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Abstract

Vanderlande is a global market leader for future-proof logistic process automation at airports, in
warehouses and the parcel market. This report considers a specific parcel sortation system of
Vanderlande, namely the Posisorter. The Posisorter consists of a series of conveyors, where parcels
are fed onto the conveyors and later on are pushed off the conveyors at the desired chute. Parcels
that are not sorted, if the chute is full for example, are prepared for another round. To prepare
parcels for another round, three steps must be performed. First, parcels must be collected and
decelerated. Then, a train must be formed with a number of parcels. Last, the train must accelerate
before being fed into the system again. Those three steps are performed in a part of the Posisorter
called the overflow zone.

In the current design of the overflow zone, some improvements can be made. First, the length
of the overflow zone preferably decreases as space is often precious. Second, the train forming
currently uses multiple short conveyors that hold a single parcel each. These conveyors need to
make a full stop reducing equipment lifetime. To cope with this, a new design of the overflow zone
must be made.

A solution is the introduction of platooning in the overflow zone. Platooning comes down to
forming a train of vehicles without stopping, and is often used in the context of autonomous
vehicles. When parcels are transported by a series of short conveyors, parcels can be considered
autonomous vehicles. Platooning combines the three steps that are performed in the overflow zone:
deceleration, train forming and acceleration. Therefore, there is a possibility of decreasing the
footprint. As parcels keep moving whilst forming a train, the frequent start-stop behaviour is also
dealt with.

In the algorithm of (Timmerman and Boon, 2021), trajectories of autonomous vehicles are designed
such that a platoon is formed. The design of these trajectories is done by calculating the acceleration
and deceleration start times, which computationally is an efficient method. Therefore, the main
principle for the design of trajectories can be used for the real-time control of an overflow zone.

In this report, the principle from (Timmerman and Boon, 2021) is used to develop a platooning
algorithm for the real-time control of parcels in the overflow zone of a Posisorter. In order to do
so, different collections of equations are made to design trajectories based on a parcel’s position,
velocity and desired departure time. After that, the influence of design parameters on the ability to
form platoons of desired length is investigated. From simulation results, it can be concluded that
the performance mainly depends on the overflow length and the minimum allowed velocity when
forming the platoon. As a footprint ideally is reduced, a trade-off must be made between a smaller
footprint and a better performance. The maximum conveyor velocity and acceleration do not have
a big influence, investing in powerful and expensive conveyors is therefore not recommended.
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1Introduction

In this chapter, an introduction on the project is given. In Section 1.1, the background to the
problem as well as an introduction to the problem is given. Then, in Section 1.2, previous
research relevant to the problem is mentioned as well as gaps in current literature. After that, in
Section 1.3, the contribution of this project to current literature are described. Last, in Section 1.4,
the organization of this report is described by briefly discussing the chapters that make up this
report.

1.1 Background
Over the last few decades, there is almost no facet of society that has not been affected by the rise
of automation; at home, at work or while travelling, people are supported by automated systems.
Some examples of these systems in widespread use on a daily bases are ATM machines, the digital
navigation system in cars and trucks, and the automatic pilot function in aeroplanes (Parasuraman
and Mouloua, 1996).

Vanderlande, a company founded in 1949 in Veghel (NL), contributes to this world of automation
by being the global market leader for future-proof logistic process automation at airports. At
the moment, the baggage handling systems of Vanderlande are active in more than 600 airports
worldwide, including some of the world’s largest airports (Vanderlande.com, 2021a). Furthermore,
Vanderlande is also a leading supplier of process automation solutions for warehouses and in the
parcel market (Vanderlande.com, 2021b). When considering baggage handling and parcel sortation,
there are roughly spoken two types of systems that are being developed within Vanderlande.

Firstly, there is the transportation and sortation with conveyor belts or carts attached to a fixed
(infra)structure. A few examples of this are the Airtrax, Baxorter, Crossorter, Helixorter, Posisorter
and Truxorter. The main advantage of these systems is that both the capacity (over 10,000 items
per hour) and reliability (over 99.9%) are relatively high (Vanderlande.com, 2021c). A major
disadvantage, however, is the possibility of a long downtime if a (small) part of the system breaks
down. Furthermore, the system cannot be easily expanded or downsized when desired.

Secondly, there is the transportation and sortation by automated guided vehicles. The main
advantage of this system is the flexibility and scalability, as the number of vehicles can easily be
altered. In addition, if a single vehicle breaks down, the rest of the system is (almost) not affected.
However, the capacity of the automated guided vehicles is lower compared to the systems with a
fixed infrastructure having the same footprint (Vanderlande.com, 2021d).

In this project, the focus is on a fixed sortation system of Vanderlande. More specifically, this project
regards the Posisorter shown in Figure 1.1, a sorter used for the sortation of parcels. The system
can be decomposed into multiple zones, where each zone has its own function. Some examples
of zones are the infeed zone, where parcels are fed into the system, the merge zone, where the
parcels of multiple infeeds are merged onto a single conveyor and the sortation zone, where the
actual sortation takes place. One zone of particular interest is the overflow zone, which collects
all parcels that leave the sortation zone and have not been sorted. Parcels that enter the overflow
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zone must be decelerated, accumulated into a train and then released into the merge zone such
that they can be transported to the sortation zone for an additional time.

In order to decelerate and accumulate parcels in the overflow zone, currently conveyors with
pneumatic lifting components are used. In this way, conveyors can keep a predefined velocity and
the pneumatic components lift parcels from the conveyors at the right moment to form a train.
Vanderlande wishes to phase out the usage of pneumatic parts in the overflow zone whilst still
being able to accept all incoming parcels, decelerate parcels, accumulate parcels into a train and
release a train of parcels to the merge zone. A new design of the overflow zone uses a series of
short conveyors to accumulate. Each parcel that enters the overflow zone stops on a single short
conveyor until a train of desired length is formed. Then, all conveyors accelerate to transport
the formed train to the merge zone. Because each parcel comes to a full stop on the conveyors,
however, the short conveyors have to start and stop often which reduces conveyor lifetime.

Besides the undesired start-stop behaviour of conveyors, the footprint of the overflow zone is
relatively lengthy as multiple long conveyors are used to decelerate the incoming parcels. By using
much space, the parcels can be collected in the overflow zone without causing a jam in the sortation
zone or colliding with parcels that are already in the overflow zone. As space is often precious,
Vanderlande wishes to reduce the footprint of the overflow zone whilst still guaranteeing that all
incoming parcels are accepted and collisions will not occur.

1.2 Related literature
In short, Vanderlande wants to design a new overflow zone that is able to fulfil all the above-mentioned
functions, has little to no start-stop behaviour to assure a long lifespan of the conveyors and
has a small footprint. A possible solution that tackles both problems is the introduction of a
control algorithm that combines all separate zones and accumulates parcels whilst moving. This
phenomenon of accumulating whilst moving is referred to as platoon forming of platooning in
short. In literature, multiple papers have been published on the platooning of autonomous vehicles
and the control of autonomous intersections. How these autonomous vehicles and autonomous
intersections relate to the overflow zone is explained in the next paragraph.

First, let’s consider autonomous vehicles. When a series of short conveyors are used in the overflow
zone, with short meaning not more than twice the length of a parcel, each conveyor only carries
one, or possibly two, parcels. Because of this, parcels are more or less able to move independently
of each other and can therefore roughly be seen as autonomous vehicles. Second, there is the
autonomous intersection: as the parcels that leave the overflow zone are merged in the merge
zone with other arriving parcels, time slots at which the overflow zone is allowed to deliver a
(train of) parcel(s) at the merge zone are assigned. These time slots can be seen as an analogy of
autonomous intersections, with time slots being the same as the green time of a traffic light at an
autonomous intersection.

Current literature on platooning of autonomous vehicles and autonomous intersections presents
methods to compute trajectories that autonomous vehicles should follow such that a platoon
of vehicles arrives at the intersection at the desired time. These methods only compute the
trajectory of a vehicle once based on known arrival times of vehicles and assume this trajectory
can be followed precisely. When using these methods to actively control autonomous vehicles in a
real-world situation, problem arise. For example, trajectories cannot be redesigned in case they are
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not followed directly or to avoid collisions. In addition, trajectories must possibly be altered to
avoid collisions if a train of parcels arrives at the overflow zone. In short, the methods to compute
trajectories from literature cannot be used directly to control the overflow zone.

1.3 Contribution
In this project, it is investigated if it is possible to use platooning in the overflow zone with the
aim of reducing the start-stop behaviour of conveyors and the footprint of the overflow zone. In
order to do so, current knowledge from literature on platoon trajectory design is used to develop
a control algorithm that actively and in real-time controls the conveyors. Different collections of
equations that can be used to design trajectories are developed, as well as conditions to choose the
correct collection of equations based on based on a parcel’s position, velocity and desired departure
time. This yields the following research question:

"Can a platooning algorithm be developed for real-time control of an overflow zone capable
of decelerating, accumulating and releasing a train of trays or totes?"

If platooning can be used, ideally, one wants to find an optimal design of the overflow zone.
However, as Vanderlande delivers tailored solutions to customers, there is not a single optimal
design. Therefore, a sensitivity analysis can be performed on the design parameters of the overflow
zone to find out their effect on the key performance indicators. From this analysis, the results can
be used to support decision making for tailored solutions in the future. This yields the second
research queation:

"What is the influence of design parameters of the overflow zone controlled by a platooning
algorithm on the key performance indicators of the Posisorter?"

1.4 Report organization
In Chapter 2, information on the Posisorter system that is considered in this report is given and
the problem with the current setup is described. Then, in Chapter 3, the results of the literature
study on platooning are discussed. and the limitations found during the literature study as well as
a statement of contributions are described. In Chapter 4 and Chapter 5, the working and validation
of the plant and controller model are explained in detail, respectively. In Chapter 6, the results
obtained from simulations on the plant model with the designed controller are presented and
analyzed. Lastly, Chapter 7 contains a conclusion and states recommendations for future work.

Figure 1.1. Vanderlandes Posisorter system (Vanderlande.com, 2021e).
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2System description

Currently, there is a wide range of sorters used for different applications. As the capacity (the
number of goods that can be sorted per time unit) and the handling sizes (the range of goods sizes
that can be sorted) vary, different domains may require different types of sorters.

As stated in the introduction, this project focuses on a specific fixed structure sorter system of
Vanderlande: the Posisorter. In this chapter, first different types of fixed structure sorters are
mentioned and briefly explained to obtain a better insight into the type of fixed structure sorters
available and to find out how the Posisorter relates to and differs from other types of fixed structure
sorters. Then, the different zones that build up the Posisorter are explained to gain more insights
into the working of this sortation system. After that, Section 2.3 goes even more into detail about
a zone called the overflow zone, as this project mainly regards this zone. Then, in Section 2.4
the problem with the current set-up of the overflow zone is discussed. Last, in Section 2.5 the
requirements, preferences and constraints that need to be taken into account when designing a new
overflow zone are mentioned and in Section 2.6 the key performance indicators of the Posisorter
are described.

2.1 Type of fixed structure sorters
There are different types of fixed structure parcel sortation systems that can be subdivided into
two categories: Line sorters and loop sorters (Struik, 2018). Line sorters consist of conveyors that
transport parcels over a sortation area. In the sortation area, parcels are diverted by sortation
equipment and therefore leave the transporting conveyor. This differs from loop sorters, as parcels
on a loop sorter are not transported by conveyors but by carriers on a track. These carriers
recirculate and sort the parcel by themselves instead of needing specific sortation equipment in the
sortation area. McGuire (2009) mentions the most common ones:

Paddle sorter (line sorter)
Paddle sorters use a pivoting diverter arm, referred to as a paddle, to force goods off a conveyor belt
or rollers. After sortation, the paddle needs to return to its initial position which takes some time.
In the mean time, parcels cannot pass the paddle which results in either a big gap between parcels
on high velocity conveyor or a low velocity conveyor. In either way, the capacity is relatively low.

Pusher or puller sorter (line sorter)
A pusher or puller sorter, as the name implies, pushes or pulls the goods off a conveyor at a
90-degree angle. As the goods are not rotated, the width of the pusher or puller must be at least
the width of the goods on the conveyor. Therefore, the system is only suitable for relatively small
goods. Considering the capacity, the pusher or puller sorter is a mid-range sorter.

Pop-up sorter (line sorter)
A pop-up sorter is placed between conveyors and initially does not divert or even touch the goods.
When desired, a belt or rollers pop up to divert the goods. Another type of pop-up sorter is the
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steerable roller sorter. Here, the rollers do not actually pop up, but rotate to divert the goods.
Pop-up sorters are mid-range sorters regarding their capacity.

Positive sorter (line sorter)
A positive sorter, also called a shoe sorter, is different from the sorters mentioned above as the
sorter is completely integrated into the conveyor. Instead of a conveyor belt or rollers, sliding shoes
are attached to slats that carry the goods. To sort the goods, the shoes traverse diagonally from
one to the other side of the conveyor pushing the good of the slats. As the shoes are guided by a
mechanical switch, the velocity and therefore the capacity of the positive sorter can be relatively
high.

Tilt tray sorter (line or loop sorter)
Tilt-tray sorters can be line or loop sorters. The loop sorter consist of carriers moving on a track,
each carrier with a plate on top. The plates on top carry the goods and are able to tilt. When tilting,
the goods slide of the carrier making it possible to sort. The line sorters work via the same principle,
but instead of carriers moving on a track, conveyors are able to tilt. Tilt-tray sorters generally have
a relatively high capacity.

Cross-belt sorter (line or loop sorter)
A cross-belt sorter is similar to a tilt-tray sorter and can also be a line or loop sorter. The loop sorter
also consists of carriers moving on a track. Differently from a tilting tray on top, the cross-belt
sorter carriers consist of a conveyor belt mounted transverse to the moving direction of the carrier.
This conveyor belt carries the goods and by actuating the conveyor the goods on top are sorted.
The capacity is, just as for the tilt-tray sorter, relatively high.

2.2 Posisorter
The Posisorter is a positive sorter that is used for the sortation of parcels. As shortly explained
above, positive sorters consist of sliding shoes attached to slats that carry the parcel. In this section,
the individual zones of the Posisorter are discussed in more detail. In Figure 2.1, an overview of
the Posisorter and the different zones can be seen.

Sortation zone Gap control

Transportation
zone

Merge 
zone

Infeed zoneAccumulation zone

Overf low
speed
reduction

Outfeed

Overf low
accumulation

Overf low
infeed

OutfeedOutfeed

Indexer

Figure 2.1. Overview of the Posisorter system.

As the moving of parcels on a conveyor belt is often referred to as a flow of parcels, the terms
upstream and downstream must also be introduced. Similar to the flow of water in a river, upstream
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refers to the direction the flow is coming from whereas downstream refers to the direction the flow
is moving to.

Before discussing all zones individually, it is also necessary to discuss the load of the sorter. As
stated before, the Posisorter is used to sort parcels. In some cases, however, products are not placed
directly onto the conveyor belts but placed into a tray or tote. Trays and totes are fixed-size plastic
boxes that contain the product to be sorted. By placing all products into a tray or tote, the system
can be designed to handle the fixed-sized trays and totes instead of handling numerous different
shapes, sizes and materials. This makes the design of the system more robust, the control of the
system more predictable and allows for all shapes and materials to be sorted. In Figure 2.2, the
relevant dimensions of the trays and totes are shown. Note that trays can have different heights
but the length is always the same.
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Figure 2.2. Dimensions of the side view of trays and totes.

In case the system holds trays and totes, this is referred to as a heterogeneous system. Otherwise, if
the system holds either trays or totes, this is referred to as a homogeneous flow system. Currently,
Vanderlande only uses a homogeneous flow in the overflow zone but heterogeneous flows can be
used in the merge and sortation zone. For the remainder of this report, trays and totes will simply
be referred to as parcels.

Accumulation zone
The journey of a parcel on the Posisorter starts at the accumulation zone at one of possibly many
accumulation fields (but not the overflow accumulation zone). Here, parcels are loaded onto a
conveyor and accumulated into a train. The main reason for accumulation is to increase the system
throughput, which is the number of parcels sorted per time unit. Why a high system throughput is
desired is explained later, but how accumulation relates to throughput can be explained by

µ = ρ ∗ v (2.1)

where µ is the throughput [parcels/time unit], ρ is the parcel density on a conveyor [parcels/unit
of length] and v is the conveyor velocity [unit of length/time unit]. In Equation 2.1, it can easily be
seen that if one wants to increase the throughput, this can either be done by increasing the parcel
density on conveyors or by increasing the conveyor velocity. As the latter is not always possible,
the parcel density in the merge zone is increased by forming a train in the accumulation zone first.

One could argue that the density in the merge zone can also be increased by releasing single parcels
to the merge conveyor in such a way that the merge conveyor is completely filled. There is however
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a safety margin required between parcels from different infeeds to assure collisions will not occur.
These safety margin gaps reduce the parcel density on the merge conveyor significantly when
releasing single parcels. When releasing trains of parcels, however, the safety margin only has
to be considered between trains. Therefore, the density of the merge zone can be increased and
with that the system throughput. Obviously, larger trains need more costly space for accumulation,
therefore a trade-off must be made.

Infeed zone
The infeed zone is responsible for transporting, accelerating, and releasing a finished train of
parcels onto a single high-velocity conveyor in the merge zone.

Merge zone
The merge zone is responsible for scheduling which infeed may release a train at what time. As
the number of infeeds increases, the algorithm used to control the merge zone can become more
complex. The merge zone works by dividing the conveyor into virtual windows large enough
to store a train. The infeeds can reserve these windows when they have a complete train, and
reserving works by the first-come-first-serve principle.

Transport zone
When the parcels are merged, they need to be transported to the sortation zone. Therefore,
transporting conveyors are used. It is important that parcels are kept aligned and in a train.

Gap control
Before all parcels can be sorted, a check takes place whether there is enough space between
consecutive parcels. As in the next zone, the sortation shoes will slide from one to the other
side, it is important that the last shoe assigned to a parcel does not interfere with the front of the
consecutive parcel. Therefore, if there is not enough space, the gap control section makes sure a
gap is created.

Sortation zone
Next, the actual sortation takes place. Here, shoes that move diagonally are used to push a parcel
off the sortation conveyor into the outfeed zone. In Figure 1.1, it can be seen that shoes (black
blocks) push a parcel to an outfeed.

Outfeed zone
The journey of a parcel ends at one of possibly many outfeeds. Here, the sorted parcel is queued
and waits to be picked up.

Overflow zone
Lastly, there is the overflow zone. All parcels that have not been sorted are collected in the overflow
zone, slowed down, accumulated and eventually merged in the merge zone again. Possible reasons
for parcels not to be sorted are that the outfeed is full or that the barcode on a parcel in parcel
could not have been read. As this project mostly regards the overflow zone, it is elaborated on in
more detail in the next section.
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2.3 Overflow zone
The overflow zone is responsible for collecting all unsorted parcels, reducing the velocity, accumulating
them and releasing them onto the high-speed merge conveyor again. In order to do so, the overflow
zone is subdivided into four components: speed reduction, indexing, accumulation and infeed. These
parts are discussed in more detail below.

Speed reduction
The first step in the overflow process is the reduction of velocity. Parcels that leave the sortation
zone have a high velocity, but a low velocity is needed for accumulation. This can also be explained
by Equation 2.1: to form a train and with that to increase the density of parcels, the velocity must
be reduced at a constant throughput. The exact values of the high and the low velocity depend on
the control mode, but the high velocity lies somewhere around 3.5 [m/s] whereas the low velocity
lies somewhere around 1.5 [m/s]. The speed reduction is performed by a series of conveyor belts
decreasing in speed. Each conveyor belt is relatively long (6-8 meters) and the speed reduction
between two consecutive conveyor belts is relatively low (approximately 0.5 [m/s]).

To reduce the speed from 3.5 [m/s] to 1.5 [m/s], for example, approximately 24-32 meters of
conveyor belts would be needed. The reason for this relatively lengthy speed reduction process is
to allow for a burst of parcels to enter the overflow zone. A burst is a short period in which the
throughput of parcels is relatively high if, for example, an entire train enters the overflow zone.
In such an instance, the first conveyor of the speed reduction component must be able to hold an
entire train before slowing down, as slowing down earlier would prevent the last parcel(s) of the
train to leave the sortation zone. The latter would cause the entire system to slow down or even to
stop completely, which reduces the system’s capacity.

The speed reduction component does not use a control algorithm to allow for a smooth, slip-free
transition between conveyor belts. The parcels simply leave the upstream conveyor belt and, with
some slip and by pushing other parcels, enter the consecutive downstream conveyor belt.

Indexing
The next step is the indexing, comparable to the gap control as discussed before. As the velocity
decreases, the density on the conveyor increases. To make sure there is enough space in between
parcels to accumulate, a gap must be created between parcels that have no or a too small gap in
between. The distance between parcels is now determined by a proximity sensor in the indexer that
detects if a parcel is present. If a parcel leaves the indexer and the consecutive parcel is detected
by the proximity sensor too soon, the conveyor belt of the indexer slows down or even stops for
a small time period to ensure the distance between parcels is large enough. This results in many
starts and stops of the indexing conveyor belt.

Accumulation
When the parcels are slowed down and the required gap between them is present, the accumulation
takes place. In the accumulation zone, trains of parcels are formed to increase the density as
explained in Section 2.2. This is currently done in one of two ways:

The first way of accumulating is by using a so-called multibelt and pneumatic parcel lifters.
Parcels are transported over the multibelt, a conveyor system consisting of multiple long but
small conveyor belts in parallel. In between those conveyor belts, pneumatic parcel lifters
are positioned. As a parcel approaches the right position in the train, it is lifted from the
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conveyor belt. In this manner, the electronically actuated conveyor belt does not need to
change velocity and the parcels stop moving. When a train is formed, the pneumatic lifters
are lowered simultaneously making sure all parcels start to move to the infeed at the same
time.

Another way of accumulating is by so-called shortbelts. Shortbelts are short conveyor belts of
approximately the length of a parcel. This means that each short belt is able to hold a single
parcel. A number of shortbelts are positioned in a row and used to form a part of the train.
The incomplete train then leaves the shortbelts and is moved to a conveyor belt that is able
to hold the incomplete train. This process is repeated multiple times until a train of desired
length is formed. This train is then moved to the infeed.

Infeed
The last part is the infeed. As discussed in Section 2.2, the infeed communicates with the merge
zone in order to release the train of eighteen parcels onto the high-velocity conveyor. An addition
to the normal infeeds is that the overflow infeed has priority and can therefore always claim a
window on the merge conveyor. This is essential, as the overflow zone must accept all incoming
parcels without delay. If the overflow zone cannot accept any more parcels from the sortation zone,
the entire system needs to stop. Since all parcels that enter the overflow zone must also leave it
and the consequences of a full overflow zone are severe, the overflow infeed has priority when it
comes to claiming windows on the merging conveyor.

Control modes
The four components operate as described above when the overflow zone is in normal mode.
There is however another mode: the emergency overflow mode. In this mode, the parcels are not
accumulated. The overflow zone simply transports the parcels from the sortation zone back to the
merge zone at low velocity. To avoid any collisions, it is not possible for other infeeds to release
any parcel onto the merge conveyor. The emergency overflow mode has two goals:

• First, the emergency overflow mode is used to prevent the complete system from stopping
when the overflow zone impends to overflow itself.

• Second, the emergency overflow mode allows the system to start again after a full system
stop without manual intervention.

The emergency overflow mode can be triggered in two ways. Firstly, when the throughput at the
entrance of the overflow zone exceeds a certain threshold for a specified period of time. When this
happens, it cannot be guaranteed that all parcels that approach the overflow zone can leave the
sortation zone. Secondly, when the overflow zone is filled for 75% by parcels. Again, when this
happens it cannot be guaranteed that all parcels that approach the overflow zone can leave the
sortation zone. Ideally, the emergency overflow mode is not activated often.

2.4 Problem of overflow zone
Now the general working of the Posisorter and the overflow zone are explained, the problem
with the current design of the overflow zone can be discussed. First off, Vanderlande wishes to
discontinue the use of pneumatic systems as these systems are generally noisy, have a high energy
loss and are not sustainable. Unfortunately, the most common way of accumulating in the overflow
zone is by using a multibelt with pneumatic lifters as mentioned in Section 2.3. The second problem
with the current design regards the indexer, that shows a lot of start-stop behaviour which reduces
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the lifetime of the indexer’s conveyors. The alternative of the multibelt design with an indexer, the
shortbelt design as also mentioned in Section 2.3, would fulfil the wish of not using pneumatic
systems. However, the shortbelt design comes with some problems of its own.

The shortbelts as they are used currently in the overflow zone also show a lot of start-stop behaviour,
where the shortbelts start to accelerate from standstill and decelerate until standstill frequently.
This behaviour reduces the lifetime of the shortbelts, and therefore also not ideal. Furthermore,
shortbelts use a powerful motor which is expensive, noisy and uses a lot of energy.

Vanderlande has come up with over a dozen physical design concepts for the overflow zone,
however, they all either experience the same start-stop behaviour as the shortbelts do now or make
use of pneumatic subsystems. It must be noted that a few concepts actually did not experience
undesired start-stop behaviour and also did not use pneumatic subsystems, however, these concepts
do not meet the requirements of the overflow zone as mentioned in Section 2.5 and are therefore
not considered. An example of this is a design that stacks arriving parcels on top of each other in a
rack. Although this does not use pneumatic parts or experience a lot of start-stop behaviour, such a
design cannot be used to release a train of parcels at the same time.

Another wish of Vanderlande is to decrease the footprint of the overflow zone, as the footprint is
relatively large at the moment, occupying precious space. This is mainly due to the fact that the
four sub-components of the overflow zone (speed reduction, indexing, accumulation and infeed)
are not communicating with each other and trajectories of parcels are not planned. Because of that,
the speed reduction component is made long enough to receive an entire train, the accumulation
conveyor is able to form and hold an entire train and the infeed is able to hold and send out an
entire train which results in a large footprint.

Now, Vanderlande is looking for a new design of the overflow zone to ensure a solid lifetime, no
use of pneumatic systems, a smaller footprint and taking all other requirements, constraints and
preferences into account.

2.5 Requirements, constraints and preferences
Before designing a new overflow zone, it is important to define the requirements, constraints and
preferences of the zone. Requirements describe must-haves that stakeholders define, constraints
describe real-world boundaries or limits one has to comply with, and preferences describe
nice-to-haves that stakeholders define (Liaskos et al., 2010). As preferences do not need to be met,
they can help in producing a ranking among acceptable plans or designs (Samarati et al., 2018)
and therefore they do not have to be measurable. In this section, the requirements, constraints and
preferences of the overflow zone are clarified.

Requirements

1. The overflow zone must have a capacity of at least 10% of the system’s capacity.

2. The overflow zone must be able to decelerate and accumulate the parcels in trains of eighteen
parcels, as the default window size on the merge conveyor is designed for trains of eighteen
parcels.

3. The overflow zone must be able to release a train of eighteen parcels simultaneously, as the
default window size on the merge conveyor is designed for trains of eighteen parcels.
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4. The overflow zone must be able to release an unfinished train with less than eighteen parcels
simultaneously, as there might arise situations in which it is not possible to form a complete
train.

5. The overflow zone must be able to enter the emergency overflow mode at any time, to prevent
the entire system to stop.

6. The overflow zone must not contain any pneumatic parts, as the use of pneumatic parts is
expensive and not sustainable.

7. The overflow zone must never overflow, as this may force the entire system to stop which
reduces the system’s capacity.

8. The overflow zone must be able to handle a burst of eighteen parcels with no gap in between.

9. The overflow zone must be robust: no possible inflow of parcels into the overflow zone may
cause the system to get stuck or cause collisions between parcels.

Constraints

1. A tray has a bottom length of 426 [mm], a top length of 458 [mm] and a height between 197
and 350 [mm].

2. A tote has a bottom and top length of 600 [mm] and a height of 272 [mm].

3. Conveyors have a predefined bound on velocity and acceleration based on the conveyor used,
with the exact value depending on the conveyor used.

Preferences

1. The overall system throughput must be as high as possible, meaning that the density on the
merge conveyor must be as high as possible while the overflow zone must be able to release
parcels on the merge conveyor when desired.

2. The parcels must be handled with care, both for the lifetime of a tray/tote as well as for the
content inside of the tray/tote.

3. The overflow zone must be sustainable such that, with minimum changes, the system can
also be used for parcels of different shapes and forms.

4. The footprint of the overflow zone must be as small as possible.

5. The total costs of the overflow zone must be reduced as much as possible.

6. The control algorithm of the overflow zone can be executed fast enough to work in real-time.

7. The start-stop behaviour of conveyor belts in the overflow zone must be minimized.

8. When stopping is required, the stopping positions must be spread as much as possible such
that all conveyors have the same number of stops.
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2.6 Key performance indicators
To verify the performance of the design that follows from this project, a measurable value must be
given to that design. This can be done with key performance indicators. In this section, these key
performance indicators are discussed.

System throughput
Ultimately, the system throughput is the most important key performance indicator the overflow
zone has impact on. The system throughput determines how many parcels can be sorted in a
period of time. It is one of the most important system parameters for customers of Vanderlande,
as customers generally want to sort as many parcels as possible in as little time as possible. In
addition, Vanderlande assures a certain capacity for their sortation systems, the design of a new
overflow zone should not cause the capacity of the entire system to decrease. The throughput of
the overflow zone itself, however, is not that important as a higher throughput of the overflow zone
does not necessarily lead to more parcels being sorted per time unit.

In order to maximize the system throughput, the parcel velocity and density in the sortation zone
must be as high as possible. The velocity is bounded by hardware constraints, but the density is
determined in the merge zone. As the merge zone works by reserving windows of a fixed length,
the overflow zone aims at realising trains of parcels to the merge zone equal to the length of the
window. The closer a train leaving the overflow zone is to the fixed window length, the higher the
density on the merge zone and therefore the higher the system throughput.

The difference in length between a train of parcels released to the merge zone and the fixed window
length of the merge zone can therefore be used to define how the overflow zone affects the system
throughput.

Footprint
Secondly, the footprint is an important performance indicator. Often, the space needed for a sorter
system is costly for the customers of Vanderlande and therefore the footprint needs to be minimized.
However, the decrease in footprint should not affect the system throughput much in a negative
way.

To illustrate, one can shorten the overflow zone such that there is no space to accumulate parcels.
In that case, the footprint decreases significantly. The density of parcels in the merge zone, however,
decreases. Furthermore, single parcels are released to the merge zone instead of trains. Hence, the
system throughput will ultimately decrease if there is no room for accumulation in the overflow
zone.

The footprint of the overflow zone follows directly from the layout that is used in the model,
however, it is more important to consider the footprint based on the system throughput. For
example, if decreasing the footprint by a factor two yields a system throughput decrease of factor
four, this would probably not be recommended. On the contrary, if decreasing the footprint by a
factor of two decreases the system throughput one-and-a-half times, this might be recommended.

The number of conveyors used in combination with the length of conveyors can be used to define
the footprint of the overflow zone.
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Power consumption
Lastly, the power consumption of the equipment used for the design of the overflow zone is
considered. The power consumption of the equipment is mainly based on the motor that is used
to drive the conveyors. A more powerful motor is generally more expensive, has a higher energy
usage and makes more noise compared to a less powerful motor. Note that ultimately the total costs
need to be as small as possible while the system throughput must be as high as possible, however, it
would be impossible to define the total costs in a general case. The total costs depend, for example,
on the price per square meter of the building area and on the energy price which may differ a lot
when considering different cases. In addition, the profit obtained when having a higher system
throughput depends on a large range of factors and may differ a lot between different companies.

Since defining the total costs is not possible for a general case, it is chosen to determine the
energy usage of the equipment used based on the system throughput. As the energy usage directly
tells something about the equipment costs and noise level, the power consumption is a good
performance indicator.

The maximum velocity and acceleration have a big influence in the power consumption of a
conveyor, therefore these parameters can be used to define the relative power consumption of the
overflow zone.
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3Platooning for autonomous
intersections

As stated in Section 2.4, Vanderlande is looking for a new design of the overflow zone with little to
no stopping and a small footprint whilst still accumulating parcels into a train. The accumulation
of parcels into a train without stopping has many overlaps with the phenomenon of platooning for
autonomous intersections, therefore a literature study has been performed on this topic.

In this chapter, first, the definition of platooning is explained. After that, the connection between
autonomous intersections and the overflow zone is clarified. Then, a literature study is presented
that discusses relevant papers regarding the problem as defined in Chapter 2. Thereafter, the
limitations found in the literature study and the additions needed to cope with them are shown,
followed by the contribution to literature.

3.1 Definition of platooning
Before jumping into the advantages and algorithms of platooning for autonomous intersections, it
must be defined what platooning actually is. Bergenhem et al. (2012) define platooning as:

"A collection of vehicles that travel together, actively coordinated in formation."

Kalbitz (2017) adds three aspects to this definition. First, the distance between consecutive vehicles
is relatively small while safety restrictions must not be violated. Second, the vehicles in a platoon
behave similarly and therefore form a string of vehicles. Third, not all vehicles require the same
level of automation. Kalbitz (2017) defines platooning as follows:

"Platooning is a string of fully or partly automated vehicles, which drive in a close spacing
behind each other without violating safety restrictions."

In literature, platooning is often discussed in the context of vehicles like cars or trucks on a long
road. Bergenhem et al. (2012), for example, mention five current projects that deal with vehicle
platooning on a highway. But how does this relate to the overflow zone? To start with, vehicles can
be presented by parcels on a conveyor. However, there is one major difference between the overflow
zone and ordinary platoon forming; the overflow zone has a limited length before the parcels must
enter the merge conveyor. Because of that, ordinary platoon forming algorithms that are designed
to work when there is plenty of road ahead to form a platoon are not very applicable in this situation.

Fortunately, numerous papers have been written on autonomous traffic intersections of which
multiple in combination with vehicle platoons. An autonomous intersection is an intersection able
to communicate with autonomous vehicles, in order to increase the throughput of the intersection
and reduce the mean delay experienced by vehicles.

In papers on autonomous intersections, polling systems are used to determine when a certain
platoon may cross the intersection. A polling system can be defined as a system that consists of
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a number of queues, attended by a single server in a fixed order (Boon et al., 2011). Since the
merge zone can also be considered a polling system, vehicle platoons crossing an intersection can
be considered an analogy of the overflow zone.

Moreover, one of the main goals of autonomous intersections is to increase the throughput of
the intersection. Higher throughput of the intersection directly means that the utilization of the
intersection, the time the intersection is used, is increased. As the intersection can be represented
by the merge zone and the main objective of the merge zone is to have high density, the papers on
autonomous intersections can definitely be helpful for this project.

3.2 Literature research
One of the first papers written about autonomous intersection management is Dresner and
Stone (2008). In their paper, it is stated that lots of research has been done on self-driving
vehicles on open roads, as there is little to no velocity difference between vehicles. It is also
stated that at the time of writing, few, if any, research has been done on autonomous intersection
management. The paper proposes a first-come-first-serve methodology for tile reservation, where
an intersection is divided into multiple tiles. Autonomous vehicles that approach the intersection
do not change velocity anymore and based on their current velocity send a reservation request
for the desired tiles at the desired time. A global intersection manager can either grant or deny
the request, based on tiles being reserved or free. If the request is denied, the vehicle decelerates
and requests the same tiles again for a different time. Although Dresner and Stone (2008) do not
consider platooning in their paper, it is used as a basis for most papers that are discussed later in
this report that do include platooning. In addition, an algorithm that allows for communication
between vehicles and tile reservation is presented. This algorithm can possibly be used for the
control algorithm of conveyors based on reservations in the merge zone.

Lee and Park (2012) extend the work of Dresner and Stone (2008) by introducing a non-linear
constrained optimization problem for a better trajectory of automated vehicles crossing an
intersection without colliding. To do so, Lee and Park (2012) define a possible collision window.
The possible collision window is a time window in which more than one vehicle is present at
the intersection. By minimizing the time a vehicle is in the possible collision window and taking
constraints like acceleration and velocity bounds into account, a safe trajectory can be defined.
Remarkable is that the paper also introduces a positive minimal velocity, as it is not desired for
vehicles to stop completely. In this way, the total stopped delay times have been reduced by 99%. As
the start/stop behaviour of conveyors is undesired in this project, the work of Lee and Park (2012)
is be useful.

One of the first, or maybe the first, to introduce platooning to autonomous intersections is Tachet
et al. (2016a). In their paper, they also extend the work of Dresner and Stone (2008) by first
introducing a theoretical framework to assess the performance of autonomous intersections. Then,
an algorithm to form a platoon (actually called a batch in the paper) and an algorithm to control
the platoon to safely cross the intersections are proposed. In Tachet et al. (2016b) the algorithm is
discussed in more detail. From simulations, it is concluded that the average delay of vehicles is
significantly lower compared to scenarios in which no platoons are formed. Therefore, the capacity
of an intersection increases significantly when forming a platoon. As platoon forming based on
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a polling system is considered in this paper which represents the overflow zone really well, the
algorithm used in Tachet et al. (2016a) might be useful.

The papers on autonomous vehicle intersections that resemble the overflow zone really well are
the ones of Miculescu and Karaman (2014, 2015, 2020). In their papers, Miculsecu and Karaman
describe autonomous ground vehicles that move in a single lane towards a two-way crossing. As
a single lane is considered, the only manoeuvre that vehicles can perform is acceleration and
deceleration, so no sideways movements. A polling system is used to assign time windows to the
lanes in which the vehicles on one of the two lanes may cross the intersection. In order to achieve
high throughput with little delay, smart platooning is introduced. Smart platooning is defined
as the effective clustering of vehicles. This is done by the global MotionSynthesize algorithm,
which generates a trajectory for each vehicle minimizing the distance to the intersection whilst
maintaining a safe distance to the vehicle in front and making sure the intersection is crossed
at maximum velocity. From simulation results, it can be concluded that the proposed algorithm
would decrease the delay at an intersection significantly compared to an ordinary traffic light setup.
Again, as platoon forming based on a polling system is discussed in this paper, the algorithms used
might be useful.

Timmerman and Boon (2021) extend the work of Miculescu and Karaman (2014, 2015, 2020)
and Tachet et al. (2016a, 2016b) by improving the platoon forming algorithm. Where the other
papers make use of optimization solvers to determine the vehicle’s trajectory, Timmerman and
Boon (2021) proposes an alternative to the MotionSynthesize algorithm without needing a solver.
By using only closed form expressions that are mentioned in the paper, this algorithm is faster and
therefore more applicable for real-time usage. Once again, as platoon forming based on a polling
system is discussed in this paper, the algorithms used might be useful.

Paper path planning
Besides platooning and autonomous intersections, paper path planning in printers as described
in (Swartjes, 2012) can also be considered an analogy of the overflow zone. Here, parcels can be
represented by paper sheets, the conveyors can be represented by pinches that move the paper
and the availability on the merge zone can be represented by the availability of different modules
within the printer. In his research, Swartjes (2012) converted a paper path planning problem
into a one-dimensional problem with an objective function, equality constraints and inequality
constraints. Then, using a non-linear solver, the optimal velocity profile for minimal processing
time, minimal energy usage and a combination of both is determined. Assumptions have been
made on homogeneousness (there is only one type of sheet) and cyclicity (the dynamics of every
sheet is the same) and therefore interaction between sheets is neglected. As these assumptions
cannot be made for the overflow zone since the inflow rate is variable, the available time windows
in the merge zone are variable and the load may consist of parcels, the proposed optimization
problem does not comply with the problem at hand. The ideology of converting the problem into a
one-dimensional problem with an objective function and constraints might be of interest.

(Alirezaei et al., 2012) came up with a method of using Max-plus algebra for the optimal scheduling
of multiple sheets in a printer. This yields a higher utilization of the printer components and
increases the number of papers that can be printed per period of time. When considering the scope
of the project, the objective is not to come up with a new scheduling algorithm for the merge zone
by maximizing the utilization of the merge conveyor. Moreover, the paper does not mention how
papers must move but only when a sheet of paper must be at which component. As there is no
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information on the trajectory itself, the paper of Alirezaei et al. (2012) will not be of use directly
but the scheduling algorithm is useful to obtain insights in how scheduling in the merge zone can
be improved.

3.3 Platooning as solution
A promising idea to cope with the current problems is to merge all four sub-components (speed
reduction, indexing, accumulation and infeed) into a single component with a number of short
conveyors that executes the function of the sub-components. In order to comply with the
requirements, constraints and preferences as mentioned in Section 2.5, a control algorithm that
controls conveyors is needed that makes sure all approaching parcels are able to enter the overflow
zone, slowed down, accumulated and transported in a train to the infeed with minimal stopping. In
addition, when stopping is required, the stopping positions must be spread such that all conveyors
have approximately the same number of stops instead of having one or a few conveyors that always
stop in case a stop is required.

By actively controlling the four sub-components, communicating between them and designing
trajectories, the sub-components can be replaced by a single component that executes the function
of all sub-components. Now the speed reduction, accumulation and infeed component all must be
able to accept an full train. By merging the sub-components, the overflow zone does not have to be
able to hold three full trains of parcels allowing for a decrease in footprint.

3.4 General principle
For the generation of trajectories in the overflow zone, the method used by Timmerman and
Boon (2021) is used as a basis. Here, trajectories of autonomous vehicles are generated by
determining times in the near future at which a vehicle must start and stop accelerating and
decelerating. This method is explained based on Figure 3.1.

t0 tdec tstop tacc tfull tfinal

xcontrol

0

I

II
III

IV

V

 C
on

tr
ol

 r
eg

io
n 

 

Figure 3.1. Main idea of closed-form trajectory generation by Timmerman and Boon (2021).

18 Chapter 3 Platooning for autonomous intersections



In Figure 3.1, the trajectory of a single parcel from position xcontrol to 0 can be seen starting at
t0. As the trajectory is determined between xcontrol to 0, this is where the velocity of the vehicle
is controlled and therefore referred to as the control region. The trajectory can be cut into five
parts (I-V). In the first part, part I, the vehicle holds its initial maximum velocity until tdec. Then,
between tdec and tstop the vehicle decelerates with maximum deceleration until the vehicle has
come to a full stop. The vehicle then waits before accelerating again based on the chosen final
time tfinal. At tacc, the vehicle accelerates with maximum acceleration until the vehicle reaches
its maximum velocity at tfull. Finally, during part V, the vehicle moves with maximum velocity to
complete the trajectory.

The determination of tdec, tstop, tacc and tfull is done by closed-form expressions, based only on
vehicle properties like maximum velocity and acceleration, some initial values like the initial
velocity and distance to cover and several desired output values like the final velocity and desired
end time. Because of that, there is no need for solvers and the trajectory can be determined fairly
quickly making it usable for real-time usage (Timmerman and Boon, 2021).

3.5 Additions
Unfortunately, the algorithm described in Timmerman and Boon (2021) only works as desired in a
general case when all parameters are bounded relatively strictly. In addition, multiple assumptions
have been made that do not apply in the overflow zone. Together, the boundaries and assumptions
that have been made form the following limitations that need to be dealt with. The following
additions are done to deal with those limitations.

Trajectories can be designed without knowing future arrival times.
In order to determine the trajectories of multiple vehicles that are formed into a platoon, currently
the arrival times of all vehicles must be known beforehand. Based on a list of arrival times at
xcontrol, the trajectories of all vehicles are designed at once. For the overflow zone, this leads to
undesired layout designs of the system as is explained in the next paragraph.

A parcel to enter the overflow zone can first be noticed after it has left the sortation zone. The
reason for this is that, if a parcel has not left the sortation zone, it will not be certain if it will still
be sorted at the end of the sortation zone or not. After a parcel has left the sortation zone, it is
transported with high velocity to the overflow zone where it is slowed down. If a parcel is not
allowed to slow down in between, and all parcels that form a platoon must have left the sortation
zone before the first parcel may enter the overflow zone, a lengthy transportation zone is needed
between the sortation zone and the overflow zone. Only if this transportation is long enough,
the arrival time at the overflow zone can be determined for all parcels to form a platoon. A long
transportation zone in turn reduces the key performance indicator of a small footprint. Therefore,
trajectories must be able to be formed without knowing the arrival times of all parcels to join a
platoon beforehand.

Trajectories can be redesigned.
Designed trajectories will, in the real world, most likely not be followed exactly due to external
and uncertain factors. In the case of the overflow zone the exact behaviour of a parcel on a
conveyor cannot be predicted exactly due to uncertain behaviour like slip. Because of this, the
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algorithm must be altered such that trajectories can be redesigned. An obvious event to yield
a redesign of trajectories would be the event of a sensor noticing a parcel that is not exactly en route.

Trajectories do not have to contain all parts (I-V).
When designing trajectories, it has been assumed that all parts of the trajectory (I-V) need to be
used. This means that the control region is assumed long enough such that vehicles can slow down
to the desired minimum velocity and accelerate to the desired maximum velocity. This may not
always be the case, especially when redesigning trajectories based on position updates by sensors.
In that case, it may happen that a trajectory, for example, is already at part V and only needs to
accelerate to reach the endpoint at the desired final velocity. In such a case, it must be possible to
design a trajectory that does not consist of all five parts.

Also, it might not be desirable to use each part of the trajectory (I-V) in every situation even though
there is enough distance between the parcel and the end of the overflow zone to fit in all parts. It
can, for example, happen that a vehicle needs to keep moving at maximum velocity in order to join
a platoon that is being formed. If the algorithm does not account for this and the vehicle first needs
to slow down, it cannot join the platoon anymore. Therefore, the algorithm needs to be adjusted
such that trajectories can be designed that do not consist of all parts (I-V).

All incoming parcels are accepted.
Due to the assumption that parcels do not join the control region if that region is overcrowded,
parcels have been rejected to enter the control region if there was not enough space for parcels to
decelerate without colliding with other parcels. This means that vehicles that would collide have
simply not been considered. For the overflow zone, this implies that the entire system needs to
come to a stop if the overflow zone is (too) crowded or that collisions might occur. As this reduces
system throughput or safety, a solution must be found such that all incoming parcels can enter the
overflow zone without stopping the system.

The length of parcels is taken taken into account when designing trajectories.
Trajectories have been designed such that they do not intersect, as an intersection between
trajectories means a collision in real life. However, the length of a vehicle has not been taken into
account, meaning that a collision is still possible. As this is undesired in the system and therefore
also in the overflow zone, this must be taken into account.

The arrival and departure velocity are different from the maximum velocity.
In the paper, it has been assumed that the arrival and departure velocity are equal to the maximum
velocity. This can be seen in Figure 5.1 as the tangent of part I and part V are identical. This
does not necessarily have to be the case in the overflow zone, therefore the algorithm needs to be
adjusted such that the arrival velocity, departure velocity and maximum velocity can be defined
separately.

A minimum velocity bound is defined.
As can be seen in Figure 3.1, part III of the trajectory has a velocity of zero. However, a major
problem of the overflow zone at the moment is the start-stop behaviour. Ideally, the trajectories
must be designed such that the velocity does not drop below a predefined minimum velocity.

Trajectories are designed to deal with parcels on conveyors that cannot move independently
of each other.
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The paper considered a situation with autonomous vehicles that could move completely independent
of each other. This is different from the situation where parcels are moved by conveyors. The
conveyors determine the velocity of parcels and therefore their trajectory to follow. The trajectories,
however, are not designed for parcels on conveyors. Therefore, a parcel ’communicates’ to a
conveyor which velocity it should have. As a single conveyor might carry multiple parcels, it
can occur that parcels desire a different velocity for the same conveyor so the desired velocity
of a parcel cannot always be satisfied. This will often be the case and cannot be prevented, but
taking this into account for the design of trajectories can reduce the desired velocity difference of a
conveyor. With that, parcels will follow their planned trajectory better as conveyors can run at the
desired velocity more often.

3.6 Contribution
Currently, multiple methods for the design of trajectories to form a platoon at autonomous
intersections are presented in literature. These methods are, however, not more than methods
to design a trajectory based on predefined arrival and departure times, positions and velocities.
When using these methods to actively control autonomous vehicles approaching an intersection in
a real-world situation, problems arise. For example:

• A list of future arrival times is needed but not known.

• Trajectories cannot always be followed exactly but alternative trajectories cannot be computed.

• Situations in which there is not enough space for vehicles to find a trajectory without colliding
can occur but cannot be dealt with.

• The arrival and departure velocity are equal and identical for all vehicles, while this is not
neccesarily the case.

To the best of the writer’s knowledge, currently there is no method available in literature that is
able to actively control autonomous vehicles approaching an intersection. In the project, current
knowledge on platoon forming is used to make a real-time controller that can actively control
autonomous vehicles approaching an intersection in a real-world situation. In order to do so,
different collections of equations are developed that are used design trajectories from any position.
Conditions are introduced that make sure the correct collection of equations is chosen based on
based on a parcel’s position, velocity and desired departure time.

In addition, in this project platoon forming is considered for parcels on conveyors. This yields some
new challenges as the parcels cannot accelerate and decelerate completely independently of each
other as the maximum acceleration and deceleration of the conveyor must be taken into account
when the gap between parcels becomes small. Furthermore, the conveyors preferably do not stop
which introduces a limited time a parcel can be controlled.

In short, the concept of platoon forming in combination with autonomous intersections has been
researched before. However, the active control and application domain are, to the best of the
writer’s knowledge, novel and come with constraints that have not been dealt with before. In
the project, current knowledge on platoon forming is used to make a real-time controller for the
platoon forming of parcels on conveyors. The performance and influence of design parameters on
key performance indicators of this controller are ultimately investigated.
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4Plant model

To verify whether the proposed controller functions as expected, a model-based approach is used
to test the control algorithm on a plant model. It is, however, key that the plant model behaves as
close to the real world as possible to give useful insight into how the controller would function on
a real-world plant. The model is discretized over time where at each timestep model is updated.
In this chapter, first the advantages of model-based design are mentioned. Then, it is explained
how the plant model works. Important features that determine the behaviour of parcels on the
conveyor are discussed in detail in order to validate the accuracy of the model compared to the
real world and to verify the implementation of the model in a software environment.

4.1 Model-based design
Model-based design is a model-centric approach to the development of control (Reedy et al., 2010),
signal processing (Ahmadian, 2006), communications and dynamic systems (Aarenstrup, 2015).
Instead of designing systems by textual specifications and testing software on actual physical
systems, in model-based design, a model is used to replace both. The model includes all aspects
relevant for the behaviour of the system that is modelled, including the system requirements and
constraints, the physical behaviour of system components like actuators and sensors, the algorithm
used to control the system and test scenarios to verify the model. Over other designing methods,
model-based design comes with some advantages (Bergmann, 2014), (Aarenstrup, 2015) that are
described below.

Modular
First of all, the design of a model can be done in a modular fashion. One can start designing on a
high-level (system-level) model and then later on improve the accuracy of the model by adding
more low-level (component-level) features. Because of this modular design, the complexity of a
system becomes easier to grasp. In addition, it becomes possible to test modules of the model
separately.

Unambiguous
Models are unambiguous, unlike textual documents. When working with a team on the model,
people will generally interpret the model in the same way. This yields clear and efficient
communication between people.

Cost-effective
Using model-based design is cost-effective in numerous ways. To start with, models can be used to
test a new concept without having to build an expensive physical system. Furthermore, a model
can be used to verify if a newly developed algorithm does not contain any errors that cause a
system to collide or break down which may lead to high repair costs.

Time-efficient
With the use of model-based design, one is able to implement ideas quickly. Multiple designs can be
explored, tested and evaluated in a short time making model-based design a time-efficient approach.
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Applicable
When considering a model of a physical system with a control policy, which would be the case in
this project, the control algorithm can often be used directly or converted into usable code for the
control of the actual physical system. In addition, some model-based design frameworks even allow
for automatic code generation based on a model containing requirements and constraints.

In this project, model-based design is used to design the overflow zone. In the model, the plant and
the controller are separated. More specifically, virtual sensors are used to detect the presence of a
parcel. Then, a control algorithm is developed to determine the desired acceleration of a virtual
conveyor. As mentioned in Section 2.4, the control algorithm that controls conveyors is needed to
make sure all approaching parcels are able to enter the overflow zone, parcels are slowed down,
accumulated and transported in a train to the infeed with minimal stopping. The output of this
control algorithm will then be sent to the virtual conveyor that will perform the acceleration. By
separating the plant and the controller, the control algorithm uses only sensor information that is
also available on a real-world system and outputs only information that can also be used to control
real-world conveyors. This results in a control algorithm that can be easily implemented on a real
system when desired.

4.2 Modular design and behaviour of conveyors
To start with, a plant model is made that consists of a series of short conveyor belts. Different types
of conveyors can be initialized, where each type can have its own size, maximum acceleration and
maximum velocity. The plant model can be built with mixed conveyor types and any number of
conveyors. In Figure 4.1, an example of a series of short conveyors is shown with conveyor types
of different lengths. In the figure, an observe region is visible between xobserve and xcontrol and a
control region is visible between xcontrol and 0. The use of these regions is explained later, but for
now, it is simply used to illustrate different conveyor sizes are possible.

xobserve xcontrol 0

Figure 4.1. Example plant layout with twelve short conveyors.

As mentioned in Section 4.1, the controller and the plant models are separated. To validate that the
plant model does not show behaviour that is not possible, in real-life the velocity and acceleration
are checked each timestep and compared to the value of one timestep ago. In this way, it can be
made sure that the velocity and the acceleration do not exceed any predefined bounds, even if the
controller desires differently.

4.3 Behaviour of parcels on conveyors
Next, there is the behaviour of parcels on conveyors. Parcels are given a velocity solely based on
the conveyor(s) they touch. This works as follows. First, a randomly chosen centre of mass is given
to every arriving parcel. This centre of mass is only determined for a single dimension, namely the
direction the parcel moves in. Furthermore, the centre of mass is placed between 1

3 and 2
3 of the

length of a parcel, as it is unlikely that the centre of mass is near the edge of a parcel. The centre
of mass is given once and it does not change after that.
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With the centre of mass chosen, a triangle is made between the most downstream bottom point, the
most upstream bottom point and the centre of mass at the top of the parcel. Now, the percentage
of mass on a conveyor determines the contribution to the velocity of the parcel. With the aid of
Figure 4.2, this can be explained.

1/3 1/3

28%
72%

3 m/s 1.5 m/s  

Figure 4.2. Visualization to show the behaviour of parcels on conveyors.

In Figure 4.2, a parcel can be seen on two conveyors. The parcel has a randomly chosen centre of
mass between 1

3 and 2
3 of the length of a parcel and the conveyors have different velocities. The

red dashed line is exactly in the middle of the two conveyors. Numeric values have been given to
the conveyor velocities and to the surfaces separated by the red dashed line such that a calculation
can be made to show how the parcel velocity is chosen. In this example, 72% of the red triangle
surface and therefore the parcel mass is on the upstream conveyor and 28% of the parcel mass is on
the downstream conveyor. The upstream conveyor has a velocity of 3 [m/s] and the downstream
conveyor has a velocity of 1.5 [m/s]. The parcel velocity vparcel [m/s] is now calculated by

vparcel = 0.72 · 3 + 0.28 · 1.5
vparcel = 2.58

So, in this example, the parcel has a velocity of 2.58 [m/s]. Over time the mass on the downstream
conveyor is gradually increased and with that, the velocity is gradually decreased.

This behaviour resembles reality, due to two important aspects. First, there is a realistic transition
of parcel velocity between conveyors that are running at different velocities. Instead of a sudden
parcel velocity increase or decrease, the parcel velocity gradually changes velocity towards the
downstream conveyor velocity. By the time a parcel is completely on a conveyor, the parcel velocity
is equal to the conveyor velocity. Second, there is the randomly chosen centre of mass which is
different for all parcels. This causes a difference in the exact movement a parcel makes when
moving between conveyors that are running at different velocities. As the centre of mass in real-life
is also different for each parcel, adding a centre of mass makes the model more realistic.

4.4 Behaviour of collisions between parcels
The last feature to discuss is the behaviour of parcels when a collision occurs. A collision is detected
when parcels overlap, as overlapping is not possible in the real world. In the plant model, however,
an overlap between parcels is possible but must be resolved. Although parcels should collide as
less as possible, the behaviour during collisions must be defined.

In case of an overlap between two parcels, the middle point of the overlapping area is found.
With the middle point of the overlap found, the two parcels are aligned with this middle point in
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between the parcels. Essentially, this means that the downstream colliding parcel is pushed forward
slightly, and the upstream colliding parcel is slowed down. In Figure 4.3 this method is explained.

Overlap
  

(a) Two parcels on conveyors with overlap. (b) Same parcels on conveyors, aligned with center of
overlap.

Figure 4.3. Visualisation of parcel collision behaviour.

This method can only be used in case there are two parcels that collide and both parcels are able to
align with the middle point without causing an overlap with other parcels. This is not the case,
for example, when a single parcel overlaps with the last parcel of a train. In that case, the closing
parcel of a train is not able to move forward without colliding with the consecutive parcel. A way to
solve this is by moving the entire platoon forward, however, this is probably not the most realistic
behaviour as a single parcel can hardly push a train with a dozen parcels forward. Another way
to solve this is by not moving the platoon at all, and assuming the upstream colliding parcel does
not affect the platoon. Although this might be true for long platoons, a parcel that collides with a
platoon of only two parcels probably affects the position of the platoon.

With this in mind, a decision must be made on how to deal with collisions between parcels,
especially when there is not enough space for a collision to be resolved without affecting other
parcels. The following is chosen:

In case a parcel collides with a platoon of two parcels, the platoon moves forward 1
3 of the

overlapping length and the colliding parcel moves back 2
3 of the overlapping length.

In case a parcel collides with a platoon of three parcels, the platoon moves forward 1
4 of the

overlapping length and the colliding parcel moves back 3
4 of the overlapping length.

In case a parcel collides with a platoon of four or more parcels, the platoon does not move at
all and the colliding parcel joins the platoon.

Formally, this can be described by

nplatoon ≤ 3

∆xplatoon = 1
nplatoon+1 · loverlap

∆xparcel = −nplatoon
nplatoon+1 · loverlap

nplatoon > 3
{

∆xplatoon = 0
∆xparcel = −loverlap

where nplatoon is the number of parcels in the platoon, ∆xplatoon is the distance the platoon shifts,
∆xparcel is the distance the colliding parcels shifts and loverlap is the length of the overlap.
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This behaviour resembles the real world well, due to two aspects. First, the magnitude of a
collision in real-life is taken into account in the plant model. Instead of approaching all collisions
as if they all have the same impact on a parcel’s position, a more significant collision results in a
larger movement of parcels. This is done by taking the length of the overlap into account when
re-positioning colliding parcels. If parcels have a large overlap, the velocity difference between
parcels must have been high and the collision must have been relatively big. Hence, the colliding
parcels in the overflow zone are moved relatively much. If parcels have a small overlap, the velocity
difference between parcels must have been small and the collision must have been relatively small.
Hence, the colliding parcels are moved relatively less. Second, the static friction that must be
overcome when pushing a parcel in real-life is taken into account by introducing a maximum
number of parcels that a single parcel can move. Because of this, a single parcel cannot overcome
the static friction of a train longer than three parcels.

4.5 Poisson arrival rate
Besides the behaviour of conveyors and parcels, the arrival rate of parcels at the plant must be
discussed. For the arrival rate, a Poisson distribution is assumed, as this allows for a known average
arrival rate with a random distribution of arrivals. As it is not known beforehand when parcels will
enter the overflow zone, a random (Poisson) distribution is most logical. To verify whether this is
implemented correctly, first the properties of a Poisson arrival rate are listed.

1. Events are independent of each other. The occurrence or history of events does not affect the
probability of another event occurring.

2. The average (arrival) rate is constant over time.

3. Events cannot occur at the same time.

In the plant model, each timestep a parcel can be generated with the probability of

P = λ

3600 · δt (4.1)

where P is the probability of an arrival, λ is the arrival rate in [parcels/hour] and δt is the time of
a timestep [s] in the simulation. This method is according to the Poisson properties, because:

1. Each timestep, the probability of a parcel being generated is equal. Therefore, events are
completely independent of historical events.

2. The probability maintains constant over time and is not affected if the arrival rate in a certain
time span is not met.

3. Every timestep, either a single parcel is generated or nothing happens. Therefore, it is not
possible to have multiple events at the same time.

In addition, a Poisson arrival rate also allows for trains of parcels to enter the overflow zone, as
parcels can be generated in several timesteps close to each other. In this case, parcels initially
overlap but are formed into a train as described in the section on the behaviour of collisions
between parcels.
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5Controller

In this chapter, the trajectory generation algorithm is explained in detail. First, the proposed
trajectory design and why this is the ideal trajectory is explained. Then, the calculations used to
construct the trajectories are given.

5.1 Proposed algorithm
Because of all the limitations and additions described above, the algorithm of Timmerman and
Boon (2021) must be adjusted to make it work for the overflow zone. Moreover, it is important to
discuss what an optimal trajectory looks like and how it relates to the algorithm of Timmerman
and Boon (2021).

Define the departure time of the platoon
As stated in Section 2.6, the most important key performance indicator is system throughput. For
the overflow zone to contribute to high system throughput, it must deliver platoons of a maximum
predefined length to the merge zone. If the platoon is not of maximum length, the density of parcels
in the sortation zone is reduced and therefore the system throughput is reduced. To form a platoon
of maximum length, enough parcels must arrive in the overflow zone to form the platoon before
the platoon leading parcels approaches the merge zone. As stopping is not desired, the platoon
leading parcels can only be limited time in the overflow zone with this time mainly determined by
the length of the overflow zone and the minimum allowed velocity.

As one does not know beforehand when parcels arrive, or even if enough parcels arrive on time to
form a platoon of the desired length, it is key that the platoon leading parcels initially follows the
trajectory that takes the most time while taking the boundary conditions into account. The most
important boundary conditions for this are the minimum allowed velocity and the desired final
velocity. The trajectory that takes the most time and is still feasible starts to decelerate to minimum
velocity immediately when entering the control region and accelerates to the desired final velocity
as late as possible, as can be seen in Figure 5.1. Initially, this trajectory is given to the platoon
leading parcels.

29



t0 tvmin tacc tfinal

xcontrol

0

vmin

vmax

Figure 5.1. Initial trajectory of platoon leader from xcontrol to 0 starting at t0.

In Figure 5.1, the trajectory of the platoon leader can be seen over time. The top plot shows the
velocity over time, the bottom plot shows the trajectory over the same time. The solid line in the
trajectory plot represents the trajectory of the head (most downstream point) of the parcels, the
dashed line represents the tail (most upstream point) of the parcels. The area between the front
and back of the parcels is coloured in light grey and represents the body of the parcels. In the
figure, it can be seen that the parcels immediately starts to decrease its velocity at t0 until the
minimum velocity is reached at tvmin. Holding the minimum velocity as long as possible but still
leaving the control region with the desired final velocity causes the system to start accelerating at
tacc. The point in time at which the parcels crosses the 0 line with the desired final velocity is the
departure time of the platoon and is referred to as tfinal.

With the trajectory designed for the platoon leader, a problem might arise. If there is not enough
time between consecutive parcels that arrive at the overflow zone, collisions may occur. This can
be explained with the help of Figure 5.2.

tf1

xcontrol

0

(a) Collisions between parcels as the departure time of the
platoon leader tf1 is set to the initial departure time.

tf2tf1

xcontrol

0

(b) Reevaluated departure time of the platoon leader tf2 to
avoid collision between parcels.

Figure 5.2. Example of collisions between parcels if two parcels arrive in a train and the departure time is
not reevaluated.

In Figure 5.2, two parcels can be seen. The first parcels is the platoon leading parcels and therefore
the trajectory that takes the most time is designed. The departure time of the platoon leader, in this
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case, is called tf1. The second parcels enters just after the first parcels and a trajectory is designed
to join the platoon. In Figure 5.2a, it can be seen that the second parcels that enters just after the
first parcels, collides with the first parcel as the trajectory intersects with the dashed line of the first
parcel, even though the second parcels decelerates with maximum deceleration when entering the
control region.

As the second parcels cannot avoid the collision, since stronger deceleration is not possible, the first
parcels must adjust its trajectory such that the second parcels can enter without colliding. This can
be seen in Figure 5.2b. Here, the second parcels still breaks as hard as possible but the departure
time of the first trajectory is adjusted to tf2 such that there is no collision and the departure time
is still as far in the future as possible. For this to work, the time a parcels approaches the control
region must be known just a little time beforehand to make sure the platoon leading parcels does
not start decelerating immediately. This is why, besides a control region, an observe region must be
defined.

Adding an observe region in front of the control region
In the observe region, incoming parcels can be observed but not yet controlled. If the observe
region is long enough and trajectories can be redesigned and collisions can be prevented. In
addition, the control region will not get overcrowded anymore as the departure time is altered
such that all parcels can enter and pass through the overflow zone. The minimum length of the
observe region is defined by Equation 5.1

lobserve ≥ v0 · tv0→vmin

lobserve ≥ v0 · (v0 − vmin)
amax

(5.1)

where lobserve is the length of the observe region, v0 represents the velocity of the parcels in the
observe region, vmin represents the minimum allowed velocity and amax represents the maximum
acceleration and deceleration. If Equation 5.1 holds, any parcels in the control region is able to
accelerate from minimum velocity to the velocity in the observe region before the arriving parcels
enter the control region. As all parcels in the control region are capable of reaching at least the
velocity of an arriving parcels, collisions will not occur.

Define the optimal trajectory
Now the departure time of the platoon leader is defined and an observe region is added to avoid
collisions, the optimal trajectory for parcels can be defined.

The general shape of the optimal trajectory closely resembles the trajectory presented by Timmerman
and Boon (2021), as shown in Figure 3.1. In Figure 5.3, the general shape of the proposed trajectory
can be seen. When comparing it to the trajectory presented by Timmerman and Boon (2021),
several differences can be seen.

First, the initial velocity does not have to be equal to the maximum velocity. Therefore, the parcel
does not hold its initial velocity until tdec but accelerates to maximum velocity when entering the
control region. The reason for this is explained later. This can be seen in part I, where the parcel
accelerates with maximum acceleration between t0 and tvmax. Then, in part II, the parcel holds its
maximum velocity until tdec.
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Then, the parcel decelerates until tvmin. Contrary to tstop which is defined at Figure 3.1, the parcel
does not come to a full stop but follows the minimum defined velocity at part IV. This is done as
frequent stopping is undesired for the lifetime of conveyors.

Last, the final velocity does not have to be equal to the maximum velocity. Therefore, the parcels
accelerates from tacc until tvfinal, when the desired final velocity is met. In the last part, VI, this
velocity is kept.

t0 tvmax ttdec tvmin tacc tvfinal tfinal

xobserve

xcontrol

0
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Figure 5.3. General shape of proposed trajectory with labeled parts.

Now the shape of the proposed trajectory has been introduced, it can be explained how this shape
helps designing the optimal trajectory. It all comes down to the principle of joining the platoon
leader as soon as possible with maximum deceleration. By doing so, as much space as possible is
left for other parcels to join without having to advance the departure time of the platoon more
than strictly needed. The parcel that follows next, therefore, most of the time has enough space
to decelerate to avoid collisions. There is however not always enough space to decelerate. If
the overflow zone is too crowded it might happen that there is not enough space to form a train
without causing collisions. In this case, the emergency overflow mode as discussed in Section 2.3 is
activated to avoid collisions. In order to explain why joining as soon as possible helps avoiding
collisions, the opposite of the this trajectory is shown. This is, joining the platoon leader as late as
possible (Figure 5.4a), instead of as soon as possible (Figure 5.4b).
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xobserve

xcontrol

0

(a) Collision due to immediate deceleration in control
region.

xobserve

xcontrol

0

(b) No collision with immediate acceleration in control
region.

Figure 5.4. Visualization to show why joining the platoon as soon as possible avoids collisions.

In Figure 5.4, the trajectories of three parcels can be seen. The arrival times and departure times of
the parcels are the same, but the trajectory in the control region is different. In Figure 5.4a, the
second parcel starts decelerating immediately and joins the platoon in the final stage. The third
parcel, displayed in red, also decelerates immediately when entering the control region but cannot
decelerate fast enough to avoid a collision. This collision is visible as the third parcel crosses the
dashed line of the second parcel, comparable to the situation shown in Figure 5.2a. In Figure 5.4b
the second and third parcel join the platoon as soon as possible. By doing so and increasing the
velocity, the second and third parcel that enter with no gap in between them are separated shortly
and no collision occurs. This can be seen in Figure 5.4b, where the distance between the dashed
line of the second parcel and the solid line of the third parcel are separated at the beginning of the
control region.

Next, the conveyors that transport the parcels must be discussed. Because of the conveyors, not all
parcels can be controlled completely individually, as their velocities are determined by conveyors
and multiple parcels may be carried by the same conveyor. This can yield to gaps in the platoon
and make it difficult for parcels to join the platoon. Therefore, minimizing the instances when
there is a difference in the desired conveyor velocity is key.

To cope with this as good as possible, the trajectory is adjusted such that the start of acceleration
time tacc and the time final velocity is reached tvfinal is the same for all parcels in the platoon.
This is already dealt with, as parcels join the platoon as soon as possible. This can also be seen
in Figure 5.4a, where tacc and tvfinal are the same for all parcels where this is not the case in
Figure 5.4b. In addition, the instances with a velocity difference that cannot be avoided are made
as short as possible. This is explained with the help of Figure 5.5.
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Figure 5.5. Velocity profile of trajectory similar to the trajectory shown in Figure 5.4b

In the top plot of Figure 5.5 the velocity profile over time can be seen for three trajectories. In the
bottom plot, the corresponding trajectories can be seen with the same time axis. The first parcel
holds its initial velocity until the control region is reached, immediately decelerates to minimum
velocity and starts accelerating at tacc. Parcel two arrives at the observe region a bit later and
also holds its initial velocity until the control region is met. Then, it starts accelerating but before
reaching maximum velocity it starts decelerating, such that it joins the platoon at time tA. Parcels
three has a similar trajectory as parcel two but can reach the maximum velocity before joining the
platoon. Parcel three joins at time tB.

When taking a closer look at the time tA and tB, in the velocity plot it can be seen that the velocity
of parcel two just before tA and the velocity of parcel three just before tB are not equal to the
minimum velocity just as the platoon leader. There is, therefore, a difference in velocity just before
tA and tB. When looking at the trajectory plot, it can be seen that just before tA parcel two is very
close to joining the platoon and just before tB parcel three is very close to joining the platoon. As
parcels one and two are close to each other just before tA and parcels two and three are close to
each other just before tB, the likelihood of them being on the same conveyor is high. The desired
velocity of the conveyors just before tA and tB, however, is different. With that, it can be concluded
that there is a difference in the desired conveyor velocity when parcels adjoin a platoon.

Avoiding this difference in the desired velocity is not possible in normal setups, as this requires
unrealistic high acceleration and unrealistic short conveyors. To cope with these differences in
desired velocities as good as possible, the parcels that join the platoon decelerate with maximum
deceleration. In this way, the gap between the platoon and the parcel to join the platoon is
decreased as soon as possible. With that, the time the parcels are on the same conveyor with a
difference in the desired velocity is minimized.

After the parcels have joined the platoon, it can be seen that the conveyor velocity is the same
for all parcels in the platoon. The velocity stays minimal until tacc at which all parcels accelerate
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with the same velocity. Then, at tvfinal, all parcels hold the same desired final velocity. This can
also be seen in the velocity plot in Figure 5.5, where the desired velocity lines of all three parcels
lie on top of each other. Because of this, there will not be a difference in the desired velocity of
conveyors that causes gaps in the platoon. This results in a platoon with no gaps in between parcels.

From trajectory to conveyor velocity
In case there is a difference in desired velocity, the velocities of the most downstream parcels are
taken. When an upstream parcels joins a downstream parcel, the downstream parcel is always the
parcel with the lowest velocity. By choosing the velocity of the downstream parcel, the conveyor
runs at the lowest desired velocity and with that the departure time is not advanced. Also, slip
can be used as an advantage for parcels to join the platoon. By using slip, the parcels to join the
platoon can arrive with relatively high velocity on a conveyor with the last platoon parcels with
relatively low velocity and slide onto that conveyor to decrease the gap between the parcels and
the platoon.

5.2 Trajectory calculations
In Section 5.1, the optimal trajectory and the choices that have been made regarding this trajectory
are explained. In this section, the closed-form expressions that are used to design the trajectories
are discussed in detail.

Necessity of new equations
The equations used for designing trajectories as presented in (Timmerman and Boon, 2021) do
not suffice when taking the proposed adjustments and additions of Section 5.1 into account. First,
there is the minimum velocity that is added as well as the initial- and final velocity that do not
have to be equal to the maximum velocity. Second, the trajectories must be able to be made from
any position with any velocity. This is essential in real-world use on conveyors, as the planned
trajectory will most likely not be followed exactly due to slip on conveyors and other external
factors. New closed-form expressions must be developed to allow for the proposed changes. As the
trajectory must be able to be formed at any time at any position, not every trajectory will consist
of all six (I-VI in Figure 5.3) parts anymore. Therefore, a number of trajectory collections as well
as conditions on when to apply which collection have been defined. A collection consist of the
closed-form expressions to calculate the acceleration and deceleration times (tvmax , tdec, tvmin , tacc

and tvfinal).

Define ideal trajectory
As explained in Section 5.1, the trajectory of the platoon leader is designed such that it spends
maximum time in the overflow zone and for the platoon followers the trajectory is designed such
that parcels adjoin the platoon as soon as possible. In order to find the closed-form expressions
used to calculate the acceleration and deceleration times of the trajectories, first, the lines that
define the desired trajectory to join are formulated. In Figure 5.6, the three equations that describe
the trajectory of the rear of the platoon leader parcel are visualized.
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Figure 5.6. Visualization of equations that set up the positions in time to join the platoon.

In Figure 5.6, the trajectory of a single parcel can be seen over time. Taking the length of the
parcel, highlighted in grey, into account, the equations that span the most upstream point of the
first parcel are determined. This span consists of three parts: the tangent of the minimal velocity
part (xidealvmin , IV in Figure 5.3), the acceleration parabola with maximum acceleration (xidealacc,
V in Figure 5.3) and the tangent of the final velocity part (xidealvfinal , VI in Figure 5.3). The times
at which the function that describes xideal(t) change are determined by the times at which the
tangents and parabola intersect. As the variables tacc and tvfinal are used for each parcel separately
and these intersection times are required in the calculations of every parcel, these intersections are
given different names: tstartacc and tstartvfinal as these values define the time at which the platoon
leader starts accelerating and reaches final velocity. In Figure 5.6, these times have also been
highlighted. The ideal trajectory xideal [m] over time t [s] is given by

xideal(t) =


Equation A.1, if t ≤ tstartacc

Equation A.2, if tstartacc < t < tstartvfinal

Equation A.3, if t ≥ tstartvfinal

with tstartacc [s], the time the platoon leader starts accelerating, defined as

tstartacc = ttstartvfinal − tvmin→vfinal (5.2)

where ttstartvfinal [s] is the time the platoon leaders reaches final velocity and the front of the
platoon leader crosses the position is 0 line and tvmin→vfinal [s] is the time needed to accelerate
from minimum velocity to final velocity defined as

tvmin→vfinal = vfinal − vmin

amax
(5.3)

where vmin is the minimum allowed velocity [m/s], vfinal is the desired final velocity [m/s] and
amax is the maximum conveyor acceleration and deceleration [m/s2].

Derive the number of collections needed
Now, it is established that the ideal trajectory consists of three parts. Based on the position and
velocity of a parcel, a parcel adjoins the ideal trajectory at one of the three parts. As the closed-form
expressions for the trajectory to the ideal trajectory differ based on the part to join, at least three
collections of closed-form expressions must be developed. There is, however, another factor that
determines what the trajectory should look like. This is, if the maximum velocity vmax [m/s] can
be reached before adjoining the ideal trajectory. If so, a maximum velocity part (II in Figure 5.3) is
present before adjoining the ideal trajectory, else an s-curved trajectory is formed. All combined, a
total of six collections must be defined. In Table 5.1, the six collections and what separates them
can be seen.
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Table 5.1. Decision table for closed-form expression collection.

Adjoin at vmin part Adjoin at acceleration part Adjoin at vfinal part
Able to reach vmax 1 2 3
Not able to reach vmax 4 5 6

Conditions for collection 1-3
The first three collections are used when maximum velocity can be reached. Based on the position of
reaching maximum velocity, the trajectory is chosen. Before going into detail into the calculations,
the position and time a parcel is in the controllable region are defined as

xcontrollable = max[xcontrol, x0] (5.4)

tcontrollable = t0 + max
[

xcontrol − x0

v0
, 0

]
(5.5)

where xcontrollable is the position of a parcel [m], equal to the current parcel position x0 [m] if the
parcel is in the control region or equal to xcontrol [m] if the parcel is not yet in the control region.
The time tcontrollable is the current time [s] plus the time needed to arrive at the control region if a
parcel is not yet at the control region, with v0 being the current parcel velocity [m/s] equal to the
arrival velocity before entering the control region.

Condition 1: can maximum velocity be reached?
The first condition that must hold for this collection 1-3 is that a parcel must be able to reach
maximum velocity before starting to decelerate. Formally, this can be described as

xreachvmax ≤ xdecline(treachvmax , vmax) (5.6)

where xreachvmax is the position at which maximum velocity can be reached when accelerating
immediately [m], treachvmax [s] is the time at which maximum velocity can be reached when
accelerating immediately [s] and xdecline(treachvmax , vmax) [m] represents the line at which decelerating
from vmax results in the parcel joining the ideal trajectory with the corresponding velocity.
Furthermore, xreachvmax and treachvmax are defined as

xreachvmax = xcontrollable + 1
2 · amax · t2

v0→vmax
+ v0 · tv0→vmax (5.7)

treachvmax = tcontrollable + tv0→vmax (5.8)

where tv0→vmax is time needed to accelerate from current velocity to maximum velocity defined as

tv0→vmax = vmax − v0

amax
(5.9)

Next, the equation for xdecline(treachvmax , vmax) can be defined. As mentioned above shortly, if
a parcel approaches the positions defined by this line with maximum velocity and decelerates
when crossing, the parcel joins its ideal trajectory at the corresponding velocity. So, xdecline

is not a trajectory to follow but a line that indicates when to start decelerating. As the ideal
trajectory consists of three parts, xdecline also consists of three parts. In the first part, the trajectory
from maximum velocity to the minimum velocity tangent is defined. In the second part, the
trajectory from maximum velocity to the acceleration trajectory is defined, and in the third part,
the trajectory from maximum velocity to the final velocity tangent is defined. In Figure 5.7,
xdecline(treachvmax , vmax) can be seen.

Section 5.2 Trajectory calculations 37



t1 t2

xcontrol

0

Figure 5.7. Visualization of times that define the equation that is used to span xdecline.

To define xdecline(treachvmax , vmax), first t1 and t2 must be calculated. The equations used to define
t1 and t2 are given in Equation A.5 and Equation A.6 respectively. With these times known,
xdecline(treachvmax , vmax) can be defined.

xdecline(treachvmax , vmax) =


Equation A.7, if treachvmax ≤ t1

Equation A.8, if t1 < treachvmax < t2

Equation A.9, if treachvmax ≥ t2

Condition 2: where to join ideal trajectory if reaching maximum velocity is possible?
If Equation 5.6 is satisfied, a parcel is able to reach maximum velocity before starting to decelerate.
Visually, this means that a parcel is able to reach maximum velocity below the red line shown in
Figure 5.7 and Figure 5.8.

tA tBtC

xcontrol

0

Figure 5.8. Visualization to help with determining which collection that reaches maximum velocity to choose.

Based on the area in which the maximum velocity can be reached when accelerating in the control
region as soon as possible, it can be determined at which part of the ideal trajectory the parcel
joins the platoon. With that, the correct collection can be chosen.

Collection to choose =


Collection 1, if treachvmax ≤ tA

Collection 2, if tA < treachvmax ≤ tB

Collection 3, if tB < treachvmax ≤ tC

The equations used to define tA, tB and tC are given in Equation A.11, Equation A.12 and
Equation A.13 respectively.

Collections 1-3
Now, all the conditions that yield the use of the first three collections are stated. Below, the three
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collections are shown. As all collections are able to reach maximum velocity, tvmax is the same for
all three collections and defined by the time a parcel is in the control region Equation 5.5 plus the
time needed to reach maximum velocity can be reached Equation 5.9.

Collection 1: maximum velocity to ideal minimum velocity tangent
To define the times to design a trajectory that first reaches the maximum velocity and then joins the
ideal minimum velocity tangent, first, the intersection between the maximum velocity tangent and
the ideal minimum velocity is calculated. After that, the time needed to decelerate from maximum
to minimum velocity is defined. As the intersection between the two tangents (indicated by the
symbol ∩) is exactly in the middle of the deceleration trajectory, the acceleration and deceleration
times are defined as

tvmax = tcontrollable + tv0→vmax

tdec = txvmax ∩xideal − 1
2 · tvvmax →vvmin

tvmin = txvmax ∩xideal + 1
2 · tvvmax →vvmin

tacc = tstartacc

tvfinal = tstartvfinal

Figure 5.9. Visualization to help with the calculations
of collection 1.

In Figure 5.9, a visual aid is given that shows how txvmax ∩xideal is constructed and how it helps
defining tdec and tvmin . Furthermore, the equation used to define txvmax ∩xvmin

is defined as
Equation B.2. As the parcel joins the ideal trajectory at the minimum velocity part, tacc and
tvfinal are equal to the acceleration and final velocity time of the platoon leader.

Collection 2: maximum velocity to ideal acceleration trajectory
To define the times of collection 2, first the time the maximum velocity tangent xvmax(t) and the
deceleration line xdecline(t) intersect, txvmax ∩xdecline , is calculated using Equation B.3. From this
time on, the parcel decelerates until tvmin . The trajectory between tdec and tvmin is referred to
as xdec2ideal and can be seen in Equation B.4. The time when xdec2ideal intersects with the ideal
trajectory is defined by txdec2ideal∩xideal and shown in Equation B.6. All combined, this yields to
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tvmax = tcontrollable + tv0→vmax

tdec = txvmax ∩xdecline

tvmin = txdec2ideal∩xideal

tacc = tstartacc

tvfinal = tstartvfinal

Figure 5.10. Visualization to help with the
calculations of collection 2.

In Figure 5.10, a visual aid is given that shows how txvmax ∩xdecline and txdec2ideal∩xideal are constructed
and how it helps defining tdec and tvmin . As the parcel joins the ideal trajectory at the minimum
velocity part, tacc and tvfinal are equal to the acceleration and final velocity time of the platoon leader.

Collection 3: maximum velocity to ideal final velocity tangent
Collection 3 is essentially the same as collection 1, but in collection 3 the intersection between
the maximum velocity tangent and the ideal final velocity tangent must be found instead of the
intersection between the maximum velocity tangent and the ideal minimum velocity tangent. The
intersection time txvmax ∩xvvfinal

and the time needed to decelerate from maximum velocity to final
velocity tvvmax →vfinal are given by Equation B.7 and Equation B.8 respectively. Combined, this yields
the following acceleration and deceleration times.

tvmax = tcontrollable + tv0→vmax

tdec = txvmax ∩xvvfinal
− 1

2 · tvvmax →vfinal

tvmin = txvmax ∩xvvfinal
+ 1

2 · tvvmax →vfinal

tacc = tvmin

tvfinal = tstartvfinal

Condition 3: where to join the ideal trajectory if reaching maximum velocity is not possible?
If Equation 5.6 is not satisfied, maximum velocity cannot be reached before decelerating to the
ideal trajectory. Therefore, an s-curved shape is used to join the ideal trajectory. The conditions
for joining with an s-curved shape are a little different compared to the conditions for reaching
maximum velocity. As position and time to join the ideal trajectory depend on the current parcel
position and velocity, it is not possible to point out in a 2D time-position plot which collection must
be used. This is contrary to condition 1-3, which can be visualized using Figure 5.8. Therefore, the
calculations of where to join the ideal trajectory at what time are done for collection 4-6 beforehand
and used as conditions before actually designing the trajectories. The correct collection can be
chosen by
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Collection to choose =



Collection 4, if tjoinvmin ≤ tstartacc

Collection 5, if tjoinacc ≤ tstartvfinal and x0 ≤ xstartacc

and vmin ≤ vintersect ≤ vmax and not tjoinvmin ≤ tstartacc

Collection 6, if tjoinvfinal ≤ tfinal and not tjoinvmin ≤ tstartacc and not

(tjoinacc ≤ tstartvfinal and x0 ≤ xstartacc

and vmin ≤ vintersect ≤ vmax)

Here, tjoinvmin , tjoinacc and tjoinvvfinal
are the earliest times at which a parcel can join the three

ideal trajectory parts. If a parcel is able to join the ideal minimum velocity tangent before the
ideal acceleration trajectory starts, an s-curved trajectory to the ideal minimum velocity tangent
is designed. If this is not possible, but it a parcel is able to join the ideal acceleration trajectory
before the ideal final velocity tangent starts, an s-curved trajectory to the acceleration trajectory is
designed. Lastly, if a parcel is not able to join the ideal trajectory in the minimum velocity tangent
and also not in the ideal acceleration tangent but is able to join at the ideal final velocity tangent,
an s-curved trajectory to the ideal final velocity tangent is designed. How the variables tjoinvmin ,
tjoinacc and tjoinvvfinal

are defined can be seen in Equation A.14, Equation A.17 and Equation A.21
respectively. How these equations are derived becomes clear in the explanation of the collections.

Collections 4-6
Collection 4: s-curved trajectory to ideal minimum velocity tangent
To start off, Equation 5.10 is the general equation to calculate the distance a parcel has travelled
with constant acceleration over time given an initial velocity and acceleration. When rewriting
Equation 5.10 to isolate the time, Equation 5.11 can be found.

s(t) = 1
2 · a · t2 + v · t (5.10)

t = −v ±
√

2 · a · s + v2

a
(5.11)

In Equation 5.11 it can be noticed that the quadratic formula is used with the determinant equal to
2 · a · s + v2. As the maximum acceleration and distance to cover are positive in case an s-curved
trajectory is made and the velocity is not negative, the determinant is always positive. Therefore,
two solutions for tscurve can be found. Obviously, only one of the two is the correct one. As the
determinant is always positive, adding the determinant gives a positive t and subtracting the
determinant yields a negative t. As the time must be positive, the correct solution can be found
by adding the determinant. When rewriting Equation 5.11 for an s-curved trajectory of a parcel,
Equation 5.12 can be found

tscurve = −v0 +
√

amax · sscurve + v2
0

amax
(5.12)

where tscurve is the acceleration and the deceleration time [s]. As an s-curve consists of an
acceleration and a deceleration part, the total time of the s-curve is 2 · tscurve. Here, sscurve can be
formulated as shown in Equation B.9. As can be seen in Equation B.9, the distance that the s-curved
trajectory must cover depends on the time the s-curved trajectory takes tscurve. This is, because the
parcel adjoins the minimum velocity tangent, which causes the distance to cover to increase over
time. This yields some complications, as the time the s-curved trajectory must take depends on
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the distance to cover, and the distance to cover depends on the time the s-curved trajectory takes.
Luckily, this can be rewritten into a single equation for the tscurve as shown in Equation B.10.

A visual representation of tscurve and sscurve can be seen in Figure 5.11. All combined, the following
acceleration and deceleration times can be defined.

tvmax = tcontrollable + tscurve

tdec = tvmax

tvmin = tcontrollable + 2 · tscurve + tv0→vmin

tacc = tstartacc

tvfinal = tstartvfinal

Figure 5.11. Visualization to help with the
calculations of collection 4.

As can be seen in the equations above, tdec is equal to tvmax . So, the time that the maximum velocity
(or in this case highest possible, as maximum velocity cannot be reached) is reached is equal to
the time to start decelerating. In other words, there is no time the parcel spends on maximum
velocity. Furthermore, in the equation of tvmin , the time needed to decelerate to minimum velocity
is added besides only the time of the s-curved trajectory. This can also be seen in Figure 5.11,
where an s-curved trajectory is used to come closer to the ideal minimum velocity tangent but
some distance is left for decelerating to the correct velocity to join. As the parcel joins at the ideal
minimum velocity tangent, the acceleration time is equal to and tstartacc the final velocity is reached
at tstartvfinal .

Collection 5: s-curved trajectory to ideal acceleration trajectory
To formulate an s-curved trajectory to the ideal acceleration trajectory, a more complicated approach
is used compared to the s-curved trajectory to the ideal minimum velocity tangent as the ideal
trajectory does not have a constant velocity to join anymore. To start with Equation A.8, the line
that defines the position to decelerate to join the ideal acceleration trajectory with maximum
velocity is used. Now, however, the maximum velocity is replaced with an for now unknown
velocity vintersect. This yields to Equation B.11. Next, the first acceleration trajectory of the parcel
when entering the control region is defined as Equation B.12.

With Equation B.11 and Equation B.12 defined, the intersection between these two functions can
be determined. The time of intersection depends however on velocity vintersect. Therefore, the
equation that describes the time of intersection based on vintersect is defined in Equation B.13. This
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equation must be equal to the equation that describes the velocity of the first acceleration trajectory
over time, given by

tfirstacc(vintersect) = tcontrollable + vintersect − v0

amax
(5.13)

The velocity vintersect at which Equation B.13 and Equation 5.13 intersect is given by Equation A.15.
Now vintersect is known the intersection time of Equation B.11 and Equation B.12, txfirstacc(t)∩xdecline(t,vintersect)

can be defined using Equation A.16. With the use of txfirstacc(t)∩xdecline(t,vintersect), tjoinacc can be
defined using Equation A.17. All combined, this yields the following equations

tvmax = txfirstacc(t)∩xdecline(t,vintersect)

tdec = tvmax

tvmin = tjoinacc

tacc = tvmin

tvfinal = tstartvfinal

Figure 5.12. Visualization to help with the
calculations of collection 5.

As can be seen in the equations, tdec is equal to tvmax and tacc is equal to tvmin . This means, there is
no maximum velocity part and also no minimum velocity part. Last, as the parcel joins at the ideal
acceleration part, the final velocity is reached at tstartvfinal .

One might wonder why to go through the trouble of defining the maximum acceleration parabola,
as this is simply the trajectory from the minimum velocity tangent to the final velocity tangent at
the latest time instance possible. If the minimum velocity tangent cannot be reached before tstartacc,
one can immediately join the final velocity tangent and collection 5 and 6 can simply merge, right?
Although this trajectory is not wrong as it ends at the right position at the right time with the right
velocity, two problems occur. First of all, this is not the optimal trajectory anymore as it does not
leave maximum space under the trajectory curve as shown in Figure 5.2. Second, the time the
parcel reaches its final velocity ttvfinal is not the same for all parcels anymore. Because of this, the
desired overlap in the velocity profile as can be seen in Figure 5.5 after parcels have joined is not
present anymore. This yields more differences in the desired velocity which can cause gaps in the
platoon at the final stage. Therefore, it is needed to use the maximum acceleration parabola for
trajectory designing.

Collection 6: s-curved trajectory to ideal final velocity tangent
The s-curved trajectory to the ideal final velocity tangent works the same as collection 4, where
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an s-curved trajectory is made to the ideal minimum velocity tangent. Now, sscurve is given by
Equation B.15 and tscurve is given by Equation B.14.

tvmax = tcontrollable

tdec = tcontrollable

tvmin = tcontrollable + tscurve

tacc = tvmin

tvfinal = tcontrol + 2 · tscurve + tv0→vfinal

Exceptions
In an ideal world, all parcels follow their planned trajectory exactly. In the real world, however,
this is not always the case. There are numerous reasons for a parcel to diverge from its planned
trajectory. For example, a parcel gets pushed forward by another parcel, the conveyor’s velocities
deviate slightly from the desired velocity, or slip might cause a parcel to behave differently than
planned. Because of this, a parcel might end up at a position with a certain velocity which makes it
impossible to end up at the desired position, at the desired time and with the desired velocity. This
phenomenon will most likely happen when a parcel is close the leaving the overflow zone, as this
leaves little space to correct any disturbances. An intuitive example might be the following:

Imagine a platoon leading parcel that is accelerating to final velocity to leave the overflow zone.
The acceleration trajectory is designed such that the platoon leader accelerates as late as possible
such that the desired final velocity is reached exactly when leaving the overflow zone, as can be
seen in Figure 5.1. If the last conveyor, for example, runs at a slightly lower velocity than expected,
the desired final velocity cannot be reached anymore and the parcel leaves the overflow zone
not with the desired velocity. Another example can be a consecutive parcel that collides with the
platoon leader parcel. This might increase the velocity of the platoon leader and cause the platoon
leader to leave the overflow zone not with the desired velocity.

If there is no trajectory that can be formed that leaves at the desired time with the desired velocity,
the conditions stated in this section prevent the controller from choosing any collection. There must
however be designed a trajectory to control the conveyors, therefore a closer look must be given to
the situations in which a correct trajectory cannot be formed. As stated above, this phenomenon
will most likely happen when a parcel is close to leaving the overflow zone as this leaves little space
to correct any disturbances. Why this is the case is explained in the next paragraph.

With the aid of Figure 5.1, it is explained what happens when no correct trajectory can be designed.
As explained in Section 5.1, tfinal is chosen such that the platoon leader accelerates as late as
possible. If a platoon leader is following the minimum velocity tangent and accidentally comes
above it, tfinal is rescheduled such that the parcel is exactly on the ideal minimum velocity tangent
again. Therefore, it is not possible for a parcel to come above the minimum velocity tangent. This
also holds for platoon followers, as they will collide with the platoon leader instead of crossing
the minimum velocity tangent. Problems, therefore, occur in the acceleration and final velocity
trajectory. To cope with this, the following has been implemented.

If a platoon leader cannot make a correct trajectory, it is close to leaving the overflow zone.
Therefore, the parcel simply accelerates if no correct trajectory can be designed. For platoon
followers, a parcel will also be near the acceleration and final velocity trajectory. Collection 6 is
used to design a trajectory, as this collection tries to adjoin the final velocity tangent as soon as

44 Chapter 5 Controller



possible. Although this will most likely not succeed, the parcel tries to leave the overflow zone with
the desired velocity at the desired time as good as possible.

5.3 Supervisor
So far only the control of intraplatooning is considered, meaning the control of multiple parcels
within a single platoon. In this section, interplatooning is considered, which focuses on the
interaction between multiple platoons. As the interplatooning controller is on a higher level
(platoon level) than the controller that designs the trajectories (parcel level), the interplatooning is
called the supervisor. The supervisor has two main jobs, which are explained below.

Decide if a parcel joins a current platoon or starts its own
When a parcel arrives in the observe region, a decision must be made on whether the parcel joins
the last current platoon or if the parcel starts its own platoon. If there is no platoon in the overflow
zone (yet), it is a simple choice: a new platoon is formed. However, if there is already a platoon,
the decision between joining or starting a new platoon is based on three aspects:

Current number of parcels in platoon
If the current platoon is already of the desired number of parcels, the parcel ideally makes a new
platoon. If not, the parcel ideally joins the platoon.

Can a parcel join the platoon
Now it is decided whether a parcel wants to join, it must also be investigated if it is possible to join.
A calculation is performed to determine if a parcel is able to join based on the latest departure time
of that platoon. If a parcel can join and wants to join, it joins. If a parcel can join but does not
want to join, if a platoon is already of desired length, it ideally does not join.

Must a parcel join the platoon
Once we know if a parcel wants to and can join, it must be evaluated if a parcel is obliged to join.
A calculation is performed to determine if a parcel is able to be controlled in the control region
without interfering with the desired conveyor velocity of the platoon closer of the platoon ahead. If
this is not the case, the parcel must join the platoon. Otherwise, if the parcel wants to join and is
able to join, it will join the current platoon.

Visually, the decision if a parcel joins a current platoon or if it starts its own yields to the flow chart
as shown in Figure 5.13.
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Figure 5.13. Flow chart to decide if a parcel joins a platoon or starts its own.

Define the departure time of the platoon
The second job of a supervisor is to define the departure time of platoons. As explained in
Section 5.1, the departure time of a platoon is defined such that the platoon leader spends
maximum time in the overflow zone without violating the minimum velocity constraint whilst
avoiding collisions with arriving parcels.

To obtain an impression of how the supervisor and trajectory design controller work together to
form trains, Figure 5.14 is shown. With the aid of this figure, it can also be explained why the
supervisor and controller yield the desired behaviour.

Figure 5.14. Trajectories of parcels formed into platoons over time.
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In Figure 5.14, the trajectories of parcels that form multiple platoons can be seen over time. Parcels
arrive according to a Poisson arrival rate, as can be seen by the random and ’messy’ arrivals in the
observe region. At the end of the overflow zone, on the other hand, the neatly formed platoons can
clearly be seen and distinguished. Because of these trains, it becomes easy in the merge zone to fit
trains from other infeeds between the trains formed in the overflow zone. When comparing this to
the arrivals at the observe region, it can be seen that it would be more difficult for parcels from
other infeeds to join in between the parcels of the overflow zone. This is due to the close distance
between the arriving parcels in the overflow zone, especially when a safety margin must be taken
into account.

These observations are directly related to the key performance indicator of having a high system
throughput, small footprint and reduction of start-stop behaviour. As none of the parcels comes to
a standstill, the start-stop behaviour is completely gone. With the small observe region compare to
the control region, the footprint is reduced. Moreover, by the forming of platoons the density on
the merge conveyor maintains high and the system capacity does not increase.

In addition, all requirements as mentioned in Section 2.5 are met. The overflow zone is able to
handle the capacity as specified in Section 2.5, as well as decelerating and accumulating parcels to
form a train. Trains of desired length can be formed and release simultaneously, but unfinished
trains can be released as well. No pneumatic parts are used and due to the emergency mode the
overflow zone does not overflow itself. Furthermore, the overflow zones is able to handle a burst
of parcels and there is no inflow that causes collisions between parcels. Also the constraints as
defined in Section 2.5 are taken into account, with a fixed parcel size and a predefined bound on
conveyor velocity and acceleration that are not exceeded.
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6Simulation results

A simulation model is made in MATLAB containing to model both the plant and the controller to
obtain simulation results. In this chapter, first, a short validation is done to show that the model
works as expected. Next, the input and output parameters of the model are discussed in more
detail. Last, the influence of design parameters is investigated. Important to note is that in these
simulations, full observability is assumed for the controller. This means that on every timestep, the
position and velocity of parcels are known.

6.1 Validation
In order to validate if the model works as expected, some simple tests have been performed. To
test if the velocity of a parcel solely depends on the conveyor it touches, a parcel is generated and
transported over multiple conveyors. One conveyor has a velocity of zero, so it does not run. If
the velocity of a parcel indeed depends on the conveyor velocity, the parcel should stop on the
conveyor that does not run. When looking at a visualization of the simulation, it can be observed
that this is the case.

Second, it is tested if parcels can overlap. If the model works properly, parcels that overlap are
separated. This is tested by generating two parcels that overlap. After a single timestep, the parcels
should not overlap anymore but align. Again, when looking at the visualization of the simulation,
it can be observed that the parcels do not overlap anymore.

Third, the velocity and acceleration of conveyors are logged during a simulation and checked
afterwards. The velocity and acceleration should not be outside the defined bounds for the
simulation to work properly. Indeed, the test results show that the bounds are not exceeded during
simulations.

Fourth, parcels should not be noticed or influence decisions before they enter the observe region.
To check if this is true, parcels are generated in front of the observe region. If the parcels are
visible, the trajectories do not have to be rescheduled when the parcels enter the overflow zone
as their arrival is already expected. If the parcels are not visible, which should be the case, some
trajectories of parcels in the control region should change when parcels enter the observe region.
This is indeed the case, so it can be concluded that the observe region works as expected.

Fifth, to test if the observe region is long enough, a parcel with minimum velocity at the beginning
of the control region is generated and a parcel that arrives with high arrival velocity in the observe
region is generated. If the observe region is long enough, the parcels should not collide. This is the
case so the observe region is long enough.

Last, the different collections that are used to design the trajectories are tested. For every collection,
a parcel with a certain position, velocity and departure time that satisfies all conditions to choose
that collection is generated. The trajectory that is generated is evaluated. The parcel should be at
the end of the overflow zone at the desired time with the desired velocity. If this is not the case, the
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trajectory is not designed correctly. For all collections, a trajectory is checked and all collections are
correct.

6.2 Output parameters
Before results can be obtained from the simulation model, the output parameters must be
defined. As mentioned in Section 2.6, the most important key performance indicator is the
system throughput. For the overflow zone, the platoon length that is departed to the merge zone
has an influence on the system throughput as windows of fixed size are reserved in the merge zone.
If a platoon is of desired length, a higher density on the merge zone is reached which results in
higher system throughput. Therefore, the platoon length is the output parameter that is looked at.
The platoon length can be defined in either the number of parcels in a train or by the total length
of a platoon. It is chosen to proceed with the latter, as the total length of the platoon also takes
gaps in the platoon into account.

In Section 2.6, two other key performance indicators are mentioned. First, there is the desire to
decrease the footprint. Second, there is the desire to decrease power consumption, which directly
relates to conveyor properties like maximum velocity and acceleration. Simulations are therefore
done with different parameters to find out how the footprint and power consumption affect the
ability to form a platoon. The output parameter (the train length) is used to find relations between
parameters. The exact value of the output is not that relevant.

6.3 Input parameters
When running a simulation, input parameters are required. These input parameters consist of
system parameters on which the overflow zone has no influence, design parameters of the overflow
zone, control choices for the platooning algorithm and simulation settings. In this section, the
input parameters are discussed. First, in Table 6.1, the input parameters and their corresponding
initial value are stated. Then, below the table, all parameters are discussed in more detail.

Table 6.1. Initial input parameters with chosen values for simulation.

Input parameter Value Unit Type of parameter
Arrival rate 2000, 5000, 8000 [parcels/hour] System parameter
Arrival velocity 3.0 [m/s] System parameter
Departure velocity 2.31 [m/s] System parameter
Parcel length 0.458 [m] System parameter
Desired platoon length 18 [-] System parameter
Number of conveyors 60 [-] Design parameter
Conveyor length 0.6 [m] Design parameter
Maximum conveyor velocity 3.5 [m/s] Design parameter
Maximum conveyor acceleration 2.5 [m/s2] Design parameter
Minimum conveyor velocity 1.5 [m/s] Control parameter
Simulation sample time 0.05 [s] Simulation parameter
Simulation time 30 [min] Simulation parameter

Arrival rate
The arrival rate defines the number of parcels that arrive at the overflow zone over time. As
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discussed in Chapter 4, the arrival rate follows a Poisson distribution. To see how the overflow
zone performs at different arrival rates, all simulations are run with a low, medium and high arrival
rate. For the low arrival rate, a total of 2000 parcels per hour is chosen. As the required arrival
rate equals 10% of the system throughput of 24000 parcels per hour which is 2400 parcels per
hour, 2000 parcels per hour is a realistic value for a low arrival rate. For the medium arrival rate,
approximately 20% of the system throughput is chosen at 5000 parcels per hour. Lastly, for high
arrival rate, approximately 30% of system throughput is chosen at a rate of 8000 parcels per hour.
Initially, a medium arrival rate is chosen, as this is conform to the requirement but is not excessively
high.

Arrival velocity
The arrival velocity defines the velocity at which parcels arrive at the overflow zone and are
transported in the observable region. The arrival velocity differs slightly in the Posisorters of
Vanderlande and is equal to the velocity of the sortation zone. This is generally a relatively high
velocity of about 3 [m/s]. Therefore, a value of 3 [m/s] is chosen.

Departure velocity
Like the arrival velocity, the departure velocity defines the velocity at which parcels are to leave the
overflow zone. The departure velocity is generally slightly lower than the arrival velocity of the
overflow zone and is based on the velocity at the merge zone. As the merge conveyor has a velocity
of approximately 2 [m/s] and the angle at which the overflow zone attaches to the merge zone is
30 degrees, a departure velocity is chosen of 2/cos(30°) ≈ 2.31 meter per second.

Parcel length
The parcels that enter the overflow zone are all placed in a tray or tote, as defined in Section 2.2.
As the overflow zones in current Posisorters of Vanderlande only use a homogeneous flow, it is
chosen to only use trays for the simulation. As can be seen in Section 2.2, the length of a tray
equals 0.458 meters.

Desired platoon length
The desired platoon length defines the ideal length of a platoon. As the Posisorters of Vanderlande
make trains of eighteen now, the merge zone consists of windows that fit a train of eighteen parcels.
Therefore, it is chosen that the desired platoon length also equals eighteen.

Number of conveyors
The number of conveyors defines, as the name suggests, the number of conveyors that are used
during the simulation. This includes all conveyors, so both the conveyors in the control region and
the observable region. In combination with the conveyor length, the length of the overflow zone is
chosen. An overflow zone can take any length up to several hundreds of meters, therefore there
is not a single number of conveyors or overflow length that is recommended for simulation. As
Vanderlande desires to reduce the footprint, it is chosen to keep the overflow zone relatively short
by using 20 to 100 short conveyors.

Conveyor length
Besides the number of conveyors, also the length of the conveyors is defined. It is chosen to use the
same conveyor length for all conveyors in the simulations, as it makes sense that the overflow zone
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in real-life is made out of a series of identical conveyors. Vanderlande currently has conveyors of
0.6 and 0.75 meters. Therefore, an initial value of 0.6 meters seems realistic.

Maximum conveyor velocity
The maximum conveyor velocity defines the maximum velocity at which a conveyor can run. The
maximum conveyor velocity differs between conveyor types, but high-speed conveyors have a
maximum velocity of around 4 [m/s]. Using an initial maximum velocity of 3.5 [m/s], therefore,
seems realistic.

Maximum conveyor acceleration
The maximum conveyor acceleration defines the maximum acceleration at which a conveyor can
accelerate and decelerate. Current conveyors of Vanderlande have maximum accelerations of
approximately 2-3 [m/s2], therefore 2.5 [m/s2] is chosen to be a realistic initial value.

Minimum conveyor velocity
The minimum conveyor velocity does not determine the minimum velocity at which a conveyor
can physically run, but the lower bound for the conveyor velocity that is defined in the control
algorithm. In essence, it defines the minimum velocity with which the platoon moves. As moving
with a velocity approaching zero contradicts the idea of platoon forming, it is chosen not to go
below 0.5 [m/s]. The initial value is set at 1.5 [m/s], which is still slower than the arrival and
departure velocity.

Simulation time
Before being able to run a simulation, the simulation time must be defined. The simulation time
defines the time the model runs in the simulation world. The simulation time must be long enough
to ensure the results coming out of the simulation have converged and any start-up effect is
negligible such that the outcome is reliable. A longer simulation time does not influence the results
significantly, but is time consuming and therefore not desired.

With all the system, design and control parameters defined, the simulation and sample time can
be determined. Unfortunately, one cannot be determined without the other. Therefore, an initial
guess of one of the two must be made to start the simulations. It is chosen to take an initial sample
time of 0.05 seconds. If this sample time is small enough is investigated in the next section. With
all the input parameters defined, the simulation time can be determined.

In order to determine the simulation time, two steps are needed. First, the value to which the
simulations converge must be determined. Second, a value must be given to how well simulations
converge over time. To start with, 25 simulations with a length of 60 minutes are run. All
simulations combined, over 8000 trains have been formed. With the length of each train known,
the average length of a train can be determined within a certain confidence interval. This is done
in the following steps:

First, the mean of the train length x̄ in [m] is calculated using

x̄ =
∑n

i=1 xi

n
(6.1)
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where x is the set of all train lengths in [m] and n is the total number of formed trains [-]. Second,
the standard deviation σ [-] of this data set is determined using

σ =
√∑n

i=1(xi − x̄)2

n
(6.2)

With the mean x̄ and standard deviation σ known, the confidence interval can be determined. First,
a confidence level must be chosen. A common confidence level is 95%, so that number is also what
is used here. The error ϵ in [m] is defined as

ϵ = Z α
2

· σ√
n

(6.3)

with Z the confidence coefficient [-] and α the confidence level of 95%. The confidence coefficient
Z consists of a value that can be found in a z table based on the confidence level. A confidence
level of 95% corresponds with a confidence coefficient of approximately 1.96. Last, the confidence
interval is given by

x̄ ± ϵ (6.4)

When applying the above equations for the simulation data with an arrival rate of 5000 [parcels/hour],
it can be found that x̄ = 6.66 [m] and ϵ = 0.03 [m]. This means, with 95% certainty, it can be
said that the mean train length is equal to 6.66 meters with an error of ± 0.03 meters. For an
arrival rate of 2000 [parcels/hour] it comes down to 2.86 ± 0.02 [m] and for 8000 [parcels/hour]
it comes down to 9.76 ± 0.07 [m].

Now the average train length to which the simulations must converge is known, a value must be
given to how well simulations converge to this average train length over time. As mentioned, for
determining the mean of the train length for the current simulation settings, all trains formed
during 25 simulations are considered as separate data points (n > 8000). For determining when
a simulation has converged to the calculated mean, however, one should not look at all trains
separately. Instead, every timestep the average train length up to that timestep of each simulation
separately can be determined. When doing this for every simulation (n = 25), at every timestep
the standard deviation can be calculated using Equation 6.2 with x being the average train length
[m] up to the current timestep of all 25 simulations.

By definition, the standard deviation states that 68% of the results are between ±σ and 95% of the
results are between ±2σ. Therefore, the standard deviation can be used to assign a value to how
well simulations converge to the mean over time. In Figure 6.1 the average train length of all 25
simulations can be seen over time, with the mean and 2σ indicated as well. In Table 6.2 the values
of 2σ that are indicated in Figure 6.1 are listed for different simulation times.

(a) Arrival rate 2000 [parcels/hour]. (b) Arrival rate 5000 [parcels/hour]. (c) Arrival rate 8000 [parcels/hour].

Figure 6.1. Average train length over time for 25 simulations with different arrival rates with mean and 2σ
shown.
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Table 6.2. Standard deviation of 25 simulations for different arrival rates.

Simulation
time [min]

2σ [m] for
2000 [parcels/hour]

2σ [m] for
5000 [parcels/hour]

2σ [m] for
8000 [parcels/hour]

5 0.39 0.72 1.31
10 0.33 0.43 0.85
15 0.21 0.33 0.73
20 0.19 0.29 0.69
25 0.18 0.25 0.58
30 0.15 0.17 0.44
35 0.14 0.17 0.43
40 0.13 0.15 0.38
45 0.13 0.14 0.39
50 0.13 0.13 0.37
55 0.12 0.15 0.36
60 0.10 0.14 0.35

As shown in both Figure 6.1 and Table 6.2, the value of the standard deviation reduces significantly
in the first 30 minutes but does not reduce much after that time. Therefore, it can be concluded
that the simulations have converged at 30 minutes.

Lastly, it must be determined if the simulations after 30 minutes have converged enough at 30
minutes. In other words, is the confidence interval in which simulations end after 30 minutes small
enough to give good results? When looking at the corresponding standard deviation, it can be
seen that 95% of the results are in the interval of the mean ± 2σ" after a simulating period of
30 minutes, with 2σ being 0.15, 0.17 and 0.44 [m] for an arrival rate of 2000, 5000 and 8000
[parcels/hour] respectively. The mean, however, is not exactly known. Therefore, to determine if
the interval is small enough, one more step is required. The probability of the mean being in the
calculated interval of (P (A)) as well as the average train length being in the calculated interval of
two times the standard deviation (P (B)) is defined by

P (A ∩ B) = P (A) · P (B) (6.5)

P (A ∩ B) = 0.95 · 0.95
P (A ∩ B) ≈ 0.90

So, when considering the normal arrival rate of 5000 parcels per hour, with just over 90% certainty
it can be stated that a simulation run for 30 minutes ends within both intervals. In the worst
case, this interval consists of an error of 0.03 meters caused by determining the mean as well
as an error introduced by the standard deviation of 0.17 meters. All combined, it can be said
with 90% certainty that a simulation run for 30 minutes has an error of ± 20 centimetres from
mean 6.66 [m]. To put this into perspective, this is only 3% of the average train length with the
current simulation settings and 2% of a full train length of eighteen trays. For an arrival rate of
2000 [parcels/hour] this comes down to an error of 1% from mean 2.86 [m] and for an arrival
rate of 8000 [parcels/hour] this comes down to an error of 5% from mean 9.76 [m]. As these
errors are small enough to draw useful conclusions about the influence of input parameters on the
output parameter, it is concluded that the simulation has converged enough after 30 minutes of
simulation.
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Sample time
The second parameter that needs to be chosen is the sample time. As an iterative model is made,
the time between each timestep in the simulation must be defined. It is important that the sample
time is small enough to ensure the behaviour of the plant resembles reality, but a too small sample
time affects the computation time of a simulation in a negative way. Therefore, the sample time
must be chosen with care.

To investigate if the sample time is small enough, at first, a simulation of 30 minutes is done
with very small timesteps of 0.005 [s]. This means there are 200 steps every second. A simple
calculation shows that a parcel is at least 50 timesteps on every conveyor with a sample time of
0.005 [s], which should be enough to model the behaviour correctly. The output of the simulations
are the lengths of the trains that are formed. With the same input, the output should also be the
same. The results from the simulation with timesteps of 0.005 [s] can now be compared with the
simulations with bigger sample times. If the results are similar, the bigger sample time is still small
enough to give credible results.

A widely used method to find out if two data sets are identical is the so called T-test. With a T-test,
a T-score can be calculated that says something about the difference between and the difference
within two data sets. The equation used to calculate the T-score is given in Equation 6.6

T =

∑i=N

i=1
(xi−yi)

N√
(
∑i=N

i=1
(xi−yi))2−

∑i=N

i=1
(xi−yi))2

N

(N−1)N

(6.6)

where N is the number of data points and x and y are the data points of the sets to compare. The
T-score can, with the use of a lookup table, be converted into a P-value. The P-value is a value
between 0 and 1 that is used to support or reject a null hypothesis. In this case, the null hypothesis
is that the results of the two simulations with different sample times are the same. Generally, if a
P-value is below 0.05, the null hypothesis can be rejected. In other words, the simulations do not
yield the same results which says that the sample time is chosen too big. If a P-value is above 0.05,
the null hypothesis cannot be rejected so the chosen sample time gives credible results.

This T-test is performed for a sample time of 0.01 [s] and 0.05[s]. The resulting P-values are 0.46
and 0.51 respectively. As these numbers are way above 0.05, it can be concluded that the null
hypothesis cannot be rejected and with that it cannot be said that the results with different sample
times differ. Therefore, a sample time of 0.05 is used.

6.4 Real-time control
An important reason for designing trajectories with based on acceleration and deceleration times is
the computational efficiency. As the controller is developed for real-time usage, it should be fast
enough. In the Figure 6.2, the computation time of the controller can be seen for 36000 timesteps
with the input parameters as shown in Table 6.1.
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Figure 6.2. Computation time of controller for arrival rate of 2000, 5000 and 8000 [parcels/hour].

From Figure 6.2, two conclusions can be drawn. First, the computation time of the controller
increases when the arrival rate increases. This can be explained by the number of parcels that
must be controlled at the same time. If the number of parcels increase, more trajectories must
be designed and the computation time increases. Second, the mean computation time is of the
controller equals 0.005, 0.009 and 0.015 seconds for the arrival times of 2000, 5000 and 8000
[parcels/hour] respectively. In a worst-case scenario, where the arrival rate is excessively high, still
over 20 computations can be done in one second. As this is for sure enough for real-time control, it
can be concluded that real-time control with this controller is possible.

6.5 Influence of design parameters
The output parameters, the train length, can be displayed in a box plot. For the following input
parameters, a box plot is made in order to find the influence of a parameter on the train length.
Every parameter is simulated with an arrival rate of 2000, 5000 and 8000 parcels per hour.

Table 6.3. Range of input parameters of which the influence on the KPIs is tested.

Input parameter Value Unit Type of parameter
Arrival rate 2000, 5000, 8000 [parcels/hour] System parameter
Number of conveyors 20, 40, 60, 80, 100 [-] Design parameter
Conveyor length 0.2, 0.4, 0.6, 0.8, 1.0 [m] Design parameter
Maximum conveyor velocity 2.5, 3.0, 3.5, 4.0, 4.5 [m/s] Design parameter
Maximum conveyor acceleration 1.5, 2.0, 2.5, 3.0, 3.5 [m/s2] Design parameter
Minimum conveyor velocity 0.5, 1.0, 1.5, 2.0, 2.5 [m/s] Control parameter

In every box plot, the desired train length is shown with a dashed line. The closer the train length
is to this dashed line, the better the results are. Before discussing the results in more detail for each
input parameter that is altered, the results with an arrival rate of 8000 must be discussed. As can
be seen in most box plots when considering an arrival rate of 8000, many trains are formed that
exceed the desired train length. This is due to this high arrival rate that in real-life situations most
likely will not happen. These results show that the controller also works for a very high arrival rate,
but the results do not say much about the influence of design parameters on the output parameter.
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In addition, results with an arrival rate of 2000 parcels per hour often do not reach the desired train
length. This is because the arrival rate is too low to form a train of the desired length whilst not
violating the minimum velocity constraint. Having a shorter train than desired is not by definition
a problem. However, as windows in the merge zone long enough to hold a full train, the density on
the merge conveyor is decreased and with that the system throughput. Therefore, for the analysis
of the influence, mostly the arrival rate of 5000 parcels per hour is used.
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Figure 6.3. Box plot of train length for different number of conveyors with arrival rates of 2000, 5000 and
8000 [parcels/hour].

First, there is the number of conveyors. It can be seen that more conveyors yield a longer train.
This makes sense, as more conveyors give a longer overflow zone so there is more time for parcels
to join a platoon. Also, in Figure 6.3, it can be seen more conveyors can deal with a high arrival
rate better as the number of trains that exceed the desired length becomes less when the number
of conveyors increases. This also makes sense, as there is more room to form trains.
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Figure 6.4. Box plot of train length for different conveyor lengths with arrival rates of 2000, 5000 and 8000
[parcels/hour].
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Second, the conveyor length is altered. Here, it is made sure that the overflow zone itself keeps
the same length, so the number of conveyors drops when the length of conveyors increases. It can
be seen that short conveyors perform slightly better, but do not have a big influence. This slight
increase of performance can be explained by the fact that shorter conveyors make it easier for
parcels to join a platoon as the difference in desired velocity for conveyors becomes less.
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Figure 6.5. Box plot of train length for different maximum velocities with arrival rates of 2000, 5000 and
8000 [parcels/hour].

Third, there is the maximum velocity. It can be seen that a higher maximum conveyor velocity
yields slightly better results. This makes sense, as a higher maximum velocity allows parcels to join
a platoon sooner. The influence is however marginal.
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Figure 6.6. Box plot of train length for different maximum accelerations with arrival rates of 2000, 5000 and
8000 [parcels/hour].

Fourth, the maximum acceleration is considered. Here, the same holds as for the maximum velocity.
A higher acceleration allows for parcels to join a platoon sooner, but the influence is again marginal.
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Figure 6.7. Box plot of train length for different minimum velocities with rates of 2000, 5000 and 8000
[parcels/hour].

Lastly, the minimum allowed velocity is analysed. It can be seen that the minimum velocity has a
big influence on the conveyor length. This makes sense, as more time in the overflow zone means
more time to join a platoon. The drawback, however, is that due to the lower velocity the density in
the overflow zone increases. Due to this increase of density, excessive long trains might be formed.
On itself, this is not a bad thing: the density on the merge conveyor stays high and with that the
system throughput is high. However, this does prevent other infeeds to release trains to the merge
zone which is undesired.

In conclusion, in the box plots, it is shown that mainly the number of conveyors and the minimum
allowed velocity have an influence on the train length. This can be explained by the fact that these
are the two parameters that determine the time a parcel stays in the overflow zone. The more time
a parcel stays in the overflow zone, the more time there is to form a platoon of the desired length.
The other three input parameters (maximum conveyor velocity, maximum conveyor acceleration
and conveyor length) do not have a big influence on the time a parcel stays in the overflow zone
and therefore only have little effect on the output.

When considering the three key performance indicators as mentioned in Section 2.6, the following
can be concluded. Although it is desired that the footprint of the overflow zone is decreased, this
measure has a direct negative influence on the platoon length. Therefore, a trade-off must be made.
Regarding the power consumption, as mentioned in Section 2.6 the power consumption is mainly
determined by the maximum velocity and acceleration. From the results in it can be concluded
that it is not necessary to install powerful conveyors that can reach high velocities and have a high
acceleration as these do not influence the performance much.

6.6 Full factorial DOE
Besides evaluating the output when altering a single design variable, it is also interesting to look at
how the five different design variables interact. A possible and widely used method to do this is by
means of design of experiments (DOE), a method of experimenting where the response of different
combinations of input variables is measured. By means of design of experiment, the main effect of
variables as well as the interaction between variables can be measured. The main effect describes
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the impact of a single variable on the output, while the interaction describes how a combination of
input variables affects the output.

Design of experiments can be divided into two methods: full factorial design of experiments
and, fractional factorial design of experiments (Kechagias et al., 2017). In full factorial design of
experiments, all possible combinations of input variables are tested. As all combinations are tested,
this gives good and reliable results. The disadvantage however is the number of experiments, or
simulations in this case, that need to be run. The number of simulations to run is defined by

Number of simulations = Ik (6.7)

with k being the number of input variables, often called factors and I being the number of values
to test for each factor, often called the levels. So, for five variables with three values per variable, a
total of 35 = 243 simulations must be run. In fractional factorial design of experiments, on the
other hand, not all combinations of input parameters are tested. The number of simulations to run
is now defined by

Number of simulations = Ik−p (6.8)

with p being an integer that defines the resolution of the simulations. The higher p, the fewer
simulations that are run and the less accurate the results are. Fractional factorial design of
experiments is thus faster, but the output result is not always reliable. In addition, aliasing might
occur in fractional factorial design of experiments, resulting in inexplicable responses.

With the advantages and disadvantages of both the full and fractional factorial design of experiments
stated, a decision can be made on which one to use. As the simulation time is quite short, it is
chosen to perform to do a full factorial design of experiments as this yields better results and avoids
aliasing. It is chosen to assign the following input parameters:

Table 6.4. Range of input parameters used for the construction of the interaction plot.

Input parameter Value Unit Type of parameter
Arrival rate 2000, 5000, 8000 [parcels/hour] System parameter
Number of conveyors 40, 60, 80 [-] Design parameter
Conveyor length 0.4, 0.6, 0.8 [m] Design parameter
Maximum conveyor velocity 2.5, 3.5, 4.5 [m/s] Design parameter
Maximum conveyor acceleration 1.5, 2.5, 3.5 [m/s2] Design parameter
Minimum conveyor velocity 0.5, 1.5, 2.5 [m/s] Control parameter

With those input parameters, the resulting average number of parcels per train can be computed.
The results can thereafter be visualized in a so-called interaction plot. An interaction plot is a plot
consisting of k × k subplots, with k still being the number of factors. Each plot shows the average
number of parcels per train for different input parameters. Each row of subplots shows the output
for the levels of a single variable in combination with the variables defined in each column. To
interpret the interaction plot correctly, one should know what to look for. First, there is the tangent
of a line. The steeper a line, the greater the influence the variable of that column has on the main
effect. A horizontal line, therefore, implies that an input variable has no influence on the outcome.
Second, one should look for intersections. An intersection means that there is interaction between
two input variables. The more nonparallel the lines are, the greater the interaction is between
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them. In Figure 6.8, a simple example of an interaction plot can be seen to show how an interaction
plot can be interpreted.
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Figure 6.8. Simple example of an interaction plot.

In Figure 6.8, four interaction plots can be seen. The plots in the column on the left hand side
show a high main effect of variable ’A’, and the plots on the right hand side column show a low
main effect of variable ’A’. This can seen as the lines of variable ’A’ are steep on the left hand side
while they are (almost) horizontal on the right hand side. Furthermore, in the upper two plots
a high interaction between variable ’A’ and ’B’ can be seen, as the lines cross and are (almost)
perpendicular. In the lower two plots, on the other hand, low interaction between variable ’A’ and
’B’ can be seen as the lines are (almost) parallel. With this in mind, the interaction plot with the
input parameters as defined in Table 6.4 as shown in Figure 6.9 can be interpreted.
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Figure 6.9. Interaction plot of five input parameters with an arrival rate of 5000 [parcels/hour].
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From Figure 6.9 two conclusions can be drawn. First, the minimum velocity in combination with
the overflow length have the most influence on the train length. It is clear that lines in the first,
fourth and fifth column of subplots are steeper compared with the lines in the other subplots. As
explained above, the steeper the lines, the greater the influence of the variable of that column on
the main effect. Second, there are no intersections that are perpendicular or close to perpendicular.
This implies that the input variables do not interact much regarding the average number of parcels
per train.

In Appendix C, the interaction plot for an arrival rate of 2000 and 8000 [parcels/hour] can be seen.
These interaction plots support the drawn conclusions.
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7Conclusion and
recommendation

In this project, the research question

"Can a platooning algorithm be developed for real-time control of an overflow zone capable
of decelerating, accumulating and releasing a train of trays or totes?"

is answered. To do so, first, the problem is identified and the key performance indicators are
formulated. Next, a literature review is performed to investigate current solutions. The method
to design trajectories as described in (Timmerman and Boon, 2021) looks promising to tackle the
problem at hand, therefore this method is looked into in more detail. Next, a real-time controller is
developed that designs trajectories for parcels based on the method introduced by (Timmerman
and Boon, 2021) and actively controls the conveyors that carry the parcels. With this controller
working, the second research question

"What is the influence of design parameters of the overflow zone controlled by a platooning
algorithm on the key performance indicators of the Posisorter?"

can be answered. To investigate the influence of design parameters, simulations are performed
with different input parameters. In the end, main effect plots, as well as interaction plots, are
shown to answer the sub-question. In this chapter, the conclusion and recommendations for future
research are discussed.

7.1 Conclusion
First of all, it has been shown that a real-time platooning controller for the overflow zone that
fulfills all requirements can be developed in a model-based design. By designing trajectories
based on acceleration and deceleration times that are calculated with closed-form expressions,
computationally expensive algorithms with (optimization) solvers can be left out. This results in a
fast controller, that is computationally efficient. This makes the controller fast and therefore usable
in real-time situations.

Now it is concluded that the design of a real-time controller for computer simulations is feasible,
the influence of design parameters on the key performance indicators of the overflow zone can be
discussed. Based on simulations to find the main effect as well as the interaction between design
parameters, the following can be concluded.

The ability to form a platoon of the desired length is mainly based on the time a parcel spends in
the overflow zone. If the overflow zone is longer or the minimum allowed velocity is lower, there
is more time for parcels that arrive to join an existing platoon and therefore the platoons formed
come closer to the desired platoon length. A longer overflow zone also is able to deal better with a
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high arrival rate, as there is more space to collect all incoming parcels. A longer overflow zone is
unfortunately not desired, therefore a trade-off must be made.

As the ability to form a platoon is mainly based on the platoon length and minimum allowed
velocity, the maximum conveyor velocity and acceleration do not have a big influence. This is good
news for the key performance indicator of low power consumption. As explained in Section 2.6, a
lower power consumption generally also means a less expensive and less noisy conveyor. As the
maximum velocity and acceleration directly affect the power consumption of a conveyor, where a
higher maximum velocity and acceleration consume more energy, it is desired to have a relatively
low maximum velocity and acceleration. As the effect of low maximum velocity and acceleration
on forming a platoon is minimal, cheaper conveyors with a low power consumption will do just fine.

7.2 Recommendation
First of all, the assumption that the controller has full observability is made. This means, that the
controller at every timestep knows the position and velocity of parcels. Although it is possible
to design a full observable overflow zone in a real-life situation, this requires an expensive and
comprehensive system. Currently, the overflow zone uses a number of photoelectric sensors that
measure the presence of a parcel. With those measurements, in combination with the conveyor
velocities, the expected parcel position is determined over time. Every time a sensor measures the
presence of a parcel, the position of that parcel is updated.

Although the platooning controller does work with expected parcel positions and velocities, the
performance of it is not investigated. To obtain a better insight into the performance in a real-life
situation using only photoelectric sensors, future research must be done.

Second, the integration of the overflow zone and the merge zone is not considered in this project.
In the current method, platoons are formed and delivered to the merge zone as late as possible.
Even if a platoon is already of the desired length, it does not communicate with the merge zone
on the optimal departure time. On system level it might be better to advance the departure time
of a platoon such that, in combination with other infeeds, all windows on the merge conveyors
are filled. By doing this, the density on the merge zone can be increased and with that the system
throughput.

Last, it is recommended to test the current control model on a real system. Although the plant
model has been modelled with care, the actual behaviour of parcels on conveyors is not known
exactly. Testing the algorithm on a real-life system can give insights into possible shortcomings of
both the plant and controller model.
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AConditions for trajectory
design

A.1 Supporting equations for ideal trajectory calculation
The three function that form the ideal trajectory as shown in Figure 5.6 over time t [s] are given in
Equation A.1, Equation A.2 and Equation A.3 as

xidealvmin(t) = vmin · t + xstartacc − vmin · tstartacc (A.1)

xidealacc(t) = xstartacc + 1
2 · amax · (t − tstartacc)2 + vmin · (t − tstartacc) (A.2)

xidealvfinal(t) = vfinal · t − vfinal · tfinal (A.3)

The position the platoon leader starts accelerating is given by xstartacc [m] and defined as

xstartacc = −(tfinal − tstartvfinal) · vfinal − vmin · tvmin→vfinal − 1
2 · amax · t2

vmin→vfinal
(A.4)

as can also be seen in Figure 5.6.

A.2 Supporting equations for decline border calculations
The two equations used to calculate the times t1 and t2 [s] as shown in Figure 5.7 are

t1 = 2 · vmin − vfinal + amax · tstartvfinal − vmax

amax

+
2 ·

√
(− 3

2 + vmin) − ( 1
2 + 2 · vmin) · vmax

amax
(A.5)

t2 = vfinal + amax · tstartvfinal − vmax

amax

+
2 ·

√
amax · xstartacc + amax · vfinal · (−tfinal + tstartvfinal) + vmax−v2

final−v2
max+v2

min
2

amax
(A.6)

The functions that form xdecline as also shown in Figure 5.7 are

xdecline(treachvmax) = xstartacc + vmin · (treachvmax − tvfinal)

+ 2 · vmin · (vfinal + vmax) − v2
max − 3 · v2

min
2 · amax

(A.7)

xdecline(treachvmax) = xstartacc − ( 1
2 · amax · (tvmax→vmin)2 + vmin · tvmax→vmin)

+ 1
4 · amax · (treachvmax − tstartacc + tvmax→vmin)2

+ vmin · (treachvmax − tstartacc + tvmax→vmin) (A.8)

xdecline(treachvmax) = − v2
final − 2 · vfinal · vmax + v2

max + 2 · amax · vfinal · (tfinal − treachvmax)
2 · amax

(A.9)
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where tvmax→vmin is time needed to decelerate from maximum velocity to minimum velocity defined
as

tvmax→vmin = vmax − vmin

amax
(A.10)

A.3 Supporting equations for maximum velocity conditions
The three times tA, tB and tC that define which vmax collection must be used, as can be seen in
Figure 5.8 are

tA = − 2 · amax · (xstartacc − xvmax − tvfinal · vmax) + vmax · (2 · vfinal − 4 · vmin) + v2
max

2 · amax · vmax

+ v2
min + 2 ·

√
2 · (vmax − vmin) ·

√
2 · vmin − vmax − 4 · vmax · vmin + 3 · v2

min
2 · amax · vmax

(A.11)

tB = 2 · amax(xvmax + tfinal · vfinal − tvfinal · vfinal + tvfinal · vmax) + 2 · vfinal · vmax − v2
final

2 · amax · vmax

−
v2

max − 2 ·
√

2 · (vfinal + vmax) ·

√
2 · amax · (tvfinal · vfinal − xstartacc − tfinal · vfinal)

−v2
final − v2

max + v2
min + vmax

2 · amax · vmax
(A.12)

tC = −v2
final + 2 · vfinal · vmax − v2

max + 2 · amax · tfinal · vmax + 2 · amax · xvmax

2 · amax · vmax
(A.13)

A.4 Supporting equations for S-curved trajectories calculations
Condition for collection 4: join time of ideal minimum velocity tangent
The earliest time a parcel can join the ideal minimum velocity tangent with a s-shaped curve
tjoinvmin [s] is given by

tjoinvmin =tcontrollable + v0 − vmin

amax
+ 2 · 2 · vmin − 2 · v0

2 · amax

+

√
2 ·

√√√√√√ −4 · v0 · vmin + v2
0 + 3 · v2

min
+2 · amax · (xacc + |xcontrollable| + tcontrollable · vmin

−tstartacc · vmin + v0−vmin
amax

· vmin)
2 · amax

(A.14)

Condition for collection 5: join time of ideal acceleration trajectory
The velocity at which xdecline(t, vintersect) and xfirstacc(t) intersect is given by

vintersect =
( v0

2 − vmin
2 + amax·tcontrollable

2 + amax·tstartacc
2 − amax · tcontrollable)2 + v0 · vmin

v0 − vmin + amax(tstartacc − tcontrollable)

−
v2

0 − a2
max·t2

startacc
2 + a2

max·t2
controllable

2 + a2
max · tstartacc · tcontrollable

v0 − vmin + amax(tstartacc − tcontrollable)

+ amax · (xcontrollable − xacc − tstartacc · (v0 + vmin) + tcontrollable · (v0 − vmin))
v0 − vmin + amax(tstartacc − tcontrollable)

(A.15)
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txfirstacc(t)∩xdecline(t,vintersect) =vintersect − 2 · v0 + vmin − amax · tstartacc + 2 · amax · tcontrollable

amax

+

2 ·

√√√√√√√√
−v0 · vintersect − v0 · vmin + vintersect · vmin + v2

0
+amax · (xacc − xcontrollable + tstartacc(v0 − vintersect − vmin)

−tcontrollable(v0 − vintersect − vmin))
+a2

max·t2
startacc
2 + a2

max·t2
controllable

2 − a2
max · tstartacc · tcontrollable

amax
(A.16)

tjoinacc =vintersect − vmin + amax · tstartacc + amax · tdec

2 · amax

+

√√√√√√ −2 · vintersect · vmin + v2
intersect + v2

min
+2 · amax · (2 · xxfirstacc(t)∩xdecline(t,vintersect) − 2 · xacc + tstartacc · vintersect + tstartacc · vmin

−tdec · vintersect − tdec · vmin) − a2
max(2 · tstartacc · tdec − t2

startacc − t2
dec)

2 · amax
(A.17)

with xxfirstacc(t)∩xdecline(t,vintersect) [m] equal to

xxfirstacc(t)∩xdecline(t,vintersect) = xcontrollable + v0 · tvintersect→vintersect + 1
2 · amax · (tvintersect→vintersect)2

(A.18)

with

tvintersect→vintersect = vintersect − v0

amax
(A.19)

Condition for collection 6: join time of ideal final velocity tangent

The time when xcontrol and xvfinal intersect is given by

txcontrol∩xvfinal
= xcontrol

vfinal
+ tfinal (A.20)

and is used to calculate tjoinvfinal which is determined by

tjoinvfinal = tcontrollable + (vfinal − v0)/amax+

2 ·

√
2 ·

√√√√√√ −(v0 − vfinal)2 − 2 · vfinal · |(v0 − vfinal)|
+2 · amax · (xcontrol − xcontrollable + t0 · vfinal − tcrossxctrlvfinal · vfinal

+|tv0→vfinal | · vfinal)
2 · amax

(A.21)
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BSupporting calculations for
collections for trajectory
design

B.1 Collection 1
First, the tangent of the maximum velocity trajectory of a parcel xvmax(t) [m]is given by

xvmax(t) = vmax · t + xcontrollable + 1
2 · amax · t2

v0→vmax
+ v0 · tv0→vmax

− (tcontrollable + tv0→vmax) · vmax (B.1)

The time at which xvmax and xideal cross in collection 1 as shown in Figure 5.9 is given by

txvmax ∩xvmin
= − (xcontrollable − xstartacc + (v0 − vmax)2

2 · amax

− vmax · (tcontrollable − tv0→vmax) + vmin · (tstartvfinal − tvmin→vfinal)

− v0 · tv0→vmax

vmax − vmin
(B.2)

where txvmax ∩xvmin
is in [m]. The time needed to decelerate from maximum velocity to minimum

velocity tvmax→vmin as also shown in Figure 5.9 is given by Equation A.10.

B.2 Collection 2
The time txvmax ∩xdecline represents the time when xvmax(t) and xdecline(t) intersect. This is given by

txvmax ∩xdecline =2 · vmax − 2 · vmin + amax · (tstartacc − tvmax→vmin)
amax

−

2 ·

√√√√√√√√
amax · (xcontrollable − xstartacc)

amax · vmax · (tstartacc − tcontrollable − tvmax→vmin − tv0→vmax)
+amax · ( 1

2 · amax · t2
v0→vmax + v0 · tv0→vmax)

+amax · (−2 · vmax · vmin + 3
2 · v2

max + 1
2 v2

min)
amax

(B.3)

The deceleration trajectory from txvmax ∩xdecline to the ideal acceleration trajectory xideal is given by

xdec2ideal = xxvmax ∩xdecline − 1
2 · (amax · (tvmin − tdec)2 + vmax · (tvmin − tdec) (B.4)

Note that tvmin is still unknown at this point and xxvmax ∩xdecline is given by

xxvmax ∩xdecline = xstartacc − ( 1
2 · amax · t2

vmax→vmin
+ vmin · tvmax→vmin)

+ 1
4 · amax · (tdec − (tstartacc − tvmax→vmin))2

+ vmin · (tdec − (tstartacc − tvmax→vmin)) (B.5)
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With the use of xdec2ideal, the time on which the decelerating trajectory intersects with the ideal
accelerating trajectory is given by

txdec2ideal∩xideal =vmax − vmin + amax · tstartacc + amax · tdec

2 · amax

+

√√√√√√√√
−2 · vmax · vmin + v2

max + v2
min

+a2
max(−t2

startacc − t2
dec − 2 · tstartacc · tdec)

+2 · amax(tstartacc · (vmax + vmin) − tdec · (vmax + vmin))
+4 · amax(−xstartacc + txvmax ∩xdecline)

2 · amax
(B.6)

B.3 Collection 3
The intersection between xvmax as given in collection 1 and xideal as given in condition 1 is given
by

txvmax ∩xvfinal
= − (tfinal − tstartvfinal) · vfinal

vmax − vf

−
(xcontrollable + 1

2 · amax · t2
max→v0 + v0 · tvmax→v0)

vmax − vf

+ tctrl + tvmax→v0 · vmax − tstartvfinal · vf

vmax − vf
(B.7)

where txvmax ∩xvfinal
is in [m]. The time needed to decelerate from maximum velocity to final

velocity is given by

tvvmax→vfinal = vmax − vfinal

amax
(B.8)

where tvvmax→vfinal is in [s].

B.4 Collection 4
The distance sscurve the s-curved shape must cover is defined by

sscurve = |xcontrollable| − vmin · (tstartacc − tcontrollable − tv0→vmin − 2 · tscurve)
+ xstartacc − ( 1

2 · amax · t2
v0→vmin

+ vmin · tv0→vmin) (B.9)

and the time the s-curved shape takes is defined by

tscurve = 2 · vmin − 2 · v0

2 · amax

+

√
2 ·

√
2 · amax(xstartacc + |xcontrollable| + vmin(tcontrollable + tv0→vmin − tstartacc))

+v2
0 + 3 · v2

min − 4 · v0 · vmin

2 · amax
(B.10)
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B.5 Collection 5
The equation that defines the position of the deceleration line is given by

xdecline(t, vintersect) = xstartacc − ( 1
2 · amax · (tvintersect→vmin)2 + vmin · tvintersect→vmin)

+ 1
4 · amax · (t − tstartacc + tvintersect→vmin)2

+ vmin · (t − tstartacc + tvintersect→vmin) (B.11)

The first acceleration trajectory of the parcel when entering the control region is defined as

xfirstacc(t) = xcontrollable + 1
2 · amax · (t − tcontrollable)2 + v0 · (t − tcontrollable) (B.12)

The equation that describes the time of intersection based on vintersect is defined as

tintersect(vintersect) = vintersect − 2 · v0 + vmin − amax · tstartacc + 2 · amax · tcontrollable

amax

+

2 ·

√√√√√√√√
amax · (xstartacc − x0 + tstartacc · (v0 − vmin − vintersect))

+amax · (tcontrollable · (vmin + vintersect − v0))
+v0 · (v0 − vintersect − vmin) + vintersect · vmin

+a2
max·t2

startacc
2 + a2

max·t2
controllable

2 − a2
max · tstartacc · tcontrollable

amax
(B.13)

B.6 Collection 6
The time tscurve the s-curved shape must cover is defined by

tscurve = 2 · v0 − 2 · vfinal

2 · amax

+

√
2 ·

√√√√√√ 2 · amax(xcontrollable − xcontrol − tcontrollable · vfinal

+txcontrol∩xvfinal · vfinal − |tv0→vfinal| · max[v0, v0])
−4 · v0 · vfinal + |v0 − vfinal|2 + 2 · v2

0 + 2 · v2
final + 2 · min[v0, vfinal] · |v0 − vfinal|

2 · amax
(B.14)

with the distance the s-curved covers defined by

sscurve =vfinal · (tv0→vfinal + 2 · tscurve) + (vfinal · (tcontrol − txcontrol∩xvfinal) + xcontrol − xcontrollable)
− ( 1

2 · amax · t2
v0→vfinal

+ vfinal · tv0→vfinal) (B.15)
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CInteraction plots

Interaction plot with input parameters as defined in Table 6.4 with arrival rates of 2000 and 8000
[parcels/hour].
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Figure C.1. Interaction plot of five input parameters with an arrival rate of 2000 [parcels/hour].
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Figure C.2. Interaction plot of five input parameters with an arrival rate of 8000 [parcels/hour].
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