real-time database that satisfies all requirements that different
users have. A quick look was taken on the different features that real-time
databases could offer.

The seventh and last talk was presented by Simone Sassen from TUE,
titled: Performance Analysis fo,' Real-Time Databases.

In this talk, the uncertainty in real-time databases was discussed. In
most applications of real-time databases, no exact information is available
about the arrival times, the sizes and the deadlines of future transactions.
Due to this uncertainty it is not sufficient to measure the performance of a
real-time database in terms of the average response time of a transaction;
one has to obtain an approximation for its distribution. The ultimate result
should be to find an approximation for the probability that a transaction
meets its deadline.

4

Overview of Databases Requirements for Intelligent Networks *

Willem Jonker and Lambert J.M. Nieuwenhuis
KPN, PTT Research, Grollingen, The Netherlands

e-mail: {w.jollkerll.j.I11.llieuwenhuis}@research.ptt.nl

Abstract
vile discuss requirements and techniques for the Scr

uice Data Point (SDP) in Intelligent Network (IN) ar
ch-i!.ectures in telecommunications systems. The SDP
must provide real-lime, simultaneous access La high
volume databases. vVe give a shori overview of SDP
requirements deri~;cd from currently developed and fu
ture IN tclecomnnmications services.

1 Introduction
The Intelligent. Network (IN) architecture [2J has

been developed to improve the slow and costly process
of introducing llew telecommunications services in to
clay:s (;eleCOI11IllUuications systems requiring software
updates in all switching systems of the public network.
The baSIC idea of t.he IN architecture is t.o shift the
service cont.rol out of the switches t.o a small number
of Service Control Points (Seps) somewhere located
ill the public network. In an IN architecture, switch
ing systems provide a set of basic switching functions.
New services can be introduced by adding a new ser
viec control program in t.he SCP rather than updating
the soft.ware of the switching systems across t.he entire
network.

An exmnple of an IN service is short number dialing
in a Virt,ual Privat.e Network (VPN). The IN service
request, of a subscriber is detected by the swit.ch, which
then routes t.he request, including the 'short. number',
to the SCPo For each subscriber, t.he SCP maintains a
tabel in which t.he 'short numbers' are mapped on the
'long llumbers'. The SCP sends the 'long numbers'
back to the switch, which proceeds with a normal call
set,up, using the received information.

Obviously: the SCP needs a repository function to
store the large amounts of data needed to provide var
iOlls telecommunications services to all subscribers of
t.he public net\'Ilork.

T!le storage function of the SCP is provided by the
ServIce Dat.a Point. (SDP), t.he physical ent.ity sup
port.ing t.he SCPo If we assume that in future each
subscriber will lise at least a. few IN services, an SDP
has to store enormous amounts of data. In pract,ice,
an SCP processes a large number of service requests in
parallel. Obviously, the performance of the SCP and
SDP is directly related to the Quality of Service ex
perienced by the service end-users. Consequently, the
SDP call be characterised as a high capacitv database
which has t.o support simultaneous l real-tinle transac
t.ions.

·Short. Note Paper for .loint. 'Wurkshop on Parallel .l,lld Dis
tribu\.cd neal-Time S.\'St.elll". April :l:l - 2,1. lDD5, Sallt.a Bar
bara, Ci\liful'nia

5

The SDP (and SCP) have to meet high reliability
and availability requirements, as SDP faults may cause
network wide service failure affecting all subscribers.
In order to meet these requirements, the SDP imple
mentations will be based on replication strategies to
support fault tolerance.

Hence, the requirements for the SDPs in IN are
challenging: highly reliable database systems must
provide simultaneous real-time access to a large num
bers of users. These challenges make databases for
telecommunications systems an interesting subject for
academic and industrial research[8, 5, 6, 91.

The objective- of this paper is to give an- overview
of the required database functionality in IN networks
(Section 2). We then extend the requirements analy
sis for future telecommunications services, e,g., mobile
communication (Section 3). The requirements analy
sis justify fut.ure research on distribution, partitioning
and replication techniques for databases in various ap
plications areas of telecommunications (Section 4).

2 IN database requirements
Most of the requirements presented here, are from

an EURESCOM foresight study carried out in 1992[lJ.
Some observations are the results of an American
study by Nicholas Roussopoulos[7], presented at a
workshop in Germany in April 1994[5J.

The requirements reported here are derived from
a number of IN services under development (Freep
hone, Split Charge, and Virtual Private Network), and
future services (mobile services, UPT, directory ser
vices) as well as a number of specific network manage
ment services (accounting and billing):

Storage requirements The data involved is rather
simple and tabular representation suffices. The
amount of data to be stored is expressed in stor
age capacity per million lines (since one SCP
database per million lines seems achievable) and
estimated to range from I to 100 Mbytes for cur
rent services.

Access requirements For current services, simple
but fast retrieval is the main mode of operation.
The amount of data involved is relatively small,
for example for credit card calling 25 to 50 bytes
per access 1 while for freephone numbers a service
profile of about 2 Kbytes is retrieved.

Transactions requirements Most IN services will
use small 1 real-time, read-only transactions. As
far as consistency is concerned, requirements
cover the whole spectrum from degree 0 (e,g., for

Real-Time Database Workshop

Database Requirements in
Telecommunications Systems

Bart Nieuwenhuis

PIT Research

Groningen. The Netherlands

POTS Networks
eerste orda

tweede orde

lokale
cenlrales

~:---

Intelligent Networks

lange-afstandsnet

• shift service control out of the switches

• Service Control Points (SCPs)

• basic switching functions in switches

• new services require SCP update only

~fi
-')tA~

L,"_"~ __ ~mw~·-------------------
TtwMl""ilBnds

L.J.M. Nieuwenhuis
PIT Research

Eindhoven, 23 February 1995

Overview

• Intelligent Networks (IN)

• IN database requirements

• Database technologies

• INITINA prototypes

• Conclusion

• Future research

New Telecom Services

• Modifications in all switches " ,
• different suppliers

• software updates

• slow and costly

Intelligent Networks

Service ControJ Point

research
7

Real-Time Database Workshop

Short Number Dialing Service

• switch detects SND request /Ix

• send SND(x) to SCP

• look for 'long number': y=f(x)

• send y to switch
• proceed call setup w~h IIy

Service Data Point

• mu~iple IN services

• millions of subscribers

• Quality of Service?
• concurrency

• real-time
• reliability

IN Database Requirements (2)
• transactions

• many IN services; read only
• other applications of SOP:

-noninterruptable, prioritised, no~wait

• performance (1 SCP per million lines)

• current services: 20 operations per second
• future services: 2000 -1()(X)() writes per second

EURESCOM 523

L.J.M. Nieuwenhuis
PIT Research

Eindhoven, 23 February 1995

Service Data Point

setvice control function database function

IN Database Requirements (1)
• storage (1 SCP per million lines)

• current services: 1 - 100 Mbytes

• future services: 1 Gbyte - 1 Tbyte

• access
• credit card calling: 25 - 50 bytes

• freephone numbers: 2 Kbytes

source: EURESCOM 523 project

Quality of Service
performance

L-__________ ~ reliability

8 research
• • • • •

Real-Time Database Workshop

Technologies

• performance
• partioning to provide IocaII access

• reliability
• replication to provide fault tolerance

IN / TINA prototypes

• Relay Race
• INDIA

Relay Race
C

SC.D ""

A_S8 "" D <E ! SE,F

a F

L.J.M. Nieuwenhuis
PIT Research

9

Eindhoven, 23 February 1995

Technologies
partioning

consistency?

Relay Race

• primary-seconday copy model

• asynchronous

• 'weak consistency'

• stages: reposttory of update information

• read-only secondary copies

source: Cannataro and others. TINA 1994

Reliable Relay Race

• Lack of fault tolerance
• stage node failures
• link failures

• Shadow Node strategy
• redundant stage nodes are added

• Foster Node strategy
• a stage services clients of other stage in

case of failures

research
a a a • •

Real-Time Database Workshop

Reliable Relay Race

A __ SB~~·:::·: ;
l SE.'

B F

Foster Node Strategy

INDIA (1)

INDIA (3)
• global distributed concurrency control

• for primary copies and multiple partitions

• rarely needed for current IN services

• local concurrency control
• updates of secondary copies

• writes on one partition

L.J.M. Nieuwenhuis
PIT Research

10

Eindhoven, 23 February 1995

Atomic Delayed Replication

• IN prototype
• commercially available RDBMS

• localize concurrency conflicts

• asynchronous update propagation

• decoupled reproduction transactions

Source: INDIA, GalJersdOrter, Jarke, Klabunde,
Philips Research Labs, Aken & RWTH Aachen

INDIA (2)

• primary copies
• externally consistent

• up-to-date

• secondary copies
• intemally consistent

• possibly not up-to-date

Conclusion consistency pre.ent:
./ distrbutsd

J----,.~ datllbass,

performance

distribution
Ideal:
Distrbutsd
Rsaf·TitN
Dsrsbsstl

Kerboul, CNET, TINA 1993

research
• • • • •

Real-Time Database Workshop

Future research

• PTT Research I University of Groningen
• IN service models
• distributed database architectures

- replication strategies

• perlormabilily modeling

L.J.M. Nieuwenhuis
PIT Research

Eindhoven, 23 February 1995

11 research
<II •

ERICSSON !!E REPORT 1(3)
voorbereld • prepared datum· dlJte I'ey Ookumenmr .• Document no.

ETM/RR Jan van der Meer 1995-08-03 A ETMIRR-95:0021
doc. wrantwJgoedga«eurcl- Doc rB$(JOfIs/ApproWld 1-'··- dossier- fil6

ETM/RR

Real Time Databases

Abstract

A short description is provided of our, Ericssons Intelligent Network Application
laboratory, view on the current possibilities of database technology. Especially
aimed at the use for telecommunication applications.

The aim was not to be extensive, we consider ourselves users of databases and
this document was written from that perspective.
Both inside and outside Ericsson other persons can be found who have much
more detailed knowledge of the database-inside technology.

Jan van der Meer
Manager Ericsson Intelligent Networks Application laboratory
etmjvdm@etm.ericsson.se

12

ERICSSON iE REPORT 2(3)
voorbereld· ~rrKi datum· dIIr. I'"" Dokumentnr .• Document no.

1995-08-03 A ETM/RR-95:0021
doc. verantw.lgoedgekeurd· Doc TBSpOfIalApproWld 1-'··- dossier- file

1

2

GENERAL

In Applications for Telecommunications in general two types of databases can be
found:

1

2

Handling real-time control information. In this case the contents of
the database is used to influence the setup of individual calls.
Examples are: Location database for mobile phones, service
profile information for freephone or premium rate subscribers.

Handling management information. This can range from data
related to the network setup, node configuration, subscriber base
etc. to actual billing information.

Regarding retrieval speed and transaction capacity, the first type has received
most attention sofar. In the near future we expect that also the databases
providing data for management purposes, will be required to handle increased
retrieval speed and transaction capacity. The possibility to access the current
billing status of an individual user, can be an interesting service for users and oper
ators.

Below the current status of technology, seen from an Ericsson perspective, is
briefly described. Followed by some more information on the two general data
base types, and then the requirements to be put on database development.

Current technology status

Ericsson uses commercially available database systems in our telecom manage
ment systems. It was felt that by this approach the latest state of technology could
be accessed. Although the systems perform as can be expected, we have prob
lems with the provided capacity both in access speed and size.

For our Intelligent Networks and Mobile products we have developed our own
databases. For both products access speed and reliability were important require
ments. These databases were developed specifically for telecom applications,
and geared to provide maximum performance on the Ericsson proprietary
processing platform.

Our database implementations today handle 200 (for more complex queries) to
400 (for simple queries) transactions/sec. Access times are < 10 ms.
The processing platform is duplicated, clock synchronous system where both
sides execute the same code continuously. Thus switchover in case of problems
occurs without any impact on performance of the system, awareness of the appli
cation and loss of any telephone call.

13

ERICSSON :a: REPORT 3(3)
voorbereld • prepalfld datum· date I rev Ookumentnr .• Document no.

1995-08-03 A ETMIRR-95:0021
doc. verantw.lgoedgekeurd· Doc rsspons/ApproWKl 1..-'.· chockod doaaler· file

3

-

The data is backed up on disk, where the backup frequency can be specified.
In general the following approach is taken:

1

2

3

General backup, one or two times a day

Important data, dumped once every hour

Data changes are logged between the general backup dumps.

The dumps are stored in order where, when a reload is required, normally the most
recent is selected. The operator can influence this selection, e.g. when software
modifications have taken place.
The loading of the logged data-changes takes place under operator control, this
to prevent data that lead to problems from being loaded.

Ericsson is currently analysing how to handle the data for telecom applications.
Distributed databases are the most obvious answer. This technology is however
not yet mature enough.

Requirements

For telecom applications we see the following requirements:

1

2

3

4

5

Access times should be <1 00 ms for 95% of the queries, if the time
exceeds 200ms the transaction can be aborted.

If we assume that one record is required per user and/or terminal
we come to database sizes of >2.000.000 records.

The records should appear to be of variable size. It must be
possible to (dis)connect users to services and handle the
appropriate user-specific service data.
Users will have a large amount of control over their service-data.

Security, apart from the obvious (one user cannot access data of
another user) different service providers are not allowed to access
data of users or services outside their domain.
One specific user could subscribe to services of different providers.
The network operator will not be allowed to access the service
provider specific user or service data.

Reliability, never lose anything.

We think that only a distributed database system can handle the requirement on
size. There are also other reason to go for distribution e.g. reliability, access times,
geographical structure of the network.

The above list of requirements should not be considered as being complete, it is
mainly included here to get some 'feeling' of what is needed.

14

Database requirements for on-line

financial transactions

A.A. Vreven

Rabofacet, Zeist

15

Time to market

COMPLEX MASS CUSTOM
CUSTOMIZING PRODUCT co

~

PRODUCT

~
.. ~ ~ .. ::....

SIMPLE

1I0CKS
j,. g

~ MASS CONTINIOUS PRODUCTION
IMPROVEMENT OF PRoe s
AND PRODUCT

......
bus/fIeQ, redesign

SIMPLE COMPLEX

PROCES

I-

16

•

Infrastructure

NEEDED
DEGREE OF
ST ANDARDISAn

ORGANISA nON

DIVISIONS

DEPARTM

WORKGROUPS

PERSONAL

...

MANAGE ME
INFORMATI
SYSTEMS

INFORMATION
. (l"RAtoISACTJON}.

PROCESSING
SYSTEMS

.......... OF.FICE ~o ~#{T.R!<.L!s'E.D.
WORKGROUP
APPLICATIONS

.... PERSONAl. BUSINESSLRESUL
APPLICATIONS DRIVEN APPROACH

COMPLEXITY OF THE APPLICA nON

17

/
Flexibility

QUAlITY

Functionality
Design
Ease of use

Scalable

FLEXIBILITY

Portability
Interoperability
"open"

RE-USE End-user
development

Application packages
Rapid development techniques
incrementaV~volutionary develop

MINIMZlNG COSTS
AND
TIME TO MARKET

18

"

..

?>
?>
<:

~ I RTN95 topology

• three layer network

• meshed network on two
levels

• redundancy on aLL levels

~ I I • within 98% of (theoretiQli
optimal topology:

. 6 - 8 regional switches
1 ()() - 120 subregional

• coupling met DN-I

• two management centres

• tenfold capacity

". ".

rID

- ring 3: 64 Kb or 14400 bps

RTN Toegangslaag

~6° P

~=:;7
£:?>

•
V .. ()

•

• •

..

• • •
•

• '. •
•

•• •

• •

• Steunpuntbanl< (toegangslaag)

.. Lokatle Reglonaal Backbone

• lokatie Core Backbone

bron: RTN

20

tv
f-'

OFFICES
2000

, I I

Ass.
Banks

600

point-ol-pay
terrninal
40 000

ELECTFlONIC FUNDS TFlANSFEFI

Tandem

Tandern

2.5 llIillion
accounts

X·25 InN

2.5 million
accounts

Tandem

Other banks &
applications

Condition de faisabilite et temps de reponse maximum
pour un systeme Transactionnel Reparti Temps Reel

Laurent George, Pascale Minet
INRIA, BP 105, Rocquencourt, 78153 Le Chesnay Cedex

Laurent.George@inria.fr,Pascale.Minet@inria.fr

RTS'95, Paris, Janvier 1995.

22

Resume:

Les systemes transactionnels repartis temps reel avec mise a jour en ligne de
donnees reparties posent Ie triple probleme de serialisabilite/surete de fonctionnementl
ponctualite. Cet article utilise la tMorie des jeux pour determiner Ies conditions de
faisabilite pour de tels systemes. Ainsi Ie concepteur d'un systeme peut savoir a I'avance
si un jeu de transaction satisfera ses echeances, iI peut egalement obtenir un
dimensionnement correct des files d'attente du systeme.

Introduction

La conception d' applications reparties temps reel doit pouvoir etre prouvee
correcte avant meme d'avoir ete implementee [LELA94]. L'absence de conception
prouvee correcte est a I' origine d' echecs industriels retentissants. Exemple: I' abandon du
syteme de gestion de donnees de la station spatiale Freedom a coute 500 millions de
dollars.

Cet article montre comment determiner Ie temps de reponse maximum pour un
systeme transactionnel reparti temps reel. La connaissance de ce temps de reponse
maximum permet de dire si un jeu de transactions respectera ou non ses ecMances. Dans
la premiere partie, nous definissons Ie modele retenu et resumons brievement I' etat de
I' art. Dans la seconde partie, nous explicitons les hypotheses adoptees. La solution
algorithmique permettant de satisfaire simultanement les proprietes de serialisabilitel
surete de fonctionnementlponctualite est presentee. La derniere partie est consacree a
I'expression du pire cas, pour des hypotheses de charge donnees, permettant d'enoncer
les conditions de faisabilite pour un jeu de transactions donne. Les conditions de
faisabilite expriment Ie fait que les transactions doivent avoir termine leur execution
avant leur echeance.

23

1. Probh~matique
Les systemes transactionnels repartis temps reel avec mise a jour en ligne de donnees
reparties posent Ie triple probleme de serialisabilite/silrete de fonctionnementl
ponctualite.

En effet, les transactions interferent en lecture/ecriture a des instants non previsibles, la
propriete de serialisabilite (equivalence a une execution serielJe) [BHG87] est donc
suffisante pour maintenir la coherence des donnees. De plus, dans un systeme temps reel,
les transactions doivent se terminer avant leur echeance, la propriete de ponctuaJite
(respect des echeances) doit donc etre satisfaite. Comme dans tout systeme, il peut
survenir des defaillances (crash, omission ...), la propriete de surde de fonctionnement
(propriete d'un systeme permettant a ses utilisateurs de placer une confiance justifiee
dans Ie service qu'il delivre) [OFfA94] est donc souhaitee.

1.1. Modele retenu

Le modele transactionnel retenu se compose de clients et de serveurs interconnectes par
un reseau de communication (voir Figure 1).

serveur sl serveur Sj serveur sJ

Figure 1 : Le modele transactionnel retenu.

Un client, sur reception d'un stimulus exterieur ou a la demande d'un utilisateur, genere
des transactions. Un serveur gere les objets (ressources locales remanentes) dont il ala
charge.

Une transaction est un graphe d'actions sans cycle, chaque action est un programme
sequentiel executable sur un serveur, ce programme accede (Iecture/ecriture) aux objets
geres par ce serveur. A chaque transaction est associee une echeance relative. Dne
transaction d'echeance relative 0 generee a I'instant t doit etre terminee a l'instant t+o.

24

1.2. Objectif

L'objectif est d'une part de concevoir un algorithme composite permettant de satisfaire
les trois proprietes de serialisabilite I surete de fonctionnement I ponctualite. Cet
algorithme composite aura :

• une composante contrOle de concurrence pour obtenir la serialisabilite,
• une composante tolerance aux fautes pour obtenir la surete de fonctionnement,
• une compos ante ordonnancement pour obtenir la ponctuaJite.

Ces trois composantes doivent etre compatibles pour garantir la vivacite (absence de
blocage) et un comportement correct du systeme. A titre d'exemple, considerons deux
transactions T I et T2 d' echeance respective 0 I et 02 et de priorite respective pi et p2.
Supposons de plus 01>02, pl>p2 et Tl,T2 accedent it un meme objet en mode conflictuel
(exemple lecture/ecriture, ecriture/ecriture). Un systeme utilisant un contr61e de
concurrence favorisant dans un conflit la transaction avec la plus forte priorite (ici TJ) et
un ordonnancement EDF, Earliest Deadline First ecMance la plus courte en premier (ex:
EDF preemptif [LILA 73]) favorisant T2 se bloquera: T2 ayant obtenu Ie CPU ne peut
acceder it I'objet demande, accorde it Tl.

L'objectif est d'autre part de dimensionner correctement ces systemes et predire leur
comportement en situation critique de charge elevee. Plus precisement, il est necessaire :

• d'exprimer des preuves temporelles permettant de garantir les temps de service
des transactions.
• d'etablir des bornes superieures sur les temps de reponse.
• d'exprimer des conditions de faisabilite et de stabilite.

1.3. Etat de I'art

ScMmatiquement, dans les systemes repartis temps reel, nous pouvons distinguer deux
approches dans I'etat de J'art.

La premiere consiste it eviter les conflits entre transactions. Pour y parvenir, elle suppose
une connaissance it priori des instants d'arrivee des transactions. Ces transactions sont
generees periodiquement a des instants predetermines (voir par exemple [KOGR94],
[BEMA94]). Ceci correspond it des hypotheses tres fortes, hypotheses qui ne sauraient
etre acceptables dans tout systeme. Cette approche garantit la ponctuaJite et la surete de
fonctionnement it condition que les hypotheses enoncees soient satisfaites en phase
operationnelle.

La deuxieme approche consiste it resoudre les con flits pouvant survenir entre les
transactions mais n'offre aucune garantie sur les temps de reponse. Par contre, elle
garantit les proprietes de serialisabilite et de surete de fonctionnement. Dans [JENS94]
par exemple, I' ordonnancement utilise est de type "Best Effort", il tend it maxi miser Ie
gain exprime it l'aide de fonctions de vaJeurs temporelles definies par I'application.

25

L'objectif de cet article est de proposer une troisieme approche plus generale puisqu'elle
veut satisfaire simultanement les trois proprietes de serialisabilite/sGrete de
fonctionnementlponctualite.

Pour garantir la ponctualite iI faut recourir 11 un algorithme d'ordonnancement. En
environnement monoprocesseur non preemptif, I'algorithme NP-EDF (Non Preemptive
Earliest Deadline First: echeance la plus courte en premier), a ete prouve optimal pour
un scenario de taches aperiodiques [GMR94j. Ce qui n'est pas Ie cas de "Rate
Monotonic" generalise [SRS94j.

2. Solution proposee
2.1. Hypotheses

Les hypotheses enoncees ci dessous sont necessaires 11 I' expression du pire cas expose
dans Ie paragraphe 3.

• Au niveau des clients, seule la densite maximale de generation des
transactions est connue. Elle s'exprime par la contrainte suivante :
Les clients ne peuvent pas generer plus de N transactions sur une fenetre temporelle
fixe de longueur D. Ce qui peut encore s'enoncer : sur une meme fenetre temporelle
glissante de longueur D, nous ne devons pas avoir plus de 2N transactions generees.

soit to=instant de generation de la I ere fenetre

Tlil ITn T1Uf"
to -.lt~.J, to+D

Ifenetre I

to+oD'

I fenetre nl

~
fenetre glissante

Figure 2 : densite maximale de generation des transactions

• Les delais de transmission c1ients<->serveurs sont supposes bornes et les
bornes Min et Max sont connues.

• Au niveau d'une transaction sont connus I'echeance relative de la transaction et
son graphe. Dans un but de simplification, nous Iimitons notre etude au cas des
transactions dont Ie graphe comprend au plus une action par serveur. Dans Ie meme
but, les actions sont supposees independantes les unes des autres.

26

• Au niveau d'une action, la duree d'execution est supposee connue ou tout au
moins, nous connaissons une borne superieure de cette duree d' execution. Le
serveur sur lequel va s'executer l'action, est connu.

• Le nombre J de serveurs est connu.

2.2. Solution algorithmique
2.2.1. Preliminaire

• Maintenir la serialisabilite permet de garantir un ordonnancement coherent des
actions sur les serveurs. Or tous les serveurs n'ont pas la meme connaissance des
transactions en attente d'execution. A la difference de [SRS94], la vue globale des
transactions 11 ordonnancer n' est pas obtenue par recours 11 une entite centrale. Un
consensus permet de garantir que tous les serveurs operationnels partagent une
meme connaissance des transactions en attente d'execution.

• L'ordonnancement des transactions doit permettre de garantir leurs echeances.
Nous avons choisi une solution 11 base d'ordonnancement non preemptif NP-EDF.
Cet ordonnancement est applique sur la liste des transactions resultat du consensus.
Cela permet ainsi d'obtenir un ordonnancement distribue coherent base sur les
echeances des transactions.

• La tolerance aux fautes necessite generalement l'utiIisation d'un consensus. Le
protocole de consensus adopte depend du type de fautes 11 tolerer (ex. crash,
omission ...) [DLS88] [HAT095].

En conclusion, la solution retenue est 11 base de consensus.

2.2.2. Principe

Lorsqu'un client genere une transaction, il diffuse aux serveurs concernes :
• l'identificateur de la transaction,
• I' echeance de la transaction,
• la liste des serveurs impliques dans la transaction,
• la liste des actions qui devront etre executees par ces serveurs (une action par

serveur).

Les serveurs stockent les transactions reyues dans leur file Non-ordo des transactions
non ordonnancees (voir Figure 3).

Un consensus permet aux serveurs de partager la meme vue des transactions 11
ordonnancer. Chaque serveur extrait de sa file Non-ordo les transactions resultat du
consensus. II insere ensuite dans sa file Ordo les actions associees a ces transactions
ordonnees selon NP-EDF et execute ces actions.

27

client

serveur SI

2.2.3. Consensus

client

serveur Sj

Figure 3: Principe de fonctionnement

2.2.3.1. Principe du consensus

Non-Ordo

serveur sJ

Informellement, un consensus entre les serveurs permet aux serveurs de partager la
meme vue des transactions a ordonnancer. Le terme "consensus" est utilise ici dans une
acception plus large que celie utilisee dans [HAT095], oil les processeurs corrects
decident d' une valeur proposee par I' un d' entre eux.

Le consensus se deroule selon Ie principe suivant:
• chaque serveur propose les transactions qu'il a re~ues (i.e les transactions dans sa
file Non-Ordo);
• Ie resultat du consensus est forme par I' union des transactions proposees par les
serveurs.

II suffit qu'un serveur ait re~u une transaction pour qu'elle soit proposee dans Ie prochain
consensus.

2.2.3.2. Invocation du consensus

Le consensus est suppose de duree connue C. Le delai inter-consensus est au minimum
de 1-1. Ce parametre permet d'augmenter l'efficacite du consensus en augmentant Ie
nombre de transactions proposees en une invocation. Mais du point de vue temps reel, ce
parametre augmente Ie temps de sejour d'une transaction dans la file Non-Ordo. Un
compromis est donc necessaire.

L'invocation sporadique du consensus est etudiee dans [AGLL94] oil une transaction
attend au plus un delai 1-1 avant d'etre proposee dans un consensus. La condition de

28

stabilite est que toutes les transactions resultant du consensus aj sont terminees pour

I'invocation du consensus aj+l'

Nous proposons dans cet article une adaptation de cette approche permettant d'obtenir la
condition de stabilite la plus faible possible.

Le consensus ai est invoque (voir Figure 4) des lors que les trois conditions suivantes
sont reunies:

• les transactions de aj_l ont termine leur execution.
• il s'est ecoule un delai ~ /-l depuis I'invocation du consensus aj_I'
• il existe une transaction en attente d' ordonnancement.

c

aj_1
(

(

Cas a: dtHai inter-consensus ~/-l

... ~cti.\
C

~ aj
)

I-L)

Cas b: delai inter-consensus </-l
I7V">l execution des
"'-"<.l transactIons

Figure 4: Invocation du consensus.

3. Expression du pire cas

Le temps de reponse d'une transaction Tj, generee dans une fenetre f, est determine par :

• Vj(f), Ie temps d'attente de Tj avant d'etre ordonnan~ee (temps d'attente avant
consensus) : ce temps d'attente est maximise lorsque la transaction arrive juste apres
l'invocation du consensus, la transaction doit alors attendre Ie consensus suivant.
• Xj(f), Ie temps pour que Tj termine son execution, Tj ayant fait l'objet d'un
consensus : ce temps est maximum lorsque Ie consensus regroupe Ie plus grand
nombre possible de transactions.

C' est pourquoi nous evaluons Ie nombre maximum de transactions pouvant appartenir au
meme consensus. Nous pouvons alors en deduire les conditions de faisabilite pour un jeu
de transactions donne: les transactions doivent etre executees avant leur echeance.

29

3.1. Consensus maximum
Considerons am un consensus maximum en nombre de transactions. Par definition,

ce consensus fait interferer Ie plus grand nombre possible de transactions, compte-tenu
des hypotheses adoptees. Ce consensus est egalement maximum en nombre de fenetres :
une fenetre est dite appartenir a un consensus a s'il existe une transaction generee dans
cette fenetre appartenant a a.

Soit to l'instant de generation de la premiere fenetre temporelle (voir Figure 5).
Soit to+(k+ 1)D-8'm l'instant de generation de la premiere transaction de am' avec

k entier positif ou nul et 81 m reel positif ou nul.
Soit to+(k+wm-l)D+82m l'instant de generation de la derniere transaction de am'

avec W m=nombre de fenetres participant au consensus am et 82m reel positif ou nul.
Nous avons de plus, ()$8 Im+82m<D, sinon il serait possible de construire un comsensus
regroupant plus de W m fenetres.

to to+(k+ 1)D-8 I m

Fenetres temporelles

Min

C Mwp C

a p am
(

>11
)

Serveurs

Figure 5: Consensus maximum'

En pire cas, la premiere transaction met un delai Max et arrive a l'instant tap date
d'invocation du consensus ap' consensus precedant am' La derniere transaction met un
delai Min et arrive a I'instant tam date d'invocation du consensus am'

tap=to+(k+l)D-8 1m +Max et
tam=to+(k+wm-I)D+82m +Min.
Soit M=maxservcurs(duree d'execution d'une fenetre).

Remarque: dans Ie cas particulier ou une transaction comprend exactement une
action par serveur et ou toutes les actions ont la meme duree d'execution xo, M=NxO'

Nous distinguons deux cas, selon que la duree d'execution des transactions de a p
est superieure ou inferieure a /J--c. Avec wp=nombre de fenetres participant au consensus
ap'

• Premier cas: C+Mwp<:/J-. Nous avons alors, tam=tap+C+Mwp' ce qUI s'ecrit
encore:

to+(k+wm-I)D+82m +Min=to+(k+ l)D-81m +Max+C+Mwp'
d'ou (wm-2)D=t" +C+Mwp-8m avec t,,=Max-Min et 8m=8Im+82m'
Or wm est un entier. Cet entier est maximum pour:

30

• Deuxieme cas: C+Mwp</.1. Nous avons alors, tcrm=tcrp+/.1, ce qui s'ecrit encore:
to+(k+wm-I)D+82m +Min=to+(k+ l)D-81 m +Max+/.1.
d'oll (wm-2)D=11 +/.1-8m avec l1=Max-Min et 8m=8Im+82m.
Or wm est un entier. Cet en tier est maximum pour:

D'oll la formule generale donnant wm et 8m:

w = 2 + l l1+max(~ C+Mwp) J et m

8 -11 (C M) Dll1+maX(/.1,C+MWp)J m - + max /.1, + w -p D

to+(k + I)D-8m est l'instant de generation au plus tot d' une transaction participant
au consensus am' De meme to+(k+wm-l)D+8m est I'instant de generation au plus tard
d'une transaction participant au consensus am'

Dans la suite de cet article, nous allons caracteriser ce consensus maximum.

3.2. Calcul de wm.

Posons Wo = 2 + l 11; /.1 J et 80 = 11 + /.1- Dl 11; /.1 J. Nous avons d'apres les

formules du paragraphe 3.1, wm2:wO'
Nous distinguons deux cas selon la valeur de wO:

• Premier cas: C+Mwo:'>/.1

Lemme1: Si C+MwO:'>/.1 alors I wm = 2 + l ~ JI et 18m = 11 + /.1-Dl ~ JI

Considerons Ie consensus initial WI' WI est au plus egal a wo, il ne satisfait done
pas C+MwI>/.1. Le plus grand consensus w2 possible vaut Wo car C+MwI:'>/.1.

Par recurrence, supposons Wi :'> Wo et montrons wi+1 :'> Wo0 Comme Wi:'> wo, nous
avons C+Mwi:'>/.1, et done Ie plus grand consensus wi+ I possible vaut w00

Done wm=wO est solution.

31

• Deuxieme cas: C+MwO>1!

Lemme2: Si C+Mwo>1! alors m $; l6. ~ ~ ~D J et Iw m ~ Wo I

Nous eherehons Ie plus grand wp $;wm tel que C+Mwp~1! et

Wm = 2+l6.+C;MWp J
Or par definition wp$; wm. Nous en cteduisons une borne superieure sur wm:

W $;2+ m d'ou W $;2+ . It.+C+MW J t.+C+Mwm -9m
m D m D

soit wm(D-M) $;2D+t.+C-9m

t. + C + 2D - 9 t. + C + 2D
or M<D (voir lemme 3) d'ou W $; D m $; D M m -M _

d'ouw $;lt.+C+2DJ
In D-M

Une borne superieure de wm est done It. + C + 2DJ.
D-M

Montrons que dans ees conditions Wo $; It. + C + 2DJ
D-M

. t. + I! + 2D t. + C + 2D
Pour ee falfe, montrons que D < D _ M

Ce qui s'eerit aussi (car M<D):

I!D - Mt. - MI! - 2MD < CD soit encore: D (I! - C) < M (t. + I! + 2D) (I)

or, C + Mwo > I! et done en rempla~ant Wo par sa valeur nous avons:

l t. + ~+ 2D J > I! ~ C d'ou, t. + ~+ 2D > I! ~ C ee qui s'eerit eomrne (I) qui

devait etre demontre.

Lemme3: La condition de stabilite est M<D.

Demontrons ee lemme .
• Premier cas: C+Mwo$;l!.

1- ~
II-C (II-C)D c

Nous avons M $;'" <,.. < D < D
2+l6.;I!J D+t.+1! I+D:t.

32

• Deuxieme cas : C+Mwo>~.
La borne superieure trouvee, ayant D-M en denominateur, existe pour M<D. Ce

qui s'exprime encore par Ie fait que la duree maximale d'execution d'une fenetre doit
etre inferieure strictement a la duree d'une fenetre (condition necessaire de non
saturation des serveurs).

3.3. Calcul du temps de rI!ponse maximum

Nous disposons done de la valeur exacte de wm et de am lorsque C+Mwo~~.
Nous disposons d'une borne superieure de wm lorsque C+Mwo>~. Nous bornerons

am par D.

Ceci se resume comme suit, avec Wo = 2 + l t,.;~ J

2+lt,.;~J si C+Mwo~~ et

wm a =

D
l t,. + C + 2D J sinon

D-M

Pour caIcuIer Ie temps de reponse maximum d'une transaction, nous appliquons
alors la methode decrite dans [AGLL94] basee sur la tMorie des jeux. Chaque
transaction appartenant au consensus maximum est consideree isolement. L' adversaire
va utiIiser toutes Ies autres transactions du consensus maximum pour augmenter Ie temps
de reponse de cette transaction. Pour toute transaction Ti, I'adversaire jouant contre Ti
avec une transaction Th va chercher a minimiser I'echeance absoIue de Th. II s'en suit
que Th est generee au plus tot dans sa fenetre temporeIIe 7t, tandis que Ti est generee au
plus tard dans sa fenetre temporeIIe f. Pour exprimer Ie temps de reponse maximum de Ia
transaction Tj, nous utili sons Ia fonction Fj(h ; f, 7t). La fonction Fj(h ; f, 7t) retourne 1 si
Ia transaction T h generee dans Ia fenetre IT E [l..w m1 a une echeance absolue
superieure a I' echeance absolue de la transaction Tj generee dans la fenetre
fE [l..wml . wm et a ont ete definis ci-dessus.

Fj(h ; f, 7t) :
si f = Wm

si 7t= I

sinon

fin si

si oh > (wm - 2)D + a + OJ
retourne 1
fin si

si oh > (wm - 7t)D + a + 0i
retourne 1
fin si

~--

33

sinon
si 1t= I

sioh>(f-I)D+e+oj
retourne I

sinon

fin si
fin si
retourne 0

fin si

si 0h > (f -1t + I)D + OJ
retourne I
fin si

En utilisant cette derniere fonction, il est alors possible d'obtenir une borne
superieure rjj(/) de la position en file d'attente Ordo d'une action de la transaction Ti sur
Ie serveur Sj.

Soit S(Sj) Ie nombre de transactions, parmi les N transactions d' une fenetre, dont
une action concerne Ie serveur Sj.

Will

1t = I Th E 1t
TMTiEf

On peut alors exprimer X/f), avec Xo designant la duree d'execution maximum
d' une action.

Remarque : Cette formule peut facilement etre etendue au cas ou la duree
d'execution d'une action est variable.

Interessons-nous maintenant a Vj(f), temps d'attente de Tj avant d'etre prise dans
un consensus. Ce temps d'attente est maximum lorsque Tj est generee en tj(f)=debut de
la fenetre f.

tj(f) = to + (k+f - I)D, pour f'" I et tj(f) = to + (k+l)D - elm pour f= 1.
Le consensus crm se termine en
to + (k+ I)D-elm+Max+max(Jl,C+Mwm) +C.
D'ou pour f'" I, nous avons: Vj(f) = Max + max(Jl,C+Mwm)+ C - (f - 2) D - elm
ceci est maximum pour elm = O.
Pour f = I, no us avons : Vj(l) = Max + max(Jl,C+Mwm) + C. En consequence:

Vj(/) = Max + max(Il,C+Mwm)+ C - q>(f-2)D,
avec q> = 0 pour f = 1 et q> = I pour f'" I .

34

Finalement B(i) design ant la borne superieure du temps de reponse pour la
transaction Tj , nous avons :

3.4. ExempJes mumeriques

J=8=nombre de serveurs,
N = 80 transactions par fenetre,
D= 1 seconde= taille de la fenetre,
C= 0,1 seconde= duree du consensus,
Max= Iseconde =delai de transmission maximum client<->serveur,
Min= 0,1 seconde= delai de transmission minimum client<->serveur,
~= 1 seconde= delai minimum inter-consensus.
Chaque transaction comprend une action sur chaque serveur.
Chaque action a une duree d'execution maximale xo.

3.4.1. Premier exemple C+Mwo<~

xo=3ms= duree maximum d'execution d'une action sur un serveur.
Les transactions doivent respecter les echeances relatives suivantes :
de Tl a T20: 2,7 secondes,
de T21 a T40: 2,9 secondes,
de T41 a T80: 3,1 secondes

Nous avons alors M=Nxo=0,240 secondes
Wo = 2 + l L'l.;~ J ce qui donne wo=3

90 = L'l. + ~ - Dl L'l.;~ J ce qui donne 90=0,9 seconde

Nous verifions la condition C+Mwo<~
d'ou wm= 3 et 9m= 0,9 seconde. Le consensus maximum regroupe 3 fenetres et

done 240 transactions.

Toutes les transactions verifient leurs echeances. Le jeu de transactions foumi est
done faisable. A titre d'exemple, Ie tableau suivant (voir tableau I) donne Ie pire rang
d'une action de la la transaction T1 dans la file Ordo en fonction de la fenetre de
generation.

35

Tableau 1: Rang de TI dans Ordo

fenetre rang

1 100

2 180

3 240

3.4.2. Deuxieme exemple C+Mwo>1l
xo=5ms= duree maximum d'execution d'une action sur un serveur.
Les transactions doivent respecter les echeances relatives suivantes :
de T1 it T20: 4,2 secondes,
de T21 it T 40: 4,4 secondes,
de T41 it T80: 4,6 secondes

Nous avons toujours wo=3 et 80=0,9 seconde.
La valeur de M devient M=Nxo=0,4 seconde.
La condition C+Mwo<1l n'est plus verifiee.
La formule donnant w m est alors

w = lLl+C+2DJ cequidonnew =5.
111 D-M m

Nous avons 8m=1 seconde.
Le consensus maximum regroupe 5 fenetres et done 400 transactions.
Toutes les transactions verifient leurs echeances. Le jeu de transactions fourni est

donc faisable. A titre d'exemple, Ie tableau suivant donne Ie pire rang d'une action de la
transaction TI dans la file Ordo en fonction de la fenetre de generation.

Tableau 2: Rang de TI dans Ordo

fenetre rang

I 100

2 180

3 260

4 340

5 400

36

Conclusion

Les systemes transactionnels repartis temps reel sont par nature complexes.
L'approche presentee dans cet article permet de dimensionner correctement un systeme
transactionnel reparti temps reel. De plus, elle permet a un concepteur de determiner
avant implementation, la faisabilite d'un jeu de transactions donne. Les trois proprietes
de serialisabilite/sGrete de fonctionnementlponctualite sont alors garanties.

References

[AGLL94] E. Anceaume, L. George et G. Le Lann, "Timeliness proofs for real-time
distributed transactional systems in the presence of high loads", Rapport de
Recherche INRIA, Decembre 1994.

[BEMA94] A. Bertossi and L. Mancini, "Scheduling algorithms for fault-tolerance in
hard real-time systems", Real-Time Systems, Vol7, N3, pp229-245, 1994.

[BHG87] P. Bernstein, V. Hadzilacos, N. Goodman, "Concurrency control and
recovery in database systems", Addison-Wesley pub., 1987,390 p.

[DLS88] c. Dwork, N. Lynch and L. Stockmeyer, "Consensus in the presence of
partial synchrony", Jal of the ACM, Vol 35, No 2, April 1988, pp288-323.

[GMR94] L. George, P. Muhlethaler and N. Rivierre, "Optimality and non
preemptive scheduling revisited", Rapport de Recherche INRIA,
Decembre 1994.

[HAT095] V. Hadzilacos, S. Toueg, "Fault-tolerant broadcasts and consensus",
RTS95, Paris, January 1995, 9p.

[JENS94] D. Jensen, "A new generation open-family of scaleabJe real-time computer
systems", RTS94, Paris, January 1994, pp207-221.

[KOGR94] H. Kopetz and G. Grunsteidl, "TTP a protocol for fault-tolerant real-time
systems", Computer, IEEE, January 1994, pp.l4-23.

[LELA94] G. Le Lann, "Certifiable critical complex computing systems", 13th IFIP
Congress, Hamburg, Germany, August 1994.

[LILA73] c.L. Liu and J.W. Layland, "Scheduling algorithms for multiprogramming
in a hard real time environment", Journal of the ACM Vol. 20, No. I, pp.
46-61, January 1973.

[OFTA94] OFTA, "Infomatique tolerante aux fautes", Aragol5, edite par MASSON,
Fevrier 1994, 226 p ..

[SRS94] L. Sha, R. Rajkumar and S. Sathaye, "Generalized rate-monotonic
scheduling theory : a framework for developing real-time systems",
Proceedings of the IEEE, Vo182, NI, January 1994, pp.68-82.

37

•

•

On-line event reconstruction using a
parallel in-memory database

Erco Argante
CERN. Switzerland I EiJldhovcn University ()fTechnology, the Netherlands

(crco@harrnony.ccnuh, tel. +41227(74915)

Peter van der Stok
Eindhoven University nrTcchnology, the Netherlands

Ian Willers
CERN, Switzerland

April 1995

PORS (parallel on-line reconstruction system) is an on-line event reconstruction system
which uses the event reconstruction program of the CPLEAR high energy physics (HEP)
experiment at CERN. Central to the system is a parallel in-memory database. This database
is used as communication medium between parallel processes, which is possible because
of the high performance of the parallel in-memory database. The database is applied to
implement a farming strategy providing high CPU utilization. Farming is a simple example
of one of many communication structures which can be acquired by using the in-memory
database. The database provides structured storage of data with a short life time. PORS
serves as a case study for the construction of a methodology on how to apply fast parallel
in-memory databases and database techniques to HEP software, providing easier and
better structuring of HEP data, simpler development, maintainability and reusability 01 HEP
software, and straightforward parallelization of (existing) HEP software. PORS runs on a
SPARCcenter 2000 a-node shared memory computer and reconstructs events at 117 Hz.

1 Introduction

Parallcl in-mcmory databases olTer a powcrful means of
cornrnlinicmioJ}, capahle. of facil.itating parallelization of
software, while providing high performance. In addition,
thcy facilitate the structuring uf data, and allow a separa
lion o/" logical data presentation from physical data repre
scntatioTl.

• Acquire high performance by easily and efficiently
applying the power of parallel computers via database
techniLlues.

PORS is a case study which can perform on-line paral
lel event reconstruction w.;ing the event reconstruction
program of the CPLEAR ex peri Illcnt at CERN, the Euro

pean Lahoratory for Particle Physics in Geneva. Switzer
land. This is accoll1plished using a parallel in-Illemory
datahase.

Event recollstruction is the process of converting raw
detector data into intcrprctahle rhysics results. Tradition
ally, event reconstruction is performed orr-line, i.e. scpa
rate rrom thc experiment. PORS call perform on-line event
reconstructioll. i.e. rcconstruction during the experiment.

The main objcctive is to construct a mcthodology on how
to apply databases and d,lt,lbase techniquc.'~ 10 (existing)
HEP sofhvarc. in ordcr to:

38

• Structure HEP data in an easy and consistent way by
using the entity-relationship (E-R) model ([5]). HEP
data comprises run-time data, i.e. the temporary data in
a software program's memory space, as well as off-line
data, i.e. permanent data stored on hard disk .
Structured data facilitates development, maintainabil
ity and reusahility ofHEP software. Standardization of
data structures via the E-R model results also in less

software and hardware platform dependence.

• Parallelize (existing) HEP software with little elIort.
Parallel software should hecome less platform depen
dcnt and easier adaptable. This is achieved by using the
parallel in-Illemory database as a powerful communi
cation medium for parallel processes, offering much
Ilexibility.

Within an in-Illemory database, the data reside in real
memory in contr<.lst with a disk-based database in which
thc data reside Oil hard disk. Former attempts to apply
databases in on-line HEP aprlications failed due to a lack

1019

•

•

HEP software Problems

or pcrforlll;'IIlCC. Parallel in-memory databases can rrovidc
t!lis high performance.

This paper shows that the application of datahase tech
niques can lead to logically slructured software which still
has good performance. 'It will be argued that parallel ill
memory databases arc a viable alternative to current 11011-

database software development techniques.

The lay-out of the paper is as follows. First, some gen
eral problems of HEP regarding computing arc described.
Relevant background of parallel datahases is provided.
This is followed by a description of the CPLEAR case
study (section 4), and some of the design issues of the par
allel in-mcmory database (section 5). The case sludy is
evaluated. and advantages and disadvantages of applying
databases are enulllerated (section 6), in view or the prob
icJlls mentioned bcf"ore. Finally, some conclusions arc
drawn (seclion 7) and projections are given (section R) .

;\n extended version ortliis paper can he found in [XI.

2 HEP software Problems

This section descrihes general problems seen in HEP
experiments. These prohlems appear also in CPLEAR. the
HEP experiment used in tile case slUdy.

Need for high performance

For new HEP applications and in particular the Large Had
ron Collider (LHC) experiments at CERN, the estimated
increase o/" computing power requirements for the corning
tell years ranges up to three orders of magnitude depend
ing on the area o/" application (L I]). Par .. lIlel processing
will bccollle an essential way to tackle this prohlem.

This paper shows that datahase techniques and parallel
in-memory datahases make it possible to efficiently and
easily exploit the power o/" parallel computers /"or the type
of" applications presented here.

No uniform way of structuring data

Data are oJ"ten stored in an unstructured or not uniformly
structured way. This holds for run-time data as well as
more perlllanently stored data. DatH arc often viewed and
lreated as binary objects without any defined structure.
Permanent data arc stored on scquential mcdia, most COIll

monly magnetic tape.

Software formalS call be specific to an institute or even
to a HEP experiment. An example is Zebra, a I ihrary to
extend Fortran with more elaborate data structllre facili
ties, which is specific 10 CERN (1"6]). Another example is
tile OPAL ([7J) HEP experiment at CERN which has a set
of reconstructed event data stored on hard disk, on which

they defined their custom-made list structures to retrieve
data. Also within a package like Zebra, there is a lack of
enfon:ed consistency. There is no uniform way of structur
ing the data, no general method how to model the data.
Every programmer defines Zebra structures in an intuitive,
personal way.

The E-R model, generally used in relational databases,
helps to enforcc structuring of data. Off-line data can be
struclUred and stored in a disk-based database. Run-time
data can be structured and stored in a parallel in-memory
database. This results in data structures which are less
hardware, software or application programmer dependent.
~ess hardware dependent, since the logical database struc
ture is separated from the physical implementation. Less
software dependent, since the resulting data will only be
dependent on the E-R model, not on the software applica
tion from which they nre coming. Less application pro
grammer dependent, since application programmers are
guided in their choice of data structures, which results in
more uniformly modelled data.

A rcf'erence to the ADAMO ([10J) system should be
made. In ADAMO, data structures can be modelled
according to the E-R model via a data definition language
(DDL). ADAMO provides a programming interface to C
and Fortran. In this respect it does the same as the datahase
presented here: it allows software programs to access data
in a structured way with powerful statements (queries). In
comparison to ADAMO, our system allows concurrent
access and it can be used on a parallel computer.

Hardware dependence of high performance parallel
programs

A problem in parallcl software is that to obtain good per
formance, the machine architecture has to be taken into
account ([21, [3)). Therefore, applications become
machine dependent. Often the inter-communication pat
tern is lixed and explicitly defined. Changes in the hard
ware configuration lead to adaptations of the
cOllllllunication pattern.

Currenlly available tools, like communication para
digms PVM (14]) or MPI, are still not capable to combine
a good ahstraction level with high performance ([3]). This
reduces the software's maintainability and portability.

It is argued that a parallel in-memory database can be a
powerful communication medium which provides abstrac
tion without loosing Illuch performance, and it also pro
vides means for data distribution which PVM does not
have. Therefore, it is a viable alternative to the currently
available message passing tools.

2 of 9 On-line event reconstruction using a parallel in-memory database

39

•

•

Parallel in-memory databases

Parallelizing existing software

Currently, many companies have Illllch sequential soft
ware which is not parallclized, since they foresee that the
gain docs not compensate for the work and diniculties of
parallelization ([2.1). This situation especially holds for
HEP environments. Farming of the sequential program is a
.'iolution which is not always satisfactory.

The database methodology helps tackling this problem.
The database method conserveS the original structure of an
application. This is especially relevant for physicists, since
they work on the reconstruction programs themselves. In
the case study. this is accomplisbed as follows: the I/O
statement...; arc replaced by database statements. PVM is
used in a similar manner. This method only works for
farming. For more elaborate ways 0[' coarse grain parallel
iSIll, like pipe-lining, the interface routines between the
modules or thl: sequential program arc replaced by data
base access rOlllines. Synchrollizali()11 between 1l1{)(lules
will be data driven.

A database provides data parallelislll in all easy way,
since data can be shared between processes while the data
base takes care of the data consistency.

3 Parallel in-memory databases

Relational databases

The purpose of a datahase is to store and retrieve data effi
ciently and conveniently. In a relational datahase, <I collec
lion of tahles is used 10 represent data and relationships
:Hllong the data. The SQL query language oIlers four types
or access routines to retrieve information from a database
,-lIld to change ils contents: select, deletc, insert and update.
Indices are llsed 10 decrease search times through database
tables. Logically associated access routines arc gathered in
transactions. A transaction is the unit of datahase action.
i.c. it is atomic.

Parallel databases

A parallel dalah~lse allows concurrent access. Parallel
transactions can destroy databasl: consistency. Concur
rency control algorithms preserve datahase consistency in
the context of parallel transactions (lSI).

In-memory databases

An ill-memory datahase is a datahase in which the data
reside in real memory. Parallel in-memory di.ltahases can
be implemented Oil different hardware architectures, for
example shared memory or distrihutcd melllory.

When comparing in-memory datahases witil disk-based
datahases, different design issues arc n:lcvanl. For a disk-

hased datahase, disk access is by far the most expensive
operation. Therefore, the major goal is to minimize this.
For in-memory databases the access time on real memory
is relatively small. Therefore, cost of maintaining database
structures is a more relevant factor.

Data distribution and the E-R model: separation of
concerns

In a parallel database implemented on a distributed mem
ory computer, the data reside in the memories of multiple
processing clements (PEs). Fetching data by a PE from
another PE requires an inter-PE communication. Inter-PE
communications arc expensive operations in comparison
to accesses to local PE memory. This makes data distribu
tion an issue to minimize inter-PE communications and
therefore increase performance.

A design rule is to completely separate the physical data
distribution from the logical table structure of the data
hase. So the data distribution is not reflected in the table
structure; tahle structure is solely dependent on the E-R
Illodel. This separation of the logical view (i.e. the user
view or the database) and the physical representation of
the data in the database has two advantages:

• It facilitates portability and maintainability. It allows
the implementor to change physical aspects of the data
base without changing the applications. For example, a
database implemented on ditIerent types of hardware
platforms will have the same interface to access the
data.

It makes the decisions about data modelling not depen
dent on physical aspects of the database which are
hardware dependent. This helps to model tbe data in a
uniform way, only dependent on the semantics of the
data, and not dependent on details of implementation.

Minimizing inter-PE cOlllmunications and separating logi
cal view from physical representation are conflicting
requirements which complicate the design of an in-mem
ory database.

Transaction scheme and concurrency control
An application using the database, like PORS, consists of
multiple processes which all access the database. The data
access pattern of an application is the way the processes of
the application access the database.

By examining this data access pattern of a process, a set
of transactions is designed to retrieve the required data.
The set of all transactions of all processes of an applica
tion is called the transaction scheme. The transaction
scheme determines the lay-out of the in-memory database.
This lay-out comprises table definitions, data distribution
and process distribution.

On-line event reconstruction using a parallel in-memory database 3 of9

40

•

•

Case study: on-line event reconstruction for CPLEAR

Tran~actions of di rkrent proce~ses Illay be executed in
parallel. With this in mind, possible data conflicts arc
determincd. The data connicts arc evaluated and an appro
priate type of concurrcncy control is choscn to prcserve
data consistency. Advantage of this Illethod of choosing
concurrcncy control is Ihal the overhead of thc concur
rency conlrol will be low, since it docs not havc to deal
with nU possible data access patterns.

The steps descrihed ahove form an important design strat
egy which support~ the high perforlllance of the database.
Summarizing, the design strategy comprises that transac
tion scheme and type of concurrency control arc optimized
against the data access pattern of the application. In
figure I, the described ~teps arc depicted. The ~teps should
be carried out if a new application is 10 he used with the
databa~e ill an optimal fashion. It is intended to distinguish
classes or applications each for which a suitahle type of
concurrency control exists, tllu~ avoiding that for evcry
new application the complete diagram or figure I needs to
he followed.

FIGURE 1. How to integrate an application with the in
memory database

1 specification oj" application I

~
I examine data acccss rallern I

,./ ~
delermine possible design trans,lction

data confljcts scheme

~ ~
choose appropriate

determine lay-out cOllcurrency
of in-memory DB contn)1 alg(}rithm

4 Case study: on-line event
reconstruction for CPLEAR

The case ~[lIdy is all example or the integration of the
application CPREAD, event reconstruction program for
the CPLEAR HEP experimcnt, with the parallel in-Illl'1l1-
ory dataha~e ohtaining on-line parallel event reconstruc
tion. The case ~tudy comprises the design and
implemcntation or tile database and the integration oj" the
application with the database. It should hc noticed that thc
parallel in-mcmory datahase is reusahle; it can be used in
conjunction with applications other than CPLEAR.

The case study is an implementation on a shared melll-

ory computer. 11 is a pilot system for the complete project
with the full functionality not yet implemented. It there
rore shows little of the potential functionality of the data
hase. The implemcntation on a distributed memory
machine will show more of its functionality, since data
distribution becomes important, and the power of queries
will he exploited. The case study is described in detail in
[9].

CPLEAR & CPREAD

CPLEAR is a HEP experiment at CERN which investi
gates the C-P violation phenomenon. The experiment has
run for a couple of years and about 100 people are
involved. CPREAD is a 260k lines Fortran source code
program which is used to reconstruct events produced by
CPLEAR. About 100 Gbytes of data have to be recon
structed annually. At run-time, the program size is 13
Mhytes. CPREAD is often changed and adapted .

Description of the system in operation

Figure 2 shows the system. It is implemented on an 8-node
shared memory computer. The dotted box comprises the
datahase. The datahase together with the database library
(DR lihrary) form the reusable part of the system.

The CPLEAR event generator is a source of CPLEAR
event data. It inserts Zebra ([6]) blocks with raw (i.e. non
reconstructed) cvents into a table, say table 1, of the in
memory database, at a specific ralc. CPREAD workers
(the farm workers) try to retrieve Zebra blocks with raw
events from this table. If a worker's request fails, because
there arc no data available, it restarts its request after a
specific time. A worker reconstructs the cvents and recon
structed valid events together with reconstruction informa
tion arc inserted into another table, say table 2, of the in
memory database. Writers try to retrieve accepted events
from tahle 2 to write them to permanent storage. If a
writer's request fails, because there are no data available
to he written to permancnt storage, it restarts its request
aftcr a specific time.

How is it prevcrllcd that an event is retrieved multiple
times hy the ~v()rkt!rs? This is accomplished via the trans
action scheme (sec section 5). The transaction scheme pro
vicks data driven farming with high CPU utilization. Just
hy connccting workers to the datahase a farm is formed.

It should he noticed that there is no master in the system
which controls the placement of data. The absence of a
master in the datahase will enhance its scalability (see sec
tion 5).

Permanent storage can be a file system on hard disk or
the Oracle 7.1 parallel datahase. In the case of a file sys
tem, the data arc stored in one or more tiles. In the case of
the Oracle databasc, the SQL *loader tool is used to insert

4 of 9 On-line event reconstruction using a parallel in-memory database

41

•

•

Case study: on-line event reconstruction for CPLEAR

FIGURE 2. On-line event reconstruction for CPLEAR using a parallel in-memory database

CPREAD CPREAD CPREAD CPREAD

DB library DB library DB library DB library

r - ~- 1-- - -} -r- - - -i.-t - - -}i-,
CPLEAR event generator I I

DB library ~
in-memory database I

I ... I
I

1 ~ ~ ~ -~ 1

I I
1

DB librarv DB librarv DB librarv DB librarv I

1 writer writer writer writer 1

data_dictionary
1 1

1
SQL*load SQL*load

I
1 .- - ...

I
1

file system Oracle I
1 § I
I
L ____ _

data illln the Oracle database. This 1001, provided by Ora
clc, makes it possible to insert dat<I into the Oracle data
base at i.l high rate. Only daw with a long lifetime, i.e.
reconstructed events, arc stored on pcnnancnl storage.
Data with a short life-time only reside in the in-memory
database.

E,lch l1:orker resides on its own processor. Since the
overhead of the CPLE'IIR eveJll gel/em/or and writers is
relatively small in comparison 10 the load of a CPNEAIJ

worker. one worker for every processor of the machine
gives the best peri"orm<lllt:e. The load-balallt:ing of pro

t:esses over prot:essors is taken t:are or hy the operating
systcm, or is donc by the user cxplicitly.

AI run-time, lForker,\' or Il'rilers can he added or
removed from the system, i.c. the farm size can be
changed dynan1ic<1IIy. This docs nol lead 10 any data
inconsistencies or data loss. II i.-: a st:Hldarci feature or the

databa.-;c: the datab:lse allows processes to conllect or dis
cOllllect at rUJl-time.

The in-memory datahasc resides in memory which is
shared hy all pnKcsses accessing the database. DU lihrm)'

is a library linked to all processes accessing the in-mem
ory database. It provides database access routines, concur
rency control and connects the process to the database.

At start-up, a file called {/oftcdictiol/ory is used to build
the database. It contains information about the lay-out of

§ §§§ I I I
.J

the datahase (tahle definitions, column definitions, etc.).

Hardware

The system is implemented on a SPARCcenter 2000
shared memory computer. It has 512 Mbytes shared mem
ory and eight 40 Mhz SPARC processors with 2 Mhytes
cache each. Cache memory is local to a processor. Off
cache means glohal to all processors.

Performance

Multiple processes concurrently try to access the same
table of the database. This table contention forces pro
cesses sometimes to wait. Administration of the database
causes overhead. Executing access routines can cause
searches. This overhead is relatively more important for an
in-memory database than for a disk-based database, since
the time to fetch the data items themselves is in the same
order as accessing an index. Measurement of this overhead
shows database performance.

This section gives some figures to show how the data
hase arproach performs in comparison to former non
datahase methods which have high performance. but are
more hardware dependent.

Figure 3 shows the performance of PORS: the event
reconstruction rate as function of the number of CPREAD
workers. In this case, reconstructed data are written to files

On-line event reconstruction using a parallel in·memory database 5 of 9

42

•

Case study: on-line event reconstruction for CPLEAR

FIGURE 3. Event reconstruction rate as function of the number of CPREAD workers

140

event reconstruction rate in Hz as a function of the number of CPREAD workers

120

N 100
I
.~
m
iii

80 c
0

~
2
;;
c 60 0
u
l'
C
m
> m 40

20

2 3

--
/ ---

-'

4 5 6

measured results ---+--
theoretical maximum ----.

7 8 9
number of CPREAD workers

on disk. A standard st<lI1d-alone CPREAD worker, i.e.
without using the database, can reconstruct events at a nHe
of .15.5 Hz on tbe SPARCcenter computcr (in this case it
lIses onc processor). So .1ssullling that full scalability is
possible, 8 processors would pnxess events at 124 HI ..
The system docs process events at 117 Hz with R proces
sors. So 7 Hz are lost by the overhead caused by the daw
base. It should be kept in mind that when farming would
be implemented w(lhm.!t a DB, Ihere would be an overhead
also.

cesses of other users (although it was taken care for
that none of the uther users has put a heavy load on the
machine during tests). This gives a skewed view,
because the measurements with a higher number of
CPREAD workers therefore show a relatively bad per
formance.

• Some remarks on the figure with respect to scalability

• For the higher number of CPREAD workers the
SPARCcenler pages. This gives a skewed view since
for the higher numher of workers notjusl the database
overhead is causing perfonnance degradation, but also
the hard disk activity caused by the paging.

arc given. These explain lhe decreased performance for
the measure1llents with the higher Jlumber (::: 6,7,8) of
CPI({:,"AD wurkers in comparison to the theoretical case:

The SPARCcenter has an automatic load halancer. That
mean,'; (hal for Ihe measurement,'; with the lower nUIll
ber (::: 1.2,3,4,5) of C/INEA!) I\'orker.\', proce,';se,'; or
NileI' users, writers and evelll gel/erma/' arc running Oil

the "free" processors, i.e. Ihe processors where no farlll
worker runs. This IlleanS that a CPNEAD worker has a
processor for its OWIl and performance degradation is
only caused by waiting for database uccess.
For the higher number of CPNEAD workers, the pro
cessors arc shared hetween CPNEADfllrll1 workers,
el'enl gencralor, IVrilers. syslelll processes, and pro-

• For the higher number of CPREAD workers the limited
memory bandwidth of a shared memory machine

might be visible.

SOllie typical execution times fur access routines during
run-time of PORS are provided. The results of the same
lests without PORS running are equal. The provided tim
ings are averages. This is for a table of two columns which
contained about 100 rows. The first column has type inte
ger, the second column has type binary and has a size of
23 Khytcs.

• select: I microsec.
This select uses the index on the first column to per
form the search. The select returns a pointer; so the
copying of the data is not included.

6 of 9 On-line event reconstruction using a parallel in-memory database

43

•

•

Design aspects

delete: 7 l1licro~cc.
A delete al~o compri~e~ an update of the indice:-:. there
fore it takes longer than a ~elect.

• update: 0.11 lllil1iscc.
This is all update or the first column of a row, i.e·. an
integer.

• insert: 3.2 Illilli~cc.
The dilTercncc. in tillle with the other routines comes
from the fact that 23 Kbytes have to he moved frolll
one memory location to another.

• lllell1copy or2~ Khytcs: 3.2 millisec.
To get a better view Oil the performallce of the insert
routine, the time to perform a mC!llory copy of 23
Kbytes is shown.

An insert routine cornprisc:-: a 11lernory copy. To explain
the results for thc insert, also the time a memory copy
takes is measured. It can be secll thaI the time all insert
takes is fully dependent on the time a memory copy takes;
database overhead is not visible. This is a property of the
SPARCceilter cOlllputer: copying glohal variables takes
relatively long. Local variahles can reside in the cache and
therefore are copied much ra~ter. The Illelliory cory of a
Joe{tf varianle of 23 Khytes lakes 1.5 millisec.

To obtain a better view on the database overhead. also
measurements with smaller data items are carried oul. The
measurements are done for a table of one row with one
integer column. For this type of table it is relatively simple
LO measure in-cache <lnd off-cache results. Secondly, a
table with small data itclllS shows datahase effects morc
clearly. since the time to copy one integer to another melll
ory locatioll is insignificant.

• In-cache: select: I.n Illicroscc.

delete: 2.1 lllicroscc.

update: 4.0 microsec.

insert: 5.3111icro.-;cc.

• Ofr-cache: select: 5 Illicrosec.

insert: I g llIicrosec.

A comparison of the ill-cache Jigure~ for the different rou
tines shows that they arc eon~istellt with the HIllOllllt of
administration that has 10 be clone by the routine. These
results show much clearer that database overhead is not
big. Measurements of oil-cache delete and oil-cache
updale are not possible.

Eventual connection of the system to CPLEAR

At present. the system is not cOllllected to the CPLEAR
experiment to perform Oil-line event reconstructioll. Nec-

essary adaptations are the construction of an interface
netween experiment and system, and an inerease of the
permanent storage size.

5 Design aspects

Some interesting design aspects of the case study are dis
cussed.

Transaction scheme

The transaction scheme is the set of all database transac
tions or all proces~es which together determine the execu
tion now of the parallel program. In the CPLEAR case
:-I\udy the transaction scheme serves, among others, the
following purpose: how can it be avoided that a Zebra
block is reconstructed multiple times.

An approach with counters is used, since it provides
morc concurrency than an approach where table loeking is
used. Zebra blocks are numbered by the generator in a
eonsecutive increasing sequence by means of an identifi
cation numher, i.c. a eolumn HID" is added. A CPREAD
worker acquires an ID number from a counter (a table with
one row of one column is used as a counter) and inerc
ments thc counter by one. With the -acquired ID the worker
call retrieve the corresponding Zebra block. Since there is
no other process which might access this Zebra block, no
concurrency control on the data items is needed. The only
required concurrency control is on the access of the
counter. This means that table access is more concurrent.
Access to the counter is purely sequential, but since
accessing a counter takes only 5 microsec., this hardly
innuences scalahility in a negative way.

At the output side ofCPREAD, exactly the same proce
durc can bc followed: a writer acquires an ID from a
counter and retrieves the corresponding event to write it to

disk. The accepted events are tagged by an 10 number by
the CPNEAD .. vorkers. These ID numbers form a consecu
tively increasing sequence.

Distributed nature: no master

A design rule for the in-memory database is that the con
cept of a central master is avoided. So every process
makes its own decisions. The advantage of this approach
is that it enhances the scalability of the system, since a
master can become a bottleneck.

The farming is data driven. This means that a worker
asks for data when it is ready to process data. So there is
no master which decides to whieh worker data are sent.

Transport of data to the right process is done via the
transaction scheme. Every process takes its own decisions.

On-line event reconstruction using a parallel in-memory database 7019

44

•

•

What do we gain?

6 What do we gain?

By evaluating the C,lse study, advantages and disadvan
tages of aprlying datahases arc enumerated; they arc eval
wlted against the problems mentioned in sectioll 2.

Performance requirements

A parallel in-memory database can give high performarH.;e.
This performance allows the datahase to store data used by
the experiment while it is running without hecoming a hot
tleneck.

Avoid superfluous copying of data

Data can be shared between multiple processes instead of
every process having its own local copy. Concurrency
control takes care that data consis\t:ncy is preserved. This
olTers an easy way to ohtain data parallelism.

Incorporating a commercial database

By integrating a cOllllllen.:ia! database like Oracle into the
system for orr-line purposes, there arc a lot or additional
advantages:

• structured storage of pcrrnancnt d,lta

• CnnfOrTIlanee to industrial stand,lnls

• data representation to the user is platform independent

network access among dilTerent platforms

it offers tools (e.g. graphics or statistics tools) which
arc ready to use and which arc directly applicahle to
the data

Communication paradigm

A parallel in-Illemory database can serve as a powerful
communication paradigm. It can be ~een as a !aye]" which
makes applications rnore soft- and Ilardware independent.
In comparison to PVM, the database approach orrcrs more
power. hecause SQL queries can speci fy data requests
llIore precisely tl1<ln the primitives of PYM. This allows
easy impleillentation or rather complex control structures,
which in its turn provides Ilexihility. These control struc
tures (like fanning, huffering or Illonitoring systel1l perfor
mance) do not have to he implemented explicitly. They arc

inherent to lIsing a database. The database offers a data
driven approach in which the availahility of data controls
execution of the parallel program. Control of parallelism
of the application is ohtained via the concurrency control
algorithm which preserves data consistency. Examples
arc:

• Farming. The Glse study shows that for farming on a
shared memory machine, the data driven approach
takes care lhat CPU utilization is high. If there is i.I

worker ready 10 receive data, and data is availahle,
these data will he immediately availahle for that
worker.

• Buffering. Databases provide flexible buffering which
is easy to set-up and easy Lo change even at run-Lime.
For example hy specifying an appropriate data distri
hution on a distrihuted memory machine, data can be
sent in advance: instead of retrieving the data from
another PE at the moment they are really needed, the
data can be stored on that PE beforehand. By using a
datahase, this can he accomplished by just specifying a
tahle to reside on a specific PE. In this context, a data
base should be viewed as memory space manager,
rather than storage medium: it provides powerful tools
10 easily specify where data should reside.

• Monitoring. The database offers facilities to easily
monitor the system. For example the data distribution
among the PEs on a distrihuted memory machine can
he monitored. Queries can answer questions like:
"should more data be sent to some PET'.

Summarizing, hy using a database tlexibility is gained.
Adapting a query takes less effort than changing the
implementation of the application. Most feaLures can be
implemented without using a database, but they will be
hard coded, or if flexihle, the implementation takes a lot of
effort. The database approach provides this tlexibiliLy
implicitly.

7 Conclusions

The case study showed that by applying a database, con
trol structures (data driven f~lrming, dynamically changing
farm size) were available without being explicitly imple
mented. Performance turned out to be quiLe scalahle.

By connecting the workers to the database, and choos
ing an appropriate transaction scheme, data driven farming
is estahlished in which availability of the data controls the
execution flow of the program. CPU utilization is high.
Without heing explicitly implemented, it is possihle to
dynamically change the farm size.

The case study left many features of the datahase
unused. The coarseness of the data granularity did not
show the strong points of the E-R approach and communi
cation ahility of the datahase. The implementation on a
shared memory computer left features like data distrihu
tion in combination with non-uniform memory access
untested and not revealed.

Performance. The on-line event reconstruction is able to
reconstruct events at 117 Hz. This is only a loss of 7 Hz

8 of 9 On~line event reconstruction using a parallel in~memory database

45

•

•

Future work

against the theoreticallll<lximulll of 124 Hz if full sC<ll<lnil
ity is assumcd. Datanase overhead turns out 10 hl: slllall.
Properties or the SPARCcL:nter machine turn out to be
important.

8 Future work

Further parallelization of the case study

The case study will he extended with parallel track fitling.
Track litting is a part or thL: reconstruction process per
formed by CPREAD in which particle tracks are calcu
lated from the detector data. This part will he parallelized,
i.e. there will be track-fit workers where each can perform
a track-lit. COllllllunication between track-jit workers and
CPREAD workers will be done via the d<ltab~l."e.

This paral1cliz<ltioll goes hand in hand with an increase
or the clat~1 granularity to a sun-event level. The aim of this
."ludy is as follows:

• The increased parallctism ShOl.Jld provide a reduced
latency und less meJllory usnge. The reduced memory
usage comes from reduced code replication.

• 1t 'IS a heavy test for the approach to use a database as a

means of cOllllllunication. The number of cOllllllunica
tions increases and the size of the cOllllllunicated d'.Ita
packets decreases.

It tests ill practice whether the database approach r~lCil
itatL:s the parallelization or a pieee of existing software.

Port the system to three types of hardware platforms

The implementation on <I shared melllory IH,Jchine
(SPARCcenter 2(00) is already accomplished. The system
will be ported to distributed memory computers (Meiko
CS-2. and possihly IBM SP-2). If availahle in time, the
virtual sllared memory mode of the Meiko CS-2 will he
exploited. In this mode, the local tllelllOries of the PEs
fonn one contiguous addrcs:-; space

The ports will be carried out to determine which arc the

important design aspects for each type or architecture lO

build a parallel in-memory database.

Test portability to other applications

The database system will be integrated with other applica
tiolls, to test how promised features or tile database
approach work ill practice.

9 Acknowledgments

We would likL: to thank Marcel Meesters, technical swdent

at CERN, for his help in reviewing this paper. We would
like to thank CPLEAR for providing access to the
CPREAD program. This work was hosted by the ESPRIT
GPMIMD project group at CERN.

lOReferences

[I] Proceedings uflhe Eighth Conference in the series
"Computing in high energy physics", Santa Fe, New
Mexico, USA, April 9-13, 1990

[2J General purpose computing, WF. McColl, Lectures
on parallel computation, proe. 1991, ALCOM spring
school on parallel computation, Cambridge, UK

l3J The Construction of a Small Communication Library,
LT. Lukkien, Computing science report, Eindhoven
University of Technology, January 1995

[4] PVM 3 User's Guide and reference manual, A. Geist
ef (//., Oak Ridge National Lahoratory, May 1993.

[SI Dat~lbasc system COIH.:cpls, Hell!)' F. Korth and Abra
h(l/11 Silberschatz. McGraw-HjJl, 1991

l6] Zebra; an overview of the Zebra system, CN, ECP
and PPE divisions, CERN, Geneva, Switzerland,
Fehruary 1994

[T[The OPAL experiment at LEP, OPAL collaboration
(l(/lIi ... McKenna, Dale Pitman), Phys. in Can.:50,
1994

[X] On-line event reconstruction using a parallel in-mem
ory datahase, Erco Argante, GPMIMD deliverable,

CERN, Geneva, Switzerland, April 1995

[9'1 Real-time database access on a massively parallel
platform. Ercu ArRGllte, Thesis of the Post Graduate
Programme Software Technology, December 1994

[10] ADAMO Entity-Relationship Programming System,
Version 3.3, Programming Techniques Group, Eep
division, CERN, October 1993

On-line event reconstruction using a parallel in-memory database 9 of 9

46

Real-time databases
An overview

M.P. Bodlaender
Department of Computer Science, TUE

The Netherlands

April 7, 1995

47

Contents

1 An introduction to (real-time) distributed databases
1.1 Centralised databases .
1.2 Distributed databases.
1.3 Real-time databases
1.4 Comparing the various database types
1.5 Organization of this paper

2 What can a real-time database do for you?
2.1 Real-time scheduling
2.2 Transaction priorities
2.3 Performance of real-time databases

3 Atomic transactions
3.1 Defining transactions
3.2 Constructing transactions

4 Concurrency control
4.1 Concurrency and consistency.
4.2 The serializability concept
4.3 Weakening serializability . . .
4.4 Restricting transactions
4.5 Handling deadlock and lifelock .

5 Reliability
5.1 Failure models
5.2 Maintaining consistency ..
5.3 Availability of the database

6 Distributed systems
6.1 Atomic commit protocols.
6.2 A vailability of data

48

50
50
51
52
53
53

54
54
55
55

57
57
57

60
60
61
64
66
67

69
69
70
72

73
73
77

•

7 Time management
7.1 Temporal consistency.
7.2 Time critical scheduling
7.3 Priority scheduling ...

8 Integrating operating system & database design
8.1 Data caching ..
8.2 Virtual memory.
8.3 Conclusion....

9 Analysis of database designs
9.1 Existing results
9.2 Comparison problems.
9.3 Conclusion.......

10 Research issues
10.1 From user-interface to implementation
10.2 Transaction scheduling & correctness
10.3 Real-time transaction scheduling.
10.4 Distributed transactions

49

79
79
81
83

85
85
86
87

88
88
88
90

91
91
92
93
94

Chapter 1

An introduction to (real-time)
distributed databases

Real-time distributed databases extend the power of centralised and distributed
databases. Mechanisms are provided to incorporate the notion of time within
the database semantics. Though databases already have a notion of time, since
they try to compute as fast as possible, this is not sufficient in time-critical en
vironments. In this chapter an overview of the differences between centralised,
distributed and real-time databases is provided. Note that it is possible to con
struct a real-time centralised database as well as a real-time distributed database.

1.1 Centralised databases

The theory of centralised databases is well· developed , see for example [Pap79],
[KR81], [YA88], [Vid85], [Vid91]. In general, arbitrary actions on a database
have to satisfy the following two requirements: they must not disturb the logical
consistency of the database and they must be efficient. The primitive actions that
can be applied to the database are read and write actions. These actions access
a single data item to either read or change its value. To be able to reason about
database actions a transaction is defined as a collection of primitive actions (i.e.
Read, Write) that is applied to the database.

Even when each transaction on the database leaves the database in a consis
tent state, a collection of transactions that is executed in an interleaved fashion
can destroy that consistency. The (partial) order in which transactions are exe
cuted is called a schedule. If two transactions are unordered, their basic actions
can be executed in any interleaved fashion. In articles [Pap79], [Vid85], [Vid91]
correct schedulers are defined that order the transactions in such a way that
database consistency is preserved.

The most important notion that has been developed is serializability: if a
partially ordered schedule is serializable (proven equivalent to a totally ordered

50

schedule), database consistency is ensured. Note that articles [GM83] and [GS85]
illustrate that the class of serializable schedules is a strict subset of all consistency
preserving schedules.

Naturally, the transactions on a database must be efficient. Often, large
amounts of data must be manipulated when complex transactions are performed
on the database. The order in which certain basic steps are applied to the
database has a great influence on the execution time of the transaction and a
transaction manager that executes transactions in an efficient way is needed. In
articles [IK94], [SY82] and [JK84] transaction management and queryoptimiza
tion are treated in depth.

1.2 Distributed databases

Recently, the wide-spread availability of computer networks calls for distributed
databases. These databases try to exploit the properties of a computer network
to increase the reliability, concurrency, capacity and speed of databases. A book
that combines most aspects of distributed databases is [OzsuV91].

Why these enhancements can be expected from a distributed database is
shown easily. Reliability can be increased because information can be replicated
over multiple sites, thus lowering the probability that the crashing of a site leads
to loss of information.

Because the database is actually divided into several smaller databases, it is
often possible that small tasks are only performed at one or a few sites, leaving
the other sites available for other tasks. This feature increases the amount of
concurrency in the system, as multiple users can access the database at the same
time.

In the current information age, large databases are needed to store all the
information needed in complex organisations. However, the current state of hard
ware technology limits the size of a database a single computer can handle. The
trend in computer architecture is towards a local area network of computers of
intermediate size. These architectures are more powerful and are able to store un
limited amounts of data, as the size of the database can be expanded by adding
an extra computer to the local area network. Therefore, mechanisms must be
provided to deal with this fundamentally different architecture.

When a database is distributed over more than one computer, the compu
tational power of the individual computers ceases to be the bottleneck of the
architecture. While the maximal speed of a centralised database is dependent
on technology of its CPU, this is not the case for distributed databases. This is
because computations can be divided over the computers in the network. If a
structural overload of the system occurs, it is possible to add more computation
power to the system by adding extra computers to the network.

The bottleneck of the distributed database design is the communication cost.

51

If an information intensive transaction is processed that needs to access large
parts of the network, the costs of communication rise rapidly. Even worse: the
more computers participate in the distributed database, the more communica
tion will be needed. Part of the research in distributed databases is directed at
minimizing the communication cost of transactions that are performed on the
distributed database.

1.3 Real-time databases

Databases have been used in various ways, but most applications of databases
have been administrative. Databases typically try to fulfill two basic require
ments:

• Operations on the database have to preserve the consistency of that database.

• The transaction throughput of the database should be as high as possible.

In real-time systems the computer interacts with an outside world that is
constantly changing. Real-time systems often deal with temporal data, e.g. data
that is only valid for a certain interval in time. This means that old data is as
good as no data (i.e. Take data about the position of a moving object at some
moment t. After several seconds the data will no longer reflect the position of
the object in the real world. The data is no longer valid). Likewise, if a computer
controlling a bridge decides that at time-interval [t, t+d] it must be open because
a ship will then pass, we don't want that bridge to be open long before time t or
after time t + d, for this would hold the traffic longer than necessary. These two
examples illustrate two extra conditions that we impose on real-time databases
to preserve logical consistency:

• Internal data that represents the status of objects in the real world should
accurately reflect the real status of the objects within an acceptable margin.

• Transactions of the database may only be executed in a certain time
interval. Most important, all transactions have a deadline after which the
transaction fails.

In real-time databases schedulers should dispatch transactions such that they
meet their deadlines. Therefore transactions that are nearing their deadline
should be scheduled before other transactions. And in overtaxed systems that
cannot meet all deadlines, we want to ensure that certain important transactions
never fail, thus sacrificing other, less important transactions.

While in classical databases the primary goal is to preserve the database con
sistency, this is not always the case in real-time databases. For some applications
it is more important that a transaction completes before its deadline than it is

52

to preserve the database integrity. Therefore, current research is investigating
the tradeoff between consistency and speed, see [KR92] or [KM93]. In a lot of
applications, inconsistency can be tolerated as long as it is bounded.

1.4 Comparing the various database types

Each database-structure has been designed for a specific environment and with
specific goals in mind. Low-cost centralised databases are very well suited for
administrative purposes. The theory has been well-developed and 2PL (two
phase locking, a scheduling mechanism) is used allover the world.

Distributed databases offer all the services of a centralised database. More
than a centralised database they offer concurrent access by multiple users. Data
replication can make a distributed database more reliable than a centralised
database. Distributed databases can easily be upgraded, as a good database
design will allow for adding computers and storage to the distributed network.

Real-time databases explicitly deal with the notion of time. In applications
where computers are used to control some environment they offer essential ser
vices. The most important service they provide is the meeting of transaction
deadlines. A real-time database guarantees that, if the system is not overloaded,
all transactions will finish execution before their deadline.

A priority mechanism can also be offered by Real-time databases. When the
database cannot complete all transactions in time, it tries to ensure that trans
actions with higher priorities still meet their deadline. Thus real-time databases
are also useful in areas where critical p~ocesses must be monitored along with
less critical activities.

1.5 Organization of this paper

In the next nine chapters the main issues in real-time distributed database design
will be briefly introduced. In no way an attempt is made to give a complete
overview of the field, but hopefully the reader develops some global insight in the
strengths and weaknesses of real-time distributed databases.

Chapter two is the justification of the research area, it provides a high level
description of what services a real-time database offers and the resources that it
needs to do so.

Chapters three to eight give introductions to different issues that relate to
real-time distributed databases. In chapter nine it is observed that testing and
comparison techniques used to date are fairly ad hoc and could use a more sys
tematic approach. Chapter ten concludes with a summary of the issues that still
need development in order to produce efficient real-time databases.

53

Chapter 2

What can a real-time database
do for you?

The database design that has been used in many applications is a centralised,
non-real time database. It provides access to the database to a limited number
of users at the same time. Data-consistency is ensured and the database tries to
execute as efficiently as possible. Distributed databases allow the databases to be
implemented on a more general system architecture. They increase the reliability
and availability of the database.

Real-time databases, centralised or distributed, deal explicitly with the notion
of time. Data items in the database can reflect objects in the real world. These
data items have to be updated by the real-time database, to maintain a correct
view of the real-world. Also, the changing of a data item in the database may
have effects in the real-world, for instance the movement of a robot-arm.

2.1 Real-time scheduling

To interact correctly with the environment, the real-time database allows trans
actions on a database to be scheduled according to some time based criterion. For
each transaction t an interval [st, dtl can be specified such that the transaction t
will not be executed before starting-time St, and t will be finished before deadline
dt •

If the information stored in the real-time database is used to derive an action
that should be taken by the database somewhere in the future, it is possible to
schedule this action. At the appropriate time it will be executed. This is best
illustrated by an example. Suppose that inputs from an automated factory have
been used to conclude that between 2am and 3am the workload is low enough
to shut off the machines. With a real-time database it is possible to schedule
two transactions, one at 2am and one at 3am that shut down and restart the
machines, respectively. It can be seen that the real-time database can be used to

54

interact with the environment, controlling parts of it.
It is important to realize that a number of different implementations of real

time systems are possible. These implementations could offer different services
to the users, depending on the application of the real-time database. In the next
sections some properties that a real-time system could provide are investigated.
However, although these properties are often useful, they have their drawbacks.
Therefore, not all real-time databases will offer all these properties. It should be
clear that real-time databases must be tailored to suit each individual application.

2.2 Transaction priorities

In the ideal situation all transactions that are executed by the real-time database
compute correctly and meet their deadlines. Unfortunately this is often not a
very realistic assumption, the database can be confronted with an overload of
transactions that all have to be completed within reasonable time. Even if the
database is very efficient and fast, it could occur that it is unable to meet all
deadlines.

In these situations, a number of transactions have to be cancelled. To provide
the user with some control over the cancelling of transactions, each transac
tion is given a priority by the user. Now transactions with high priorities take
precedence over transactions with low priorities if the database cannot meet all
deadlines.

In general, this leads to an abort of an executing transaction, to allow high
priority transactions to complete in time. The work that was already done by
the aborted transaction is wasted. So a priority based scheduler degrades the
throughput of the system. Although several schemes to reduce this degradation
of throughput have been proposed, none of them do fully solve this problem.
If throughput of the system is more important than the timely execution of
individual transactions, user priorities should not be used.

2.3 Performance of real-time databases

In not-realtime databases the performance of the database is judged by its trans
action throughput. This criterion is not satisfactory for real-time databases, as
it does not take the deadlines of transactions into account. The performance of
a real-time database is expressed in the number of transactions that meet their
deadlines.

There is a sharp distinction between these two notions of performance. Ac
cording to the real-time performance criteria, a database that processes thousand
transactions in one hour, but misses each deadline by a few seconds is less effi
cient than a database that processes only hundred transactions which meet their

55

deadlines. If the classic notion of database performance is used this would not
be the case.

In the next two subsections two interesting techniques that can be used to
increase the performance of the real-time database are mentioned.

2.3.1 Sacrificing correctness for performance

Whereas correctness is the main issue in classical databases, it is often more
desirable to have some (partially) incorrect result on time than a correct result
that arrives too late. Correctness can be traded for an increase in speed, raising
the probability that transactions meet their deadlines. Of course, this is very
application specific, but it is an interesting tradeoff that should not be forgotten.

A number of techniques have been proposed to bound the amount of inconsis
tency that can be allowed without invalidating the database to a point where it
does no longer produce sensible output. for instance, it is not a big problem if a
door-controlling computer opens the door once in a while without anyone present
to enter the door. However, if it remains closed when people are waiting to enter,
it is unacceptable. Another clear example is a climate controlling system. If it
heats the room to 25 degrees, we find it irritating. But when the climate control
decides that the room should be heated to 40 degrees, we shut it down as soon
as possible!

2.3.2 Sacrificing generality for performance

A quite different approach that is used to increase the speed and throughput
of real-time databases, is restricting the generality of the actions that can be
applied to the database. As real-time databases are often applied for very specific
purposes, this does not have to restrict the power of the database too much. If
information about the types of transactions that will be processed by the database
is available in advance, it is often possible to produce more efficient schedulers.
This increases the performance of the database.

As a small example, suppose that it is known in advance that there is only one
(periodic) transaction that writes to a data item. Other transactions only read
the data item. With this information about the access behaviour of transactions,
efficient scheduling of the transactions in question is possible. In fact, if a multi
version database is implemented, no concurrency control is needed at all! The
writing and reading transactions can execute completely concurrent 1.

This technique can not be used in environments where no knowledge is avail
able in advance or in environments where the transactions have no 'nice' prop
erties that can be exploited for this purpose. Notwithstanding these negative
observations, this can be a useful method to improve the database performance.

1 For more information about multi-version databases see for instance [Wei87]

56

Chapter 3

Atomic transactions

One of the most important properties of database management systems is guar
anteed data consistency. There can be various syntactic and semantic constraints
on the information stored in the database. The technique that is generally used
to enforce these constraints is the notion of atomic transactions.

3.1 Defining transactions

A transaction is a set of operations that is applied to the database in a cer
tain order. Programmers of transactions have to ensure that the execution of a
transaction on a consistent database leaves that database in a consistent state.
Transactions are 'atomic', because either all the effects of a transaction are car
ried out, or the transaction doesn't take place at all. Other transactions will
either see all effects of an atomic transaction, or no effects at all. In this way, the
database consistency is preserved if all transactions are executed in a sequential
way.

At some point, a transaction has to decide whether to complete the execution
or to abort. This is called committing the transaction. Once a transaction has
been committed, it is certain that all its effects are visible to other transactions.

3.2 Constructing transactions

It has been observed that information about transactions that is known in advance
sometimes enables more efficient scheduling of transactions. Transactions are
required to leave the database in a consistent state. In this section it is specified
how transactions can be constructed.

57

3.2.1 Linear transaction model

The classic way to represent a transaction is as a list of read and write actions on
data items. These actions are executed in a specified order. It is assumed that
a transaction does some computation depending on the data items it reads and
that some of the results of this computation are written back to data items in the
database. Computations are not explicitly represented in this model. Typically,
a read action or a write action accesses only a single data item in an atomic
way (i.e. if the transaction fails, it does so between two basic actions, not during
a basic action).

Linear transactions as a computation-model

The representation of transactions defined above is very well suited for reasoning
about the scheduling of transactions and about interleaving of executions. This
is because most scheduling is based on the "reads-from" relation. In general,
transactions interact with each other by reading and writing data items. By
representing a transaction as just a sequence of reads and writes the constraints
of this interaction are explicitly captured.

The reads-from and writes-writes relations

The reads-from relation between transactions is defined as follows: a trans
action tl reads from t2 if tt reads a data item X whose actual value has been
written by t 2. Analogously a writes-writes relation exists between it and t2 if
tt overwrites the value of a data item X that has been written by t2 •

3.2.2 Nested transaction model

The transaction model presented in the previous section imposes only a simple
structure on transactions. Worse, it supposes that each transaction is a sequential
execution of basic actions. To express more general (concurrent) transactions
while maintaining a strong grasp on the structure of transactions, the nested
transaction model is introduced. Each transaction is represented as a hierarchy
of transactions nested in transactions. Before, database consistency was required
before and after the execution of a transaction. During the transaction, the
database could be in an inconsistent state.

It is possible to require that each sub-transaction is a complete transaction
itself: if it finds the database in a consistent state, it will leave the database
in a consistent state. If this choice is made, the number of ways in which a
transaction can be fragmented into sub-transactions is reduced. Thus it is harder
to define transactions. On the other hand, it becomes possible to allow parts of
a transaction to be used by the rest of the database while other parts are still in
progress. Each sub-transaction can be regarded as a complete transaction. It can

58

therefore commit without waiting for other transactions, as it leaves the database
in a consistent state. A more fine-grained concurrency control is possible when
sub-transactions are complete transactions themselves.

Nested transactions as a computation-model

In the nested transaction model a transaction is represented by a tree structure,
where the leaves of the tree are the basic read and write events. This is a quite
natural way to represent transactions. A lot of our programming languages are
constructed as trees, where procedures are nodes and function-calls are links
between nodes. Leaves are made up from the language-primitives.

If nodes that sequentially execute their children and nodes that execute their
children in parallel are allowed, a very generic computation model is obtained.
Some additional synchronisation between concurrent computations in different
nodes can be obtained by communication between these computations. Allowing
parallel execution within a transaction increases the amount of concurrency that
the system allows, thus improving the performance of the system.

Use of nested transactions in a distributed network

Another benefit of nested transactions is that it is easy and natural to implement
the distribution of transactions with them. The sub-transactions that have to
execute on other sites than the initial transaction can be represented by sub
trees of the transaction-tree.

By representing the computation of each site by a sub-transaction, the exe
cution of a transaction is defined by the execution of the sub-transactions and
the communication between them. Communication between sites is often a bot
tleneck in distributed systems. By making the distinction between sites explicit
in the model, it is possible to analyse the message complexities of transactions in
terms of communication between sub-transactions.

59

Chapter 4

Concurrency control

Modern system designs have made it possible to execute processes concurrently,
thus increasing the throughput of the systems. By concurrent execution of trans
actions the number of transactions that can be processed in a period of time is
increased.

It is not possible to execute all transactions at the same time. A transaction
that uses the result of another transaction has to wait until that result becomes
available. Also, two transactions that both try to access a critical section (for
example a printer) cannot run concurrently.

If two transactions are executed in parallel we imagine that their basic steps
are executed in an interleaved fashion, not exactly at the same moments. This
eases reasoning about concurrent transactions.

4.1 Concurrency and consistency

There is a strong relation between the amount of concurrency allowed by the
databases and the maintenance of data-consistency. Transactions are designed
in such a way that the execution of a single transaction leaves the database in a
consistent state.

It is much harder to satisfy the consistency requirement if transactions are
processed in an interleaved fashion. Other transactions can interfere with the
execution of a single transaction, thus invalidating its execution. An example of
this is given in figure 4.1. The consistency requirement is that accounts A and
B sum to zero. However, due to the incorrect interleaving of basic actions of two
transactions, this consistency is destroyed.

An explanation of the figure is probably helpful. Normally, a transaction is
modelled as a sequence of read and write actions on data items. To show that
arbitrary interleaving of transactions destroys the consistency of the database
the internal computation of the transactions 1 and 2 is represented by the small
statements. For each data item it accesses, a transaction has an internal vari-

60

Time line ~

Transaction 1 R(A) R(B) switch a,b W(A) W(B)

internal variables a=IOO a=-IOO
b=-IOO b=IOO

Transaction 2 R(B) R(A) ,wi~h ,h W(A) W(B)

internal variables a=-IOO a=-IOO
b=-IOO b=-IOO

A: 100 -100 -100 -100

B: -100 -100 100 -100

Figure 4.1: CONCURRENT TRANSACTIONS DESTROY CONSISTENCY

able representing that data item. If a transaction reads from the database, the
result is stored in the corresponding internal variable. Four different "snapshots"
show what the state of the database is. As would be expected, the database
consistency is disturbed during the execution of the database. The database is
still inconsistent after both transactions have finished execution. Therefore the
schedule is incorrect.

The schedule show in 4.1 is incorrect because transaction 2 reads 'part of
its data while transaction 1 is executing. During this execution the database
consistency is not guaranteed, so transaction 2 can read from a (temporarily)
inconsistent database. The correct execution of a transaction is only specified
if a transaction reads a consistent database, no consistency requirements are
placed on a transaction that reads from an inconsistent database. As can be seen
from the example transaction 2 is capable of destroying the database consistency.
Therefore a method to determine whether transactions can execute in parallel is
needed. This is called concurrency control.

4.2 The serializability concept

A sequential execution of transactions always preserves the consistency of the
database. This leads to the notion of serializability. A schedule s is called
serializable if there exists some sequential schedule that has an equivalent effect
on the database and executes the same transactions. In general the reads-from
and writes-writes relationships of s should be preserved, and the final state of the
database should be the same. This is called conflict serializability.

Theorem 4.1 A serializable schedule is a consistency preserving schedule.

61

Only an intuitive proof of the theorem is given. Two unrelated transactions can
be executed concurrently or in a sequential way, without disturbing the database
consistency. Consistency can only be broken by transactions that do have a reads
from or writes-writes relation. If these transactions are executed in an interleaved
fashion the database consistency can be destroyed. Exactly this behaviour is pre
vented by the serializability requirement. Conflicting transactions are scheduled
either before or after each other, but not interleaved.

To be able to maximize the amount of concurrency in the database, as many
as possible schedules should be allowed.

Note however that there exist consistency-preserving schedules that are not
serializable. Therefore, the set of serializable schedules is only a proper sub
set of the set of consistency preserving schedules. Checking that a schedule is
serializable has been proven to be NP-complete.

A schedule is legal for a certain scheduler if it can be generated with that
scheduler. Existing efficient schedulers all restrict the set of legal schedules to a
subset of the serializable schedules, in order to reduce the complexity of generating
legal schedules.

4.2.1 View serializability

It can be argued that the writing of a data item X that is never read before it is
written again is useless. As no one has observed the writing of X, there would be
no difference if the first write of X had never taken place. To represent this, the
notion of view serializability is defined. A certain schedule is view serializable
if it is equivalent to a sequential schedule that executes the same actions and
preserves the reads-from relation between the transactions. Also the final states
of the database should be the same. Note that the writes-writes relation between
transactions is no longer important. Again, proving that a concurrent schedule
is view serializable is NP-complete in the worst case.

It is interesting to note that if some writes are actually useless, the entire
execution of these writes can be skipped. This assumes of course, that the over
writing transactions do no fail to complete their execution and abort.

4.2.2 Final-state serializability

Where view serializability abstracted from useless writes, final state serializabil
ity observes only the final state of a database. Intermediate states during the
execution of a schedule are regarded as temporary states. Only the final result of
the database is important. This assumption will probably not hold in real-time
databases, where transactions can have a visible effect, not only on the database
state but also on the real world.

A schedule is final-state serializable if it is equivalent to a sequential sched
ule that executes the same transactions. Equivalence of the schedules is now

62

defined as equivalence of the final database states that result from executing the
schedules.

4.2.3 Constructing workable schedules

Solving an NP-complete problem every time a set of transactions has to be sched
uled is not a feasible option. Therefore, efficient schedulers that allow only
a subset of the serializable schedules to be generated have been constructed.
These schedulers can be regarded as heuristic methods to solve the NP-complete
scheduling problem. Although they do not provide optimal concurrency, they
introduce an acceptable overhead on the system.

A short description of the widely used two phase locking protocol is given
and the difference between pessimistic and optimistic protocols is examined. Note
that the two phase locking protocol serves as an implementation of the two phase
locking scheduler.

Two Phase Locking

It is assumed that the scheduler is given a set of transactions T and a partial
order -< on T. Transactions t, is ordered before t2 if (wlog. ') t2 reads or writes
a data item X that has been previously written by t , .

Suppose t, -< t2. The two phase locking protocol forces t2 to wait until t, has
finished, by locking data item X. A locked data item cannot be accessed by any
other transaction, and t, does not release the lock until it is about to finish.

For simplicity it is assumed that only one transaction can have a lock on a
data item, although optimizations can be made. So transaction t2 has to wait or
must abort, unless t, releases the lock on X.

Serializability is not yet enforced by this simple locking mechanism, but with
a slight adaptation it will. Two phase locking (2PL) received its name from this
adaptation: the protocol consists of a locking phase and an unlocking phase.

A transaction acquires all the locks it needs to execute in the locking phase.
In the unlocking phase, a transaction releases its locks. Once the transaction
is in the unlocking phase, it cannot obtain locks anymore.

The two phase locking protocol prevents the following, not-serializable be
haviour: transaction t, locks X, writes X, releases X. Transaction t2 locks,
reads, writes and releases X. Transaction t, locks X again and reads it. This
is not serializable: t2 reads X from t , . Therefore, t2 must be executed after t , .
But t, reads X from t2, so it should occur after t2! This is a contradiction, so
the scheduled transactions are not serializable.

The scheduler does not prevent deadlocks. Deadlocks may occur if two trans
actions need data items X and Y. Transaction t, has acquired a lock on X and

1 without los8 of generality

63

needs access to Y, transaction t2 has acquired a lock on Y and needs access to
X. Both must wait for the other transaction.

Optimistic versus pessimistic schedules

Two phase locking is a perfect example of a pessimistic protocol. It assumes
that a lot of conflicts between transactions occur. Therefore, it does not execute
a transaction until it is absolutely sure that it does not conflict with any other
transaction in progress. This is ensured by the locking mechanism.

However, in a large database the chance that a conflict over a piece of infor
mation occurs between two transactions may be very low. If almost no conflicts
occur transactions must unnecessarily wait for the locking of their own data items
before they are allowed to execute. This observation has led to the construction
of optimistic schedulers.

An optimistic scheduler first executes the transactions and then validates
whether the transaction was executed according to a serializable schedule. If
a conflict between two transactions occurs, one of them is aborted just before
commit. It is still a point of study to determine under what conditions optimistic
schedulers out-perform pessimistic schedulers.

Time stamps

Another well known method of scheduling uses time-stamps. Each transaction
receives a unique time-stamp at some point. Now two transactions that both
access the same data item have to be executed in an order that depends on the
value of their time stamps. Time stamp schedulers can either be optimistic or
pessimistic, depending on the moment that transactions receive their time-stamp
and the moment that these time stamps are checked.

4.3 Weakening serializability

Determining if a schedule is a serializable schedule is an NP-complete problem.
Efficient schedulers that produce serializable schedules never provide optimal con
currency because they use only heuristic solutions of the serializability problem.
Also serializability does not completely capture the notion of consistency. To
increase the amount of concurrency that schedulers allow, different approaches
to database-consistency have been explored.

4.3.1 Epsilon Serializability

The first approach to mention is the notion of epsilon serializability. Epsilon
serializability is a generalization of classic serializability. It explicitly allows some
limited amount of inconsistency in transaction processing. This increases the

64

concurrency allowed by the database as some not-serializable schedules are per
mitted. In particular, read-only transactions are allowed to run concurrently with
update transactions. This might result in a inconsistent view of the database,
but the database consistency is not affected. In general, Epsilon serializability
bounds the amount of inconsistency that transactions are allowed to see.

Implementation outline

With each state of the database an amount of inconsistency is associated. This
is defined as the distance of the state to a consistent state. Assume that a func
tion distance(u, v) exists that defines the distance between every pair of states u
and v. The database state space is metric if the distance function is symmet
ric and satisfies triangle inequality (for all states u,v,w holds: distance(u,v) +
distance(v, w) ~ distance(u, w)).

Now an epsilon-serializable schedule allows read-only transactions to run con
currently with update transactions if the amount of inconsistency they introduce
is bounded by some import-limit. Likewise, an update transaction has some
export-limit that specifies the maximum amount of inconsistency that it can ex
port to concurrent, conflicting reading transactions. What limits can be allowed
is dependent on the application that uses the real-time database.

Note that reducing the limits to zero gives us the classic serializable schedule.
Pessimistic approximations of the amount of inconsistency can be computed if
the database state space is metric.

4.3.2 Similarity Serializability

Similarity serializability is based on the observation that in real-time systems
data items will never exactly match the status of objects they are describing.
Similarity is a binary relation on the domain of a data object. Intuitively, two
objects are similar if they are almost the same.

A schedule is view similar to another schedule if it schedules the same trans
actions and if these transactions read similar data. So intuitively, a transaction
would in both schedules receive almost the same input. View similar schedules
are only one version of schedules that are based on similarity. Whether two values
are similar depends on the nature of the application of the real-time database.

Similarity of time

This concept is introduced to real-time database systems for the notion of time.
Two measurements of an object that were taken at approximately the same time
can be regarded as similar. This allows the use of slightly older values for read
actions, even while the new values are being measured. This eases the problem

65

of scheduling transactions in real-time. A discussion is presented in the chapter
about time management.

4.4 Restricting transactions

Advance knowledge about the behaviour of transactions can enable us to do
more efficient scheduling. All previous schedulers used the reads-from relation to
govern the scheduling of conflicting transactions. However, if for example it is
known that all data items are written by only one transaction, all transactions
can execute concurrently if a version management scheme is implemented. In the
next subsection the version management mechanism is explained.

By restricting the types of transactions allowed in the database the NP
complete serializability problem can be circumvented and efficiently produce
highly concurrent schedules. This does of course limit the power of transac
tions. In the next section an example of a scheduler that exploits this property
is provided.

4.4.1 Version management

A common transaction is the read-only transaction. Typically the user re
quires information and is not going to change the state of the database. The
common occurrence of the read-only transaction justifies the separate treatment
that is given here.

In a distributed database several transactions can be issued at roughly the
same time. It is often not very clear in what order transactions should be pro
cessed. Therefore, if both a read-transaction and a write-transaction are issued
and both transactions access the same data item, it does not matter in what
order they are serialized. So for a read-only operation it makes no difference if it
reads the most recent value or a slightly older one! Bearing this in mind, read
only transactions can be optimized by running them concurrently with update
transactions.

Multi-version databases

To be able to serialize read-only transactions multiple versions of each data item
are kept. Now if a read-only transaction is scheduled, it reads the latest, com
pleted version of the data items it needs that are available at the moment the
read-only transaction is scheduled. Update transactions can write newer versions
of the data items that are being read, but this does not influence the outcome
of the read-only transaction. With this construction it is always possible to seri
alize a read-only transaction. These transactions can always proceed with their
execution.

66

Discarding versions

The existence of more than one version of each data item in the database places
a huge demand on the resources that it can use. If old versions of data items
are not discarded, the amount of data that needs to be stored by the database
will grow out of bounds. A mechanism that discards versions that will not be
necessary anymore is needed to make multi-version databases a viable option.

Depending on the exact scheduling mechanism a number of implementations
is possible. A general solution is to keep the latest version always in the database
and to keep track of the number of transactions that are still using an older
version. If transactions are not allowed to be scheduled late (i.e. if a transaction
arrives late it is aborted) old versions can be discarded as soon as no read-only
transaction uses them anymore.

4.5 Handling deadlock and lifelock

Two important problems that should not be forgotten when designing schedulers
are the problems of deadlock and lifelock. In a distributed database system
these events cannot be locally detected. It is possible that a transaction tl waits
on t2 in site a, while t2 waits on tl in site b. To be able to detect and do something
about deadlock in a distributed system communication between the different sites
of the database is needed.

4.5.1 Deadlock

If the database system makes use of some locking scheme to enforce serializable
behaviour, deadlock may occur if two transactions lock a subset of the data
items that they both need. No transaction acquires all its data items, so no
transaction can proceed. They both wait on each other to release the locks they
need. Deadlock can be prevented by checking that the "waits-for" dependencies
introduced by the locking scheme are partially ordered. This means that no cyclic
waiting may occur. If such a cycle exists, one of the transactions that is part of
the deadlock has to be aborted. This checking is done by maintaining a so-called
dependency graph. Vertices in the dependency graph denote transactions, and
edges between vertices denote "waits-for" relations. An excellent overview of the
theory of deadlock detection can be found in [Kna87].

Distributed deadlock

A deadlock in a distributed database can extend over more than one site. The
information that is known about transactions at a single site is not sufficient to
detect deadlocks. Several methods have been designed to detect deadlocks. A
few methods are named without going into details.

67

• Transaction timeouts. If an upper bound of the transaction execution time
is known, deadlock can be detected with the use of timers. If a transaction
fails to terminate in time, a deadlock has occurred.

• Constructing a global dependency graph. If all sites send their local depen
dency graph to one site, all dependency graphs can be combined to produce
a global global dependency graph.

• Chasing dependencies. If a site notices that a transaction it is processing
is dependent on a transaction that is executing at another site, it sends the
relevant dependency information to that site. If that site concludes that a
cycle occurs (with aid of the received information), the deadlock is detected.

Methods to resolve the deadlock need to follow the detection. The methods are all
based on the aborting of one or more transactions that are part of the deadlock.
A problem in this area are "shadow deadlocks", i.e. the detection mechanism
decides to abort transactions before deadlock has actually occurred.

4.5.2 Lifelock

Deadlock cannot occur in optimistic schedules, as transactions never wait. How
ever, lifelock might occur. Lifelock is the situation that, although the database
keeps processing transactions, a single transaction is never processed. Suppose
that an executing transaction always finds out in the validation phase that it con
flicted with a committed transaction. It has to abort the execution and resched
ule.

Lifelock can be prevented if the scheduler can choose the transaction it aborts.
In general, a transaction has to abort because it conflicts with a set of other
transactions. If it is possible to abort this conflicting set, lifelock can be prevented
by aborting the transactions that have aborted the least. This ensures that the
oldest transaction in the system is not aborted. Eventually each transaction
will be the oldest in the system or it will have committed. So eventually each
commits.

68

Chapter 5

Reliability

Databases are meant to store information over long periods of time. With our
current state of technology it is unrealistic to assume that the database system
will never fail. Hardware errors, communication failures, software errors, almost
anything can happen. It is possible to design hardware that uses redundancy to
decrease the probability of a hardware failure. Likewise, software techniques are
shown that prevent failures of the system to leave the system in an inconsistent
state.

5.1 Failure models

Many different types of failures can occur, as was written in the introduction of
this chapter. Two types of failures are recognised, based on the severity of the
failure:

• Fail-stop failures. If a fail-stop failure occurs in a system, the system
simply halts with its computation. After an unknown period, it restarts or
continues its computation. When a system is able to continue its compu
tation without losing its program state, the failure is called an omission.
Omissions preserve the program state, but some results (messages) may
have been lost. After a fail-stop failures, the program state has been lost
and the system has to reboot. The time that a site needs to recover can be
arbitrarily long .

• Fail-insane failures. When a fail-insane failure occurs in a system, the
system doesn't stop, but it executes in an unpredictable way.

Fail-insane failures are more severe than fail-stop failures. The proof of this is
simple: a fail-insane system can decide to behave like a fail-stop system. But it
can also decide to continue the computation, acting quite normal but twisting its
output. Conclusions based on this output will be incorrect. There is no fool-proof

69

way of telling if a system behaves correctly, as the checking algorithm itself may
produce incorrect output.

5.2 Maintaining consistency

In the previous chapter atomic transactions have been defined. The effects of an
atomic transaction are either implemented entirely, or not at all. This property
is used to maintain the consistency of the database. In this section methods
to implement the behaviour of atomic transactions are examined. Transaction
atomicity is preserved even when the system fails in the middle of a transaction.

5.2.1 Recovery from fail-stop failures

If the system fails in the middle of a transaction, this could lead to an inconsistent
database. This happens for example when the system fails after half of the writes
of a transaction have been carried out.

So the database has to be repaired when the system recovers. In the worst
case, all main memory has been erased by the failure. Stable storage is needed to
reconstruct the previous system state. Stable storage is a storage device (hard
disk, tape, etc.) that is failure-free. This is often implemented in hardware.

The undo/redo mechanism

In order to recover from failures all relevant transaction information is stored
in a sequential file on stable storage. This file is called the log. Now before
the results of a transaction are written, the previous values of the database are
saved in stable storage. Then a "begin transaction" message is written to the
(sequential) stable storage. Next, the updates of the transaction are actually
carried out. When all updates have been applied to the database, "transaction
finished" is written to stable storage.

The claim is that with this extra information, the atomicity of transactions
can be ensured. Suppose the system has failed. Now when the database recovers,
it reads its stable storage until it reaches the last "begin transaction" message. If
an "end transaction" message follows, the system failed after completion of the
transaction. Nothing needs to be corrected, the system is in a consistent state. If
no "end transaction" message has been written to stable storage, the transaction
was still in progress. All its writes are undone, by rewriting the previous state of
the database that was saved on the stable storage.

The writing to permanent storagel may take place after a transaction has
committed. If the system fails after the commit but before the actual write to

1 With permanent storage the normal database storage (hard-disk) is meant. Note that the
writing to stable storage is never delayed.

70

stable storage, it is impossible to undo the transaction. When this happens the
log is used to redo the transaction.

This is the simple, centralised implementation of atomic transactions. Adap
tations have to be made in a distributed environment but they will still be based
on the existence of logs.

5.2.2 Handling fail-insane failures

Fail-insane failures are much harder to handle. The assumption of stable storage
can not be made, as a fail-insane computer can overwrite its own storage. A
solution could be a stable write-once, read-many storage. In this way, all correct
actions of the system are preserved. It would be very hard to analyze this stor
age on recovery, because there will be no sharp boundary between the correct
behaviour and the fail-insane behaviour of the system. I personally know of no
results in this direction.

In a centralized system nothing can be done once a fail-insane failure occurs.
One has to pray that it does not wipe out the entire database. Fail-insane failures
can be handled to some extent in distributed databases. Replication of data
prevents information to be destroyed by one fail-insane site.

5.2.3 Voting on actions

The adverse effects of fail-insane sites can be negated by voting on actions taken
by the distributed database. An action on the database will only be executed by
all sites if at least a majority of the sites concludes that it is a legal action. For
these schemes to be successful, it is necessary that there is a bound on the number
of sites that may fail-insane at the same time. Typically, at least a majority of
the nodes participating in a vote must be correct.

5.2.4 Input certification

A noteworthy technique is that of input certification. An insane site that
participates in a protocol does not need to send the same information to all sites.
This can sometimes result in different conclusions in different correct sites. If the
system tries to come to a global decision, this cannot be tolerated.

To prevent insane sites from sending different messages to different sites when
they should be broadcasting a single message, a broadcast b from a site s that
arrives at site t is not passed on to the controlling system. Rather, site t sends
a message (s, b) to all other sites. This message effectively states "I received
broadcast b from site s". Now if a node receives the same (s, b) message from at
least half of the sites in the network, it accepts this message as a correct message.
In this way, a fail-insane node can only send the same message to all nodes in
the network.

71

5.3 A vailability of the database

Another issue of dependability is the availability of the database. If a centralized
database fails, the information stored is no longer available. But in a distributed
network access to the remaining database sites in the network can still be pro
vided.

5.3.1 Fault tolerance

By introducing redundancy in the database it is possible to make the system more
fault tolerant. A very simple scheme that is used to build reliable computers is
replicating the entire database X times. This X-redundant system can now
handle X-I system crashes. If recovery mechanisms are provided, the system
can handle X-I system crashes at roughly the same time.

5.3.2 Distributing data

There are several ways to store data in a distributed database. If the database is
not redundant, each item is stored at a single site, the crashing of a site will pre
vent access to items stored at that site. In a lock-based system transactions that
accessed data stored in the crashed site have to be aborted. Only transactions
that use data items stored in surviving sites can continue execution.

Replicating data

Instead of the crude mechanism of replicating the entire database, single data
items can be replicated and stored at more than one site. If one site fails, other
sites are still able to provide access to all the information in the database.

There are several problems with this approach. Of course, replication of data
reduces the overall capacity of the database. Algorithms that were simple and
elegant in the not-replicated version become much more involved, if the system
incorporates replicated data.

For instance assume that a transaction running at site t has locked a data item.
Subsequently the site crashes. A mechanism has to be provided that releases all
locks held by transactions on a crashed site. If no such mechanism exists the
failure of a single site will prevent access to large parts of the database and no
performance is gained from the replication of data.

So the design of the concurrency control mechanism should explicitly deal
with the distribution of data. In the chapter on distributed systems, protocols
that make use of replicated data to increase availability are discussed.

72

Chapter 6

Distributed systems

Distributed databases are useful because they enhance the reliability and avail
ability of databases. They allow more concurrency than centralised systems and
appeal to object-oriented programming approaches.

However, there is a price to be paid for these extra features. The database
controlling protocols are more complex than in centralized databases and com
munication between sites is often a bottleneck. For instance, implementing a lock
in a centralised database can be realised with simple semaphores. Implementing
a lock in a distributed database requires the exchange of lock information be
tween sites. If information about a lock is distributed over more than one site
(to increase availability), the message cost grows in proportion.

In this chapter a few protocols are presented that are specially designed for
distributed systems. This is meant to provide some insight in the complexities
that arise in distributed systems.

6.1 Atomic commit protocols

One of the first problems that is unique for the distributed environment is the
global commit. In a centralised database a transaction commits by writing
a single message to stable storage. How this could be implemented in dis
tributed databases is not instantly clear. A transaction consists of several sub
transactions. For each site that participates in the transaction a separate sub
transaction is defined. A protocol is needed to ensure that either all sub-transactions
commit or that all sub-transactions abort. This is known as an atomic commit.
All sites should agree on the same decision.

Decisions made by a site are un-reversible, and should be available within
finite time. Finally, a transaction should commit if all of its sub-transactions
commit, and no failure occurs. This property prevents the obvious solution of
always aborting transactions.

73

6.1.1 Blocking

One additional feature that is important fort he functionality of an atomic commit
protocol is the so called non-blocking property. A protocol is blocking if
the failure of a site that participates in the protocol blocks further execution.
In particular: the protocol cannot abort and has to wait for recovery of the
crashed site. The non-blocking property is not easily implemented. Theoretical
results show that it cannot be guaranteed if no time-out mechanism or hardware
detection of site failures exists. Therefore it is assumed in the rest of this chapter
that such a failure-detection mechanism exists.

6.1.2 Two phase commit protocol

This is a simple, blocking protocol that offers just the basic services that we
demand from an atomic commit protocol. It works as follows: The initiating site
sends messages containing the necessary information for the sub-transactions to
all sites. Once a site has finished its local computation it either aborts and sends
"aborting" to the initiating site or it sends "ready". The initiating site receives
all messages. If at least one message is an "aborting" message, the initiating sites
sends "abort" to all participating sites and aborts. Otherwise it sends "commit".
All participating sites receive the message and abort or commit accordingly.

6.1.3 Uncertainty of sub-transactions

Uncertainty is a fundamental property of (sub-)transactions. At the beginning
of an execution the sub-transactions are not certain whether the transaction will
commit or abort. The computation can still go both ways. At some point in
the computation, the decision is made to either abort or commit by each site.
Once it is possible that some site has decided on either of the two, no site may
decide on an action without information about the decision in the other sites, for
otherwise two different decisions could be taken.

With this property in mind, let us analyse the behaviour of the simple two
phase commit protocol. At the beginning, no site is allowed to decide to commit.
All sub-transactions can safely decide to abort. Therefore as soon as some site
fails, the remaining sites abort the transaction.

The analysis becomes interesting once it becomes possible that some site
has decided to commit. In the two phase commit protocol, the first site that
decides to commit is the site where the transaction was initiated. Suppose some
participating site p has sent its "ready" message to the initiating site and the
initiating site fails before p has received the decision. Site p is now uncertain
whether it has to abort or commit. Using some broadcast protocol it can try to
gain certainty from other participating sites.

74

Suppose the initiating site is the sole failing site. The total set of messages
that were sent to the initiating site can be gathered, so the decision that was
taken by the initiating site can be deduced. If at least one other site failed, this
does not apply. The remaining sites miss relevant information so they cannot
infer what the initiating site was about to decide. When all remaining sites are
uncertain, no site can decide whether to abort or to commit. The protocol is
blocked.

It can be seen that the initiating site is never uncertain, so it can always
decide on a course of action. This is because the initiating site is the first site
that is allowed to decide to commit. Therefore, as long as the initiating site has
not failed, the protocol is not blocked. Likewise, the protocol is not blocked if
some remaining site has not yet sent its "ready" message or if some remaining
site has already received the decision. The only scenario in which the two phase
commit protocol becomes blocked is the scenario just described.

6.1.4 Non-blocking commit protocols

It is possible to construct commit protocols that have the non-blocking property.
Instead of showing and analysing an entirely new protocol, it is briefly shown
how improving a basic step of the two phase commit protocol does provide the
non-blocking property.

Recall that the only scenario in which the standard two phase commit pro
tocol is blocking, is when the initiator fails and at least one other site does the
same. These two sites could have committed before they failed, so the remaining
sites cannot abort. This is because they are uncertain about the decision of the
initiator. Implementing an atomic broadcast suffices to realise the non-blocking
property. An atomic broadcast is a broadcast where either all sites receive the
message, or no site receives the message.

Achieving non-blocking with atomic broadcast

Now the initiator does not decide on commit until it has finished its atomic
broadcast. If it crashes before it has broadcast the decision, it has not yet taken
that decision, so the other sites can abort. If it crashes after the broadcast,
all sites will have received the decision. Observe that in the previous protocol,
delaying the decision till after the broadcast was not sufficient to provide the
non-blocking property. This is because a participating site that received the
"commit" message and subsequently failed could be the only site that committed
if the initiator failed in the middle of the broadcast.

The implementation of an atomic broadcast is beyond the scope of this overview.
It suffices to say that it can be achieved at an increased delay in time and with
a higher message cost.

75

Time line

Sub-transaction T ~
I

Sub-transaction T ,

I I

~~
I I

Figure 6.1: NOT-TWO PHASE LOCKING BEHAVIOUR

6.1.5 Global synchronisation

In many distributed algorithms a global synchronisation point is needed. An
example of that is the commit protocol. The initiating site knows that all par
ticipating sites have progressed to a certain point (they have all sent their status
messages), before it broadcasts its decision. So before sites decide to commit, all
sites have at least responded once. Note that reasoning about time in distributed
environment is a little more complex than presented here, as sites have no real
notion of "global time".

Several different algorithms have been constructed that achieve global syn
chronisation. The algorithm described above is dependent on its initiating site.
Other variants have been designed that increase robustness, decrease time com
plexity or decrease message complexity.

Distributed two phase locking

To be able to design a distributed version of the two phase locking protocol a
global synchronisation protocol is needed. Recall that essential for the two phase
locking protocol was the existence of a locking phase and an unlocking phase.

Suppose the two phase locking protocol is used to schedule a distributed
transaction. It is not sufficient to ensure a local two phase behaviour, as the
sites are not synchronised in time. In picture 6.1 an example is given of not
two phase locking behaviour that arises because the sites are not synchronised.
Sub-transactions Tl and Tz execute on different sites that are not synchronised.
Because of communication delays or because of the difference in speed of the two
sites the sub-transactions do no start and stop their locking and unlocking phase
at the same moment. The phases are so far apart that Tz begins its locking phase
after Tl has finished its unlocking phase. Another transaction A could now read

76

the results of Tl and write the data items that T2 is going to use. This not
serializable behaviour exists because transactions have no global synchronisation
point between the locking and unlocking phase.

6.2 A vailability of data

Data that is stored in the database should be accessible at all times. Even if some
of the sites fail, one would like to manipulate data. This is clearly impossible if
data is stored at a single site. However, if data is replicated over multiple sites,
it will be available as long as at least one of the sites remains functional.

Although data replication increases the availability of data, it introduces prob
lems for maintaining correctness. Recovery management is needed to update sites
that recover from crashes, as changes will have been made to data items that are
also stored at the recovering sites. But most important, the concurrency control
algorithms have to deal with the replication of data.

Access to a data item is no longer centralised at a single site, but is distributed
over the network. Producing correctness preserving schedules requires commu
nication between the sites in the network. A number of distributed concurrency
control algorithms are mentioned.

A simple strategy

Each copy of a data item is treated as a separate data item. If a transaction wants
to read or write an item it has to obtain locks on all copies. Obviously this leads
to a high communication and storage cost without an increase in concurrency
or availability. To design an efficient concurrency control algorithm, mechanisms
are needed that increase concurrency and provide access to data even if a few
sites fail.

Single read-lock strategy

A minor adaptation to the previous scheme is that a transaction that just reads
a data item X only locks the local copy of X. In this way, read actions can be
executed concurrently. Write actions still conflict with other writes and reads.
Read actions are not blocked if a site fails, write actions have to lock all copies
and cannot proceed.

Primary copy strategy

This section is concluded with presenting a simple version of the primary copy
protocol. This protocol maintains a high level of availability, even if some sites
fail.

77

For each data item a primary site is defined. The copy of the data item
stored there is the primary copy. All other copies are backup copies. Transactions
request read and write locks only at the primary site. Therefore, actions are not
blocked as long as the primary site remains functional. Other adaptations of the
primary site protocol deal with the crashing of the primary site. Still, the simple
primary copy strategy is an improvement over the single read-lock strategy where
an arbitrary site failure would block the protocol.

6.2.1 Network Partitioning

If the network that is the foundation for a distributed database becomes parti
tioned it would be nice if the two separated parts of the database would remain
functional. Information that has only been stored in one partition is unavailable
for the other partitions of the database. Transactions that act on this information
can only execute if they are issued in the same partition.

So network partitioning cripples the performance of the database in the un
replicated case. But problems are not over if the available data in the database
is replicated. If update transactions are applied to data while the network is
partitioned, it is possible that two different values are assigned to copies of the
same data item. If the network is connected again the database is no longer
consistent. Only read-only transactions are allowed in all partitions while the
network is partitioned. Update transactions can be allowed in one partition.
If updates would be allowed in more than one partition, two or more different
copies of one data item can exist. If updates are only allowed in one partition,
all other partitions can use the old copy of the data item. (As the network is
partitioned, it is certain that transactions running in different partitions can be
serialised by putting all the transactions from the read-only partitions before the
update-partition).

78

Chapter 7

Time management

In conventional databases information is static: as long as no transaction changes
the information, it does not change. This is not the case in real-time databases.
Often, information loses value as it grows older. This is especially the case when
the information in question is a representation of the real world (hence the name
real-time databases), as the real world changes in time. Likewise, if two pieces
of information are gathered at completely different times, they do not relate to
each other.

7.1 Temporal consistency

From the observations just made temporal consistency can be formulated in
two components:

• Absolute consistency. A direct relation must exist between the state of
the environment and its representation in the database. If the system has
an incorrect view of the environment its actions will be nonsensical.

• Relative consistency. Data derived from the environment must be tem
porally consistent with the other data that has been derived.

Examples of both absolute and relative temporal consistency are given. Sup
pose a computer is used to monitor the amount of people in a room. If it counts
the number of people every five seconds, it will always have a good approximation
of the number of people in the room. If it counts once every hour and everybody
leaves after thirty minutes, the representation in the computer would no longer
reflect the real world, it would be inconsistent.

Now suppose the computer monitors two rooms. First it counts all people
in room one in five seconds, then all people in room two. However, while the
computer was counting, people were switching rooms. If both counts were ten,
can it be concluded there were twenty different people in the rooms? If the rooms

79

are adjacent about five people could have switched, so only fifteen different people
are needed to arrive at our result. The two counts would not be temporally
consistent.

But when the rooms are fifty meters apart, almost no one could have crossed
that distance in five seconds, so there are indeed twenty different people. The
results of the two counts are then indeed temporally consistent, i.e. the fact that
in the real world people cannot be in two rooms at the same time combined with
the data allows the computer to conclude that there are at least twenty different
people present.

7.1.1 Absolute consistency

Information that reflects the real world is only valid for a certain interval in
time. The length of this interval is dependent on the nature of the object that is
represented and the amount of inconsistency that is allowed by the system.

If an object is changing rapidly, the interval during which information is valid
will be short. If the database requires that information about an object may only
deviate five percent from the real status of the object, the information may have
to be refreshed more often than when it is allowed to deviate ten percent.

So far, it has implicitly been assumed that the behaviour of objects is pre
dictable. If an object can suddenly change its entire state, it is impossible to
prevent inconsistencies to exist in the database. Likewise, linear behaviour of
the information about objects has been assumed. When a small change in data
reflects a major change in the state of the object, even small inconsistencies in
data can lead to totally wrong conclusions. For example, if a five degree error
is allowed in the temperature of water, the difference between ice and water if it
is just below freezing point cannot be specified. While for normal temperatures
a deviation of five degrees might be acceptable, it is not acceptable around the
freezing point of water.

If it is impossible to refresh the information stored in the database often
enough to maintain an acceptable representation of the real world, one can use
the predictable behaviour of objects to extrapolate the history of an object. If
bounds on the speed with which an object can change its status are known,
numerical methods can be used to bound the error that is made in the prediction.

7.1.2 Relative consistency

Related data about objects in the real world is only consistent with each other
if the data was gathered at approximately the same time. This is called the
relative consistency of data. As with absolute consistency, relative consistency is
dependent on the speed with which the represented objects are changing and the
amount of error that is permitted.

80

But where absolute consistency is only preserved for a small interval in time,
relative consistency is a permanent property of a pair of data items. Data items
are consistent if they have been gathered within a specific period of time from
each other.

Relative temporal consistency is not a transitive relation, if A and Bare
temporally consistent, and Band C are temporally consistent, it is not necessary
that A and C are temporally consistent.

This is easily illustrated. Suppose data items are temporally consistent if their
age does not differ by more than five seconds. Now A is gathered at time 10. B
has been gathered at time 14. Clearly, A and B differ only 4 seconds and they
are temporally consistent with each other. Now C has been gathered at time
17. Band C differ only 3 seconds, so they are consistent. But A and C differ 7
seconds, and they are not relatively consistent.

7.2 Time critical scheduling

In a real time environment transactions will have a time-interval associated with
them. The real-time database must ensure that each transaction is executed
within its own time-interval.

7.2.1 Time based scheduling

The problem of scheduling a set of transactions that all have time-intervals in
which they have to be processed on a database with limited computation power
is NP-complete. This does not even take into account that the transactions also
have to be executed in such a way that the database consistency is preserved.
Finding a serializable schedule, the most common notion of database consistency,
is in itself an NP-complete problem. It is therefore unrealistic to assume that the
optimal solution to the time based scheduling problem can be found.

Behaviour under overload

If too many transactions have to be processed in a time interval, there will be no
solution of the scheduling problem. The database is unable to process all trans
actions in time. We would like a scheduler that even under these circumstances
processes as many transactions within their intervals as possible.

Transaction execution length

To do any intelligent scheduling, information about the execution length of trans
actions is needed. If no such knowledge is present the optimal strategy is to sched
ule transactions as early as possible. The notion of slack time is important. The
amount of slack time that a transaction has is the length of the interval in which

81

it is allowed to execute minus the amount of time that it needs to execute. A
correct schedule is easier to find if transactions have a lot of slack time.

7.2.2 Missing deadlines

In an overloaded system, the scheduler will not be able to execute all transactions
within their associated time-intervals. Where in normal databases it is possible
(though not desirable) to queue incoming transaction until workload decreases
and the system catches up, in real-time databases the value of a transaction
will dwindle away once its deadline has been missed. Dependent on the type of
transaction three types of deadlines are recognised: soft, firm and hard deadlines.

Soft deadlines

Transactions with soft deadlines do not lose their complete value once they
have passed the deadline. Instead, the value of a transaction that has passed its
soft deadline slowly dwindles away. The most famous example of this is the large
project (be it bridge-building, software construction, whatever). The number of
times that projects do not make their deadlines is staggering. However, most of
them are still completed. It is often better to have finished a project too late,
than not to have finished it at all. Clearly, a project cannot go on forever. If
no goal is within sight, eventually funding will be stopped, the project will be
cancelled, its value is decreased to zero.

Firm deadlines

Transactions with firm deadlines do lose all their value once the deadline has
passed. There is no use in continuing the transaction. Examples of this are
all around us. Think of going to the supermarket. If you are half-way to the
supermarket and it is closing time, there is absolutely no sense in continuing
your trip.

Hard deadlines

The last type of deadline that is recognised is the hard deadline. If a database
fails to execute a transaction with a hard deadline in time, not only does the
transaction lose all value, but this failure imposes a heavy negative value on the
system. Examples of this lie for instance in computer-controlled security systems.
A crude example is the computer monitoring a nuclear power plant. Once the
reactor temperature rises above a certain limit, the computer must activate the
emergency cooling system. If the computer fails to react in time, a major disaster
might occur.

82

7.3 Priority scheduling

The existence of different types of transactions that each have a different impact
on the system, should their deadline be missed, leads to the introduction of
transaction priorities. Clearly the priority of the emergency cooling system is
higher than the priority of the daily memo delivery program. The mechanism of
priorities can be provided as a service to the users of the real-time database or
it can be an implementation of the different types of deadlines that transactions
have. On the other hand, priorities can also be used as part of the implementation
of a scheduling protocol. For instance in the "Earliest Deadline First" protocol,
transaction priorities are defined as the inverse of their deadlines.

7.3.1 Defining priorities

Before priorities for all transactions are defined, it must be defined what these
priorities exactly mean. In most literature, if transaction t} has a higher prior
ity than t 2 , t} will always have precedence over t}. It is also possible that the
scheduler tries to maximize the total sum of priorities of transactions that are
executed. That would mean that a transaction of priority five could be aborted
by five transactions of priority one.

Imagine a vending machine. Its goal is to earn as much money as possible.
Now if it spends too much time with a customer that is about to buy a very
expensive article, it can better spend that time selling cheap articles to multiple
customers.

The normal priority scheme, where transactions of higher priority always take
precedence is more suited to implement critical 'processes, so in the remainder of
this chapter such a priority scheme is used.

7.3.2 Handling priorities

Suppose that in a very general scheduler a high priority transaction has a conflict
over a data item with a low priority transaction. One transaction has to wait or
abort. Suppose too that the low priority transaction is already being executed.
Two options are clear: aborting the low priority transaction, or letting the high
priority transaction wait. .

Aborting low priority transactions

A transaction with a high priority takes precedence over transactions with low
priorities. A simple implementation to enforce this rule is to abort all low prior
ity transactions that conflict with a high priority transaction. This mechanism
ensures that the transaction with the highest priority will always be allowed to

83

execute. There are several drawbacks to this scheme. First of all, even transac
tions that were very near commit point are aborted. This results in a large waste
of database resources and reduces the overall throughput of the system. Several
schemes have been designed to remedy this problem to some extent. In general,
they abort transactions that are in early stages of their computation and allow
transactions to finish if they are nearly done.

The second problem is that low priority transactions can be life-locked by this
mechanism, if there are a lot of high priority transactions. Often if a transaction
with a low priority is aborted several times, its priority will rise. Take for example
maintenance: missing one maintenance checkup is not very important. However,
regular maintenance is essential for a system to keep functioning in a reliable
way. Maintenance cannot be postponed indefinitely. This results in a "race for
priority" that can disrupt the entire priority scheme.

Priority inversion

If a high priority transaction that is not yet nearing its deadline has a conflict
with a low priority transaction, is does not need to abort that transaction.

Instead of aborting the low priority transaction, it runs to conclusion. But
as the high priority transaction is now waiting on a low-priority transaction, it
is effectively blocked as the low priority transaction will have to wait on higher
priority transactions.

To remedy this problem it has been suggested that the low priority transaction
inherits the high priority of transactions that are waiting for it to finish. However,
this means that a (once) low priority transaction is now allowed to abort medium
priority transactions. This is called the problem of priority inversion.

84

Chapter 8

Integrating operating system &
database design

Normally when researchers start investigating a subject, an abstract representa
tion of a real problem is formulated. The research focuses on one aspect, instead
of looking at the big picture. Once a solution to such an abstract problem is
found, this solution is translated back to the real environment and implemented.

Most of the time it is assumed that real-time databases are built on some
operating system that offers storage services. The properties of these operating
systems are only roughly defined. If the analysis of the database is combined
with the analysis of the operating system, more realistic assumptions about the
reaction time of the operating system can be made. This enhances the time
control and the precision in which the length of transactions can be predicted.

Operating systems offer file storage services, much in the same way that
databases offer more fine-grained storage services. By combining the database
with the operating system this replication of services can be avoided, thus reduc
ing the overhead imposed by the system.

These two observations justify the combining of database design and operating
system design. In this chapter it will be investigated what can be gained from
this combination.

8.1 Data caching

To increase the efficiency of the hard-disk it is useful to keep some of the infor
mation on the hard-disk stored in main memory. Even if the same information
is accessed multiple times, only two disk accesses are needed. One to get the
information from the hard disk and one to update the hard disk before the main
memory is erased. This technique is called data caching.

In large database systems, the cache cannot hold all information that is re
trieved from the hard-disk. At some moment, information stored needs to be

85

erased to make room for new data items that are not yet in the cache. The
efficiency of the caching-mechanism depends on the selection of data items that
are removed from main memory and stored back to disk.

It is important to take the disk cache explicitly into account during real-time
database design. There are two major drawbacks that have to be considered:

• System crashes. If at some moment the system crashes and the main mem
ory is wiped, all changes to data items that were cached are lost. If the
disk is cached, it is not certain that a write to the disk is instantly carried
out. The recovery mechanism has to be adapted to cope with this extra
complication. In general all transactions will be redone whose results might
have been lost in the crash .

• Transaction time bounds. In a real-time system tight bounds on the ex
ecution time of transactions are necessary to do intelligent scheduling of
transactions. If the behaviour of the caching mechanism is not analysed
only the worst case scenario can be assumed: the cache is full, data has
to be written back to the disk before the new data is retrieved and stored
in the cache. So although caching does increase the performance of the
hard-disk, it degrades the worst-case analysis as for a single read operation
at least two disk-accesses will be needed instead of one.

8.2 Virtual memory

Another technique that is frequently used in operating system design is virtual
memory. The actual main memory of a computer is often not large enough to
completely hold very large programs. The CPU can only access a very small por
tion of that memory at the same time (typically one or two locations). Therefore
large parts of the main memory will not be accessed for some time.

The technique called virtual memory makes use of this property by allowing
programs to use more main memory than what is actually available. If a program
accesses memory that does not exist, the (virtual) memory manager stores a
currently unused part of main memory on hard-disk and offers the now free
memory to the program. If main memory that is stored on hard disk is accessed
by a program, the memory is retrieved and some other part of main memory is
swapped to the hard-disk.

The virtual memory mechanism actually uses the hard disk as slow main
memory. To make optimal use of the available (fast) main memory several swap
ping algorithms are possible. Nevertheless, virtual memory degrades the speed
of main memory access.

A tradeoff between available memory and memory speed might be envisaged,
if the degradation of speed would be a gradual process. But this is not the
case. Memory access is a fast as normal until a program (or transaction) accesses

86

memory that is stored on hard disk. That memory access initiates the swapping
of memory to and from the hard disk. This is disastrous for a worst case analysis
of the execution time of transactions.

8.3 Conclusion

As illustrated by the examples above, a lot of practical problems surface if the
solutions to database problems are exported from an experimental environment
to a real environment. Especially, the worst-case execution time of a transaction
is affected by disk-IO. Without previous knowledge about transactions, cache hits
and page swapping cannot be predicted. As in real-time databases timeliness is
often more desirable than fault tolerance, a main-memory system with delayed
writes to disk may be more effective.

87

Chapter 9

Analysis of database designs

In real-time database management systems, it is not so important that the
database has a high transaction throughput, but rather that each individual
transaction has a high chance of completing before its deadline. Although these
two notions overlap, they are not the same, as has been illustrated in an earlier
chapter.

9.1 Existing results

The analysis of the efficiency of real-time database designs has been rather rudi
mentary. Almost all articles that deal with efficiency give simulation results. Al
though simulations can be very useful for comparisons between schedulers they
lack the thoroughness of the analytical approach. Relative few articles have been
written that analyse not-realtime database efficiency instead of using simulations.

In article [YDL93] both two phase locking and pure optimistic concurrency
control are analysed using Poisson processes. This paper presented an analyti
cal approximation of the average transaction length, given that the transactions
arrive at the scheduler as a Poisson process. Unfortunately the analysis of the
two schedulers is mixed, which muddles the article. This distracts from some
important assumptions that where made to arrive at the result.

To be able to say anything about the probability that a transaction will finish
before its deadline, the average execution time is insufficient. The analysis of
the complete probability distribution instead of the average execution time is in
general much more involved.

9.2 Comparison problems

An analysis of a scheduler should result in a set of success probabilities for an
arbitrary transaction under a given workload. This probability will depend also
on the transaction length and the size of the database. Even if a distribution

88

can be specified, it is not easy to compare the efficiency of different real-time
schedulers. This is because the efficiency of a scheduler depends on a number of
parameters:

1. Centralised versus distributed environment. The communication de
lay introduces problems that are very specific for distributed systems. At
the same time, distributed systems offer more computation power. It is
clear that distributed systems are unsurpassed if availability is the crite
non.

2. Read-only queries versus updates. More efficient scheduling is possible
if read-only queries are treated as a special type of transaction. Dependent
on the application of the database (mostly the percentage of transactions
that are read-only transactions) this optimization will be more or less useful.

3. Real-time scheduling versus normal scheduling. The performance
criteria for real-time databases and normal databases differ. A comparison
between a real-time database and a normal database is therefore complex,
but it might be useful to analyse the behaviour of a real-time schedule in a
non-realtime environment and vice versa.

4. Priority based or not. A real-time scheduler can offer a priority mech
anism to the users, to give them some influence over the behaviour of the
scheduler under a high system load. Of course, this affects the efficiency of
the scheduler.

5. Conflict-rate. Schedulers behave differently under different system loads.
A scheduler can be very efficient under a low system load, but lose perfor
mance as soon as the system load increases. Another scheduler can have a
rather constant performance, not perfect under relatively low system loads,
but handling well under high loads.

6. Amount of possible deadlocks. Some schedulers do not prevent the
possibility of deadlock. While this permits them to execute more efficiently,
deadlocks have to be detected and resolved. Dependent on the nature of
the transaction system, deadlocks can be allowed to exist for some time
before they are resolved. Especially in a distributed system this reduces
the message cost that is associated with deadlock detection.

7. Variance of transaction lengths. Several schedulers perform well as long
as all transactions are of the same execution length, while degrading when
lengths of transactions vary. For instance, pure optimistic concurrency
control can lifelock long transactions if a steady stream of short transactions
enters the system. Two phase locking would not suffer from this problem.

89

8. The level of reliability and availability that is required. Reliability
and availability of the database are desirable properties, but they come at
a cost. A distributed scheduler that implements no global commit protocol
is unreliable in case of site failures, but is very efficient. A distributed
scheduler that uses the two phase commit is less efficient but reliable, but
suffers from blocking, thus reducing availability. A scheduler that uses
the three phase commit protocol is both reliable and does not suffer from
blocking, but the three phase commit protocol introduces more overhead
than the other two approaches.

9. Required advance knowledge about transactions. Schedulers that
rely on access invariance1can overcome the problems of lifelock and deadlock
easily. Consequently a more constant response time can be guaranteed. The
rate-monotonic scheduler is a perfect example. This scheduler knows that
all transactions are periodic, with deadlines equal to the beginning of the
next period. All transactions can be preempted and continued later. The
last assumption distinguishes the allowed transactions of the rate monotonic
scheduler from transactions that are normally allowed by databases.

9.3 Conclusion

Very few articles deal with the efficiency of transaction schedulers in an analytical
way. In the field of real-time systems, where transactions lose their value once
their deadline has passed, guarantees about transaction execution times are even
more important than in normal databases.

In normal databases, the throughput of the system is of primary concern.
Such throughput can be easily measured in a testing environment. In real-time
systems, the execution time of each individual transaction is important and more
elaborate testing techniques are necessary. At the same time, the analysis of the
transaction execution time becomes more involved, as the average execution time
no longer suffices.

It will probably be hard to give sharp analytical results, as the problem has
remained almost without results for so many years. Research should start with
analysing simple schedulers with certain restrictions on the transaction types and
frequencies. Nevertheless, the field of real-time schedulers does need a fundamen
tal basis, that cannot be completely provided by test-results.

IThe data items needed by a transaction are known in advance.

90

Chapter 10

Research issues

After presenting this overview of the field of real-time distributed databases it is
time for some reflection. Although a lot of good results are already available in
the separate subfields it is not instantly clear that we are now able to build the
optimal real-time database with these mechanisms. In this chapter the overview
is completed by pointing out the areas where further research is still needed. This
will be contrasted by a short summary of results that are already known.

10.1 From user-interface to implementation

The real-time distributed database stores information that corresponds to the real
world and offers various services to its users. Instead of restricting the notion of
users to humans, users can range from other computers to air passing a pressure
valve. This wide range of users has no knowledge of the database structure and
high level services have to be provided.

These services are typically provided by transactions that have been pro
grammed in advance. Transaction programmers deal with input/output devices
and prefer to represent actions in an abstract language, independent from the
underlying implementation of real-time databases. Algebraic or relational lan
guages exist that allow arbitrary complex database transactions (for example
SQL). Classic languages do not deal with real-time aspects and languages that
do take real-time into account are just beginning to emerge.

The translation from algebraic (or relational) operators on an abstract rep
resentation of the database to actual dis'tributed transactions is the domain of
transaction managers. Different translations of an algebraic expression can differ
exponentially in execution time and message costs of the resulting transactions
(in a distributed environment). Finding the optimal transaction corresponding
to an algebraic expression is NP-hard. Several heuristic Transaction Managers
have been developed that offer good approximations.

91

10.2 Transaction scheduling & correctness

To increase the efficiency of transactions it is beneficiary to execute transactions
in parallel. However, the database consistency is defined only between transac
tions. During a transaction, a temporary database inconsistency is allowed to
enable efficient execution. If transactions are allowed to execute concurrently,
transactions might read data that are temporally inconsistent and act as if the
data are consistent. Permanent inconsistencies can occur. To determine whether
two transactions can execute concurrently the database system provides a trans
action scheduler.

The transaction scheduler tries to maximize the amount of concurrency (exe
cuting transactions in parallel) while it preserves the database consistency. Again,
finding the optimal schedule is NP-complete. Existing transaction schedulers
preserve consistency at the cost of reduced concurrency. As these schedulers are
simple approximations of the optimal schedule, they can be improved.

10.2.1 Transaction classes

It has been observed that for several classes of transactions the scheduling prob
lem is not NP-complete at all. A taxonomy of transaction classes that have nice
properties that allow the scheduler to generate optimal schedules efficiently can
be very useful but does not (completely) exist. A well-known class consists of
read-only transactions. All read-only transactions can execute concurrently.

10.2.2 Periodic transactions

A lot of scheduling research has gone into the the scheduling of transactions with
hard-realtime constraints. These transactions are not allowed to fail, they have to
run to completion within their execution interval or otherwise the entire schedule
is incorrect. A lot of these schedules were constructed at pre-runtime. Therefore
the complete set of transactions that was to be scheduled was known in advance.
Often the scheduled transactions are periodic, i.e. a transaction is at regular
intervals or sporadic, i.e. a transaction is run at regular intervals, but may skip
some of these runs.

The periodic nature of transactions can probably be exploited as well in soft
real-time scheduling systems. In soft real-time, the number of successful trans
actions is optimized. It is permitted that some transactions fail to meet their
deadlines, as long as it is a small percentage of the total number of transac
tions. An optimal soft-realtime schedule can always be found, opposed to a hard
real-time schedule that may not exist. An optimal real-time schedule of periodic
transactions should probably guard against life-lock.

92

10.2.3 Allowing inconsistencies

Other research tries to increase the amount of concurrency allowed at the cost of
introducing inconsistency in the database. Such a scheduler can be useful if the
amount of inconsistency introduced is somehow bounded. Especially in real-time
databases it cannot be avoided that inconsistency in data gathered from the real
world occurs. Therefore this seems a natural way to increase concurrency.

10.3 Real-time transaction scheduling

In a real-time database, transactions are only allowed to execute within certain
time intervals. A scheduler that not only preserves data consistency but also
ensures that all transactions are executed in their interval has to be provided.
The problem of generating a schedule that executes all transactions within their
intervals in an environment with limited resources is NP-complete.

Ordinary schedulers can be slightly modified to incorporate deadlines. Un
fortunately most schedulers behave badly under high system loads. An ordinary
scheduler will try to execute all transactions. If the system load is high, this will
mean that all transactions run to completion, but also that almost all transac
tions will have missed their deadlines. A real-time scheduler must decide to abort
transactions that miss their deadlines in order to complete a (constant) number
of transactions in time.

A lot of research has been directed at hard real-time scheduling. In hard real
time, not even a single transaction is allowed to fail. This is a very restrictive
constraint, that often cannot be realised. Also a common assumption is that
transactions can be pre-empted, that is put on hold and resumed later. This is
quite contrary to the correctness constraints of databases, where the database
consistency is temporarily disturbed during a transaction. It therefore seems
more logical to use the existing correctness preserving algorithms as a starting
point instead of using the real-time scheduling algorithms as a starting point for
real-time database schedulers.

10.3.1 How many resources are required?

Surprisingly little analytical studies have been published about transaction ex
ecution times, and I know no analytical results in real-time scheduling. The
performance of a soft-realtime transaction scheduling mechanism can be defined
by the probability that a transaction executes within its time interval. Several
simulation studies have been made to determine these probabilities, but no an
alytical analysis of transaction schedulers are available. An analytical analysis
would present us with a set of hardware requirements, as well as clear assumptions
on the behaviour of the users of the real-time database.

93

Associated with this probability it is interesting to specify the relation between
the performance of the real-time database and the hardware that supports the
database. If for a given real-time scheduler this relation can be specified an
estimate of required resources can be given analytically for a given problem.

10.3.2 Disk-based systems

As mentioned in the previous chapter, a lot of timing problems arise when the
underlying operating system optimizes disk access by buffering, or when virtual
memory is implemented. Periodic cache-flushes could be scheduled when no
transactions are in progress. This would prevent unreliable reaction times of the
operating system, at the cost of an extra transaction (the flushing of the cache)
that has to be scheduled.

10.3.3 Combining correctness and timeliness

Scheduling transactions in such a way that consistency of the database is pre
served while offering optimal concurrency and scheduling transactions within
their execution intervals are related. As these problems are tough to solve on
their own, they are often treated separately. In real-time databases, a scheduler
has to be provided that takes both requirements, correctness and timeliness into
account. The current approach is to use existing, correctness preserving sched
ulers and prove that under a restricted workload sufficient transactions meet their
deadlines.

10.4 Distributed transactions

The distribution of a database can increase the availability, reliability and ca
pacity of the database. This does come at a cost. First of all, communication
between the different sites of the database becomes an important factor of time
delay. Secondly, scheduling of distributed transactions becomes more involved
because of distributed deadlocks, global correctness and routing problems.

10.4.1 Communication delay

As mentioned, communication delay is an important factor in distributed databases.
Therefore algorithms that were fairly trivial in a centralised database have to be
optimized in the distributed environment. A way to reduce message costs is to
replicate data over the different sites, but this introduces new consistency prob
lems. Several solutions have been proposed and exist, but the field is still under
development.

94

10.4.2 Query optimization

The transaction manager that optimizes transactions to reduce the number of
execution steps of a transaction has to be adapted. The size and the number of
messages between sites is more important. A simple optimization is to compute
selections on tables at the local sites.

10.4.3 Fragmentation of the database

Important design choices are made when the database is distributed over the
available sites. To what extent should the information in the database be repli
cated? What is a good fragmentation of the information in the database? The
answer to these choices depends on the topology and capacity of the sites that
are cooperating to form the distributed database.

The problem to fragment a database in such a way that with a uniform access
distribution the workload is optimally divided over the sites is NP-complete.
It is therefore interesting to investigate what extra knowledge about the access
behaviour of the database is needed to come up with good distributions of the
database. An interesting starting points is for example knowledge about the
access points of data items. If a data item is only accessed by users from one or
two sites, it is natural to store the requested item on at least one of these sites.

The relation between fragmentation and replication can be studied. Of course,
access times are optimal in the fully replicated case. However, if a lot of updates
take place in the database, the replication of data introduces extra overhead
to maintain correctness instead of speeding up transactions. To what extent a
database should be replicated to provide the optimal access behaviour is an open
question.

10.4.4 Synchronising sites

The scheduler can receive new transactions at more than one site. Existing
(centralised) schedulers that make use of unique time-stamps have to ensure that
time-stamps issued at different sites are unique and somehow related (thus time
stamps issued at roughly the same time should have roughly the same value).

In general, important execution steps of transactions should be synchronised
over all sites. This means that algorithms have to make sure that all sites have
finished such an important step before they proceed to the next step of the
transaction. Examples are synchronisation between the locking and unlocking
phase in two phase locking, and the commitment of transactions. Unpredictable
results will follow if a transaction commits on one site and aborts at another site.

Adapted algorithms for distributed databases have been provided for most
existing (centralised) database mechanisms. It is hard to provide algorithms that·
are efficient, reliable and offer graceful degradation of the database in case of

95

failures, but there is already a large library of generic algorithms that provide
good communication protocols between sites in a distributed network.

96

Bibliography

[GM83] Hector Garcia-Molina. Using semantic knowledge for transaction pro
cessing in a distributed database. ACM TODS vol. 8 pp 186,213,
1983.

[GS85] N. Goodman and D. Shasha. Semantically-based concurrency control
for search structures. Proceedings of the ACM pag 8-19, 1985.

[IK94] T. Ibaraki and T. Kameda. On the optimal nesting order for com
puting n-relation joins. ACM transactions on database systems pp
482-502, 1994.

[JK84] M. Jarke and J. Koch. Query optimization in database systems. ACM
computing survey pp 111-152,1984.

[KM93] Tei-Wei Kuo and Aloysius Mok. Ssp: a semantics-based protocol for
real-time data access. Proceedings 14th real-time systems symposium,
1993.

[Kna87] Edgar Knapp. Deadlock detection in distributed databases. ACM
Computing Surveys 19(4) p. 303, 1987.

[KR81] H.T. Kung and John T. Robinson. On optimistic methods for con
currency control. ACM 0362-5915/81/0600-0213, 1981.

[KR92] Mohan Kamath and Krithi Ramamritham. Performance characteris
tics of epsilon serializability with hierarchical inconsistency bounds.
Technical report, University of Massachusetts, 1992.

[OzsuV91] M. Ozsu and P. Valduriez. Principles of distributed database systems.
Prentice-Hall International Editions, 1991.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database
updates. Journal of the association for computing machinery, Okto
ber1979.

[SY82] M. Saccoo and S. Yao. Query optimization in distributed database
systems. Advances in computers, volume 21 pp 225-273, 1982.

97

[Vid85] K. Vidiasankar. A simple characterization of database serializabil
ity. 5th conf. on foundations of software technology and theoretical
computer sciency, LNCS 206, 1985.

[Vid91] K. Vidiasankar. Unified theory of database serializability. Funda
menta Informaticae XIV, 1991.

[Wei87] William E. Weihl. Distributed version management for read-only ac
tions. IEEE transactions on software engineering No.1, 1987.

[YA88] Shyan-Ming Yuan and Ashok. K. Agrawala. A class of optimal de
centralized commit protocols. IEEE?, 1988.

[YDL93] P. Yu, D. Dias, and S. Lavenberg. On the analytical modeling of
database concurrency control. Journal of the ACM p. 831-872, 1993.

98

Index

Absolute consistency, 79
atomic broadcast, 75
atomic commit, 73
atomic transactions, 57
availability, 72

centralised databases, 50
committing, 57
concurrency control, 61
conflict serializability, 61

data caching, 85
deadlock, 67
distributed databases, 51

epsilon serializabili ty, 64

Fail-insane failures, 69
Fail-stop failures, 69
fault tolerance, 72
final-state serializable, 62
firm deadlines, 82

hard deadline, 82

input certification, 71

legal,62
lifelock, 67
locking phase, 63
log, 70

metric, 65
Multi-version databases, 66

nested transaction model, 58
non-blocking property, 74

omission, 69

99

optimistic schedulers, 64

pessimistic protocol, 64
primary site, 78
priority, 55
priority inversion, 84

read action, 58
read-only transaction, 66
reads-from relation, 58
real-time databases, 52
recovery, 70
Relative consistency, 79

schedule, 50
serializability, 50, 61
Similarity serializability, 65
slack time, 81
soft deadlines, 82
Stable storage, 70

temporal consistency, 79
time-stamps, 64
transaction, 50, 57
transaction priorities, 83
two phase locking, 63

unlocking phase, 63

view serializable, 62

write action, 58
writes-writes, 58

Performance Analysis for Real-time Databases

Simone A.E. Sassen
Statistics and Operations Research Group

Dept. of Mathematics and Computing Science
Eindhoven University of Technology

February 23, 1995

Abstract

In this talk we focus on uncertainty in real-time databases. In most
applications of real-time databases, no exact information is available about
the arrival times, the sizes and the deadlines of future transactions. Due
to this uncertainty it is not sufficient to measure the performance of a real
time database in terms of the average response time of a transaction; one
has to obtain an approximation for its distribution. The ultimate result
should be to find an approximation for the probability that a transaction
meets its deadline.

Performance Requirements

As has been explained in the talk of Maarten P. Bodlaender, real-time databases
have to satisfy both database and real-time requirements.
Database requirement:

• execution of transactions must preserve consistency.

Real-time requirements:

• some transactions can only be executed in a certain time interval

• transactions must meet their deadlines.

The purpose of the performance analysis for real-time databases (RTDB's) is
to look at schedulers that preserve the consistency of the database and to in
vestigate how well the real-time requirements are satisfied.

Performance questions that could be of interest are: (1) which percentage
of the transactions meets its deadline, (2) what is the transaction throughput
of the RTDB, (3) how reliable is the RTDB (how small is the probability of
deadlock), and so on. Motives for an interest in question (1) are

to offer a high customer service level
(Rabobank, PTT Telecom, Ericsson)--+ 90% ?

100

it is very important for the control of (physical) processes, where deadlines
may be quite firm
(ECT, research project at INRIA) -+ 99% or even 99.99% ?

To be able to give an answer to performance questions it is necessary to
investigate the response time of a (type of) transaction in the system. Having
a good approximation for the average response time and the standard deviation
of the response time could already enable us to judge if the RTDB can meet
a performance level of about 90%. However when one wants to distinguish
a level of 99% from 99.9%, a very accurate approximation of the probability
distribution of the response time is needed. It is not very likely that we will be
able to find such an accurate approximation for the response time distribution,
but the aim is to at least derive approxima.tions that are good enough for RTDB
design where performance levels of about 90% or 95% are required.

How to Model?

Uncertain factors that influence the response time distribution are:

1. The arrival instants of transactions.
In a real-time environment it is usually not known beforehand when ar
rivals of transactions will take place. There may be some type of trans
action that comes within regular (known) intervals; other transactions
arrive irregularly, which has to be modelled as a stochastic process.

2. Sizes of transactions (# data items needed + amount of work).
These may also vary per transaction (type). The more data items are
needed, the more data contention can occur so the longer the response
time of the transaction might be. The amount of work a transaction
requires can vary since this involves e.g. communication times and com
puting times. A probability distribution for the size and the amount of
work of the transactions is needed.

3. Deadlines and priorities of transactions.
Jobs with high priority will increase the response time of lower priority
jobs.

4. Arrival locations of transactions (in distributed databases).
Which percentage of the transactions arrives at which location?

5. Data-item popularity.
If there are some popular data-items that are used by a lot of transactions
and (for example) 2-phase locking is used to protect the data, the response
times of these transactions can grow quite large since these transactions
must wait for the popular data-items to become available. If there are no
popular data-items (uniform data-access) the influence of data contention
on the response times might be very small.

6. Transactions can trigger new transactions.
This would mean that the times between arrivals are not independent.

101

RTDB

Figure 1: THE RTDB AS A BLACK BOX

How the above factors should be modelled depends on the specific appli
cation. To be able to formulate a good model for deriving an approximation
for the distribution of the response time, it is vital to know which of the above
elements play an important role in the various applications of the user group,
and which elements can be ignored. For instance: is the data-access uniform,
are the transactions of about the same size and type, what is the conflict prob
ability between two transactions, and do transactions arrive regularly?
Hopefully this workshop and further discussions with the members of the user
committee can contribute to getting a clear view of what the important elements
are for each of the applications of the user committee.

Performance Analysis by Use of Queueing Models

A way of deriving approximations for the response time of transactions is by
stochastic modelling. If we see the response time as a stochastic variable that
is influenced by the elements mentioned in the previous paragraph, we can use
queueing theory for approximating the response time distribution.

Queueing models have their origin in the study of design problems of
automatic telephone exchanges and were first analysed by the queueing pioneer
A.K. Erlang in the early 1900s. In the last 30 years, quite some progress has
been made in the theory of queueing models. They have been applied e.g. to the
design of computer systems, telecommunication networks and many problems
in manufacturing. Our feeling is that they can be very useful for evaluating the
performance of real-time databases.

The most abstract way of seeing a real-time database system is as in Figure
1. Transactions are entering the system, and after having spent a time S in the
system they leave. What happens inside the 'black box' is not clear and will
depend on the application. The response time S may consist of both waiting
time (on locks or hardware) and service time (for the actual execution). For
a good approximation of the response time a more detailed view of the database
system (the black box) is needed. How many processo-;'s are available at which

102

sites? Where are the data-items located? Which locking protocol is used?
Modelling the database system as a queueing system requires information on
when and where in the system transactions have to wait, and which service
discipline is used.

Suppose we had only one type of transaction with fixed transaction size,
and we made the following assumptions:

• The transactions arrive independently of each other.

• The time between 2 arrivals is exponentially distributed. In other words,
the arrival process is a Poisson process.
This assumption is often used in queueing models. Reasons are:

1. it is an excellent approximation in the case of a large number of
potential customers where each customer has a very small probability
of arriving in a specific time interval (think of the 7 million people
that have a telephone: each of them has a very small probability of
making a phone call in a specific period of (say) 1 second);

2. it has computationally attractive properties that simplify an analysis,
e.g. the memoryless property.

Note that the assumption of a Poisson arrival process may not be reason
able if there is a great regularity in the arrival of transactions.

• The service time of a transaction is exponentially distributed.
This assumption is usually not a good approximation but because of the
nice properties of the exponential distribution it is often taken to start
with.

On the last page of this text, three representations of the real-time database
system are given, based on the above assumptions.

I The top one is the most rigorous way of simplifying the database system
and is easiest to analyse. The database can handle only one transaction at a
time (the service discipline is FCFS), and all other transactions wait in a queue.
For this model an exact expression exists for the distribution of the response
time. When deadlines are taken into account by giving the transaction with
the earliest deadline the highest priority, it is still possible to find (an approxi
mation for) the distribution of the response time.

II The second figure releases the assumption of only one server. It assumes
several parallel servers and thus can handle more transactions at a time. When
more than k transactions are present, only k can be served and the remainder
has to wait in a queue. For this queueing model an exact expression for the
distribution of the response time is known. For generally distributed service
times approximations for the response time distribution are available.
However when the locking protocol is taken into account, approximating the

103

response time becomes more tedious. Because then a transaction that is exe
cuting at server 1 could have to wait for some data-item currently in use by the
transaction executing at server k.

III The last figure shows a model for optimistic concurrency control that
we have been investigating in more detail. It is assumed that each transaction
demands some CPU-time (where the CPU is a single server that can handle
only one transaction at a time, the rest has to wait in a queue), after which
some computations have to be done at another site or processor (represented as
an infinite server, so without capacity restrictions). After each visit to the CPU
the transaction leaves the system with some probability or goes through another
cycle with 1 minus that probability. A transaction that tries to leave enters a
validation phase, in which it checks if a conflicting transaction committed during
its execution. If no conflicting transaction committed during the execution of
the validating transaction, the transaction can commit and leave the database
system. Otherwise, the transaction goes hack to the CPU and has to be rerun.

An approximate analysis of the system has resulted in the conclusion that
the system is not ergodic, i.e. if the number of transactions allowed in the
system is not restricted to some value N, there may be an infinite number of
transactions cycling in the modelled system. Consequently, the performance of
the system (the throughput of the system) decreases to zero as the number N
of transactions allowed tends to infinity. For any choice of input values for the
conflict probability and the speeds of the servers, it can be shown that this is
the case.

The behaviour of the system is intuitively understandable, for the probabil
ity that a transaction has to be rerun depends on the number of transactions
that has committed during its execution. Now, as the number of transactions
in the system is larger, it is more likely that a conflicting transaction has com
mitted during the execution of the transaction that tries to validate, so the
higher is the probability that the validating transaction has to be rerun. This
makes the system even fuller and eventually more transactions are entering the
system per unit time than are leaving, resulting in a throughput that diminishes
to zero.

A typical illustration of the degrading performance is given in the plot below.
Here we also see that there is a value of N for which the throughput of the
system is maximal.

104

1.8

1.6

1.4

0.8

0.6

o 35 10 15 20

105

25
N

30 35

).J.: :; .:
p = C:. I

40 45 50

•

•

Fe FS, I server

•

•

-- -----

~lS

'-----7 va.W.ate
• - - - -

Lam"'" - - J

- .fiXect t'((t'r\Sa.c.t-ion Si:e..

- 'D -= Prob.6d":+u th.a.t 2. -(R.Q.h,sClc:tions u,,,,tLlc..~
I ~ ,

106

Computing Scieuce Reports

In this series appeared:

93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/17

93/18

93/19

93120

93121

93122

93123

93124

93125

93/26

93127

93128

93129

93/30

R. van Geldrop

T. Verhoeff

T. Verhoeff

E.H.L Aarts
I.H.M. Korst
P.I. Zwietering

I.C.M. Baeten
C. Verhoef

I.P. Vellkamp

P.O. Moorland

1. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

J.C.M. Baeten
J.A. Bergstra

J.C.M. Baeten
J.A. Bergstra
R.N. Bol

H. Scheper.
lHooman

D. Alstein
P. van der Stok

C. Verhoef

G-I. Houben

F.S. de Boer

M. Codish
D. Dams
G. Fi16
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Genh

W.M.P. van der Aalst

T. KIoks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

J. Deogun
T. KIoks
D. Kratsch
H. Miiller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program
ming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming. p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time Executions in
DEOOS,p.32

Systems Engineering: a Formal Approach
Pan I: System Concepts, p. 72

Systems Engineering: a Formal Approach
Part n: Fnmeworks. p. 44.

Systems Engineering: a Formal Approach
Part m: Modeling Methods, p. 101.

Systems Engineering: a Fonnal Approach
Part IV: Analysis Methods, p. 63.

Systems Enaineering: a Fonnal Approach Part V: Specification Lanauage, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic. p. 31.

A Trace-Baled Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A process Algebra of Ccncurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems,
p.31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A -calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs,
p. II.

93/31 W. KOrver

93/32 H. ten Eikelder and
H. van Ge1drop

93/33 L Loyens and 1. Moonen

93/34 J.C.M. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 I.C.M. Baeten and
I.A. Bergstra

93/37 1. Bnmekreef
J·P. Katoen
R. Koymans
S.Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.H.L Aart,
D.A.A. van Etp Taalman Kip
K.M. van Hee

93/40 P.O. V. van der Stok
M.M.M.P.I. Claessen
D. Alstein

93/41 A. BijIsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.], Luit
J.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d Aalst
P. De Bra
GJ. Hooben
Y. Komatzky

93/48 R. Gerth

94i\J1 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94J1)2 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 I.C.M. Baeten
I.A. Bergstra

94/05 P. 2'll00
I. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94107 K.R. Apt
R.BoI

94/08 O.S. van Roosmalen

94/09 I,C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
directed commands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Autcmata for Reaular Exprellionl. p. 17.

lllAS, a sequential language for parallel matrix computations, p. 20.

Real Time Process Algebra with Infmitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protoool for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers, p. 11.

Autanatic Verification of Regular Protocols in prr Nets, p. 23.

A taxcmomy of fmite automata construction algorithms, p. 87.

A taxonomy of fmite autcmata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Coosistent Mernol)' using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and II-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an AtOOlic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

94/10 T. vemoeff

94/11 J. Peleska
C. Huizing
C. Pctersohn

94/12 T. KIoks
D. Kratsch
H. Maller

94/13 R. Selje.

94/14 W. Poreman.

94/15 RJ.M Vaessens
E.H.L Ams
1.K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S.Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94(20 R. Bloo
F. Kamareddine
R. Nederpeh

94(21 B.W. Watsoo

94(22 B.W. Watson

94(23 S. Mauw and M.A. Reniers

94(24 D. Dams
o. Grumberg
R. Gerth

94(25 T. Kloks

94/26 R.R. Hoogerwoord

94{1.7 S. Mauw and H. Mulder

94(28 C.W.A.M. van Overveld
M. Verhoeven

94(29 J. Hooman

94/30 J.C.M. Baeten
I.A. Bergstra
Gh. ~fanescu

94/31 B.W. Watson
R.E. Watsoo

94/32 IJ. Vereijken

94/33 T. Laan

94/34 R. 8100
F. Kamareddine
R. N ederpelt

94/35 I.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nedetpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. BiJlsma
c.s. Scholten

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with State- & Activitycharts. p. 30.

Dominoes, p. 14.

A New Melhod for Integrity Constraint checking in Deductive Databases, p. 34.

Up. and Down. of Typo Theory, P. 9.

Job Shop Scheduling by Local S ch. p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refming Reduction in the Lamtxla Calculus, p. 15.

The perfonnance of single-keyword and multiple-keyword pattern matching
alaoritlnn', p. 46.

Beyend p-Reduction in Oturch's A--+, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular
Expressiens.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'tCfL., 3CfL· and en.., p. 28.

K1,.l-free and W .. -free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p.
54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of fmite and
transfmite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction. p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expressien
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra. p. 38.

A fonnalization of the Ramified Type Theory. p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

94/39 A. Blokhuis
T. KIoks

94/40 O. Ahtein

94/41 T. KIoks
D. Kra"ch

94/42 J. Engelfriet
JJ. Vereijken

94/43 Re. Backhouse
M. Bijsterveld

94/44 E. Brinksma 1. Davies
R. Gerth S.Gnd
W. Janssen B. Jonsson
S. Katz G.Lowe
M. Poel A. Pnueli
C.Rwnp J. Zwiers

94/45 GJ. Hooben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R.8100
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
I.A. Beralltra

94/50 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. MaUer

94!S2 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 JJ. Lukkien

95!02 M. Bezem
R.Bol
J.F. Groote

95/03 I.C.M. Baeten
C. Verhoef

95!04 J. Hidders

95/05 P. Severi

95!06 T.W.M. Vossen
M.O.A. Verhoeven
H.M.M. ten Eikelder
E.H.L Aarts

95/07 G.A.M de Bruyn
O.S. van Roosmalen

95/08 R. 8100

95/09 I.C.M. Baeten
lA. BergslJa

95/10 R.C. Sackhouse
R. Verhoeven
O.Weber

On the equivalence covering number of splitgraphs, p. 4.

Di.tribu\od ConiOntUI and Hard Roal·Timo SYlklml, p.34.

Computing a perfect edge without vertex eliminatioo.
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An IDustratioo, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect.bibliotheek voor "Administratieve Logistiek", p. 43.

The l-<:ube with classes of tenns modulo conversion,
p.16.

On IT.conversion in Type Theory, p. 12.

Fixed·Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calrulus of Constructions, p. '2:1.

Listing simplicial vertices and recognizing
diamond·free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommWlicationLbrary, p.16.

Fonnalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of COIUlected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MatbJpad: A System for On·Line Prepararation of Mathematical
Dowments, p. 15

/ J,",

95/11 R. Selje.

95/12 S. Mauw and M. Reniers

95/13 B.W. Watson and G. Zwaan

95/14 A. Poose, C. Verhoef,
S.F.M. VIijrnen (",1<.)

95/15 P. Niebert and W. Penczek

95/16 D. Dams, O. Grumberg. R. Genh

95/17 S. Mauw and E.A. van der Meulen

95/18 F. Kamareddine and T. L.aan

95/19 lC.M. Baeten and I.A. Bergstra

95{l.O F. van Raamsdonk: and P. Severi

95{l.l A. van Deursen

95{l.2 B. Arnold, A. v. Deursen. M. Res

95(23 W.M.P. van der AaIst

95{l.4 F.P.M Dignum, W.P.M. Nuijten.
LM.A. Janssen

95{l.5 L Feijs

95{l.6 W.M.P. van def Aalst

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised, p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms. p. 26.

De proceedings: ACP'95, p.

On the Connection of Partial Order Logics and Partial Order Reduction Methods,
p. 12.

Abstract Interpretation of Reactive Systems: Preservation of crL p. 21.

Specification of tools for Message Sequence Charts, p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths.
p.14.

Discrete Time Process Algebra with Abstraction. p. IS.

On Nonnalisation. p. 33.

Axiomatizing Early and Late Input by Variable Elimination. p. 44.

An Algebraic Specification of a Language for Describing Financial Products.
p. II.

Petri net based scheduling. p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A Oass of Petri nets for modeling and analyzing business processes, p. 24.

	Summary
	Introduction
	Overview of Databases Requirements for Intelligent Networks
	Real Time Databases
	Database requirements for on-line financial transactions
	Condition de faisabilité et temps de réponse maximum pour un système Transactionnel Réparti Temps Réel
	On-line event reconstruction using a parallel in-memory database
	Real-time databases : an overview
	Performance Analysis for Real-time Databases

