1,185 research outputs found

    Cell formation using sequence information and neural networks

    Get PDF
    Most neural network approaches to the cell formation problem have been based on Competitive Learning-based algorithms such as ART (Adaptive Resonance Theory), Fuzzy Min- Max or Self-Organizing Feature Maps. These approaches do not use information on the sequence of operations on part types. They only use as input the binary part-machine incidence matrix. There are other neural network approaches such as the Hopfield model and Harmony Theory that have also been used to form manufacturing cells but again without considering the sequence of operations. In this paper we propose a sequence-based neural network approach for cell formation. The objective function considered is the minimization of transportation costs (including both intracellular and intercellular movements). Soft constraints on the minimum and maximum on the number of machines per cell can be imposed. The problem is formulated mathematically and shown to be equivalent to a quadratic programming integer program that uses symmetric, sequence-based similarity coefficients between each pair of machines. To solve such a problem two energy-based neural network approaches (Hopfield model and Potts Mean Field Annealing) are proposed

    Custom architectures for fuzzy and neural networks controllers

    Get PDF
    Standard hardware, dedicated microcontroller or application specific circuits can implement fuzzy logic or neural network controllers. This paper presents efficient architecture approaches to develop controllers using specific circuits. A generator uses several tools that allow translating the initial problem specification to a specific circuit implementation, by using HDL descriptions. These HDL description files can be synthesized to get the FPGA configuration bit-stream.Facultad de Informátic

    Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm

    Get PDF
    Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) programming has been coined as a prominent logical rule that defines the identity of RBFNN. In this research, a swarm-based searching algorithm namely, the Artificial Bee Colony (ABC) will be introduced to facilitate the training of RBFNN. Worth mentioning that ABC is a new population-based metaheuristics algorithm inspired by the intelligent comportment of the honey bee hives. The optimization pattern in ABC was found fruitful in RBFNN since ABC reduces the complexity of the RBFNN in optimizing important parameters. The effectiveness of ABC in RBFNN has been examined in terms of various performance evaluations. Therefore, the simulation has proved that the ABC complied efficiently in tandem with the Radial Basis Neural Network with 2SAT according to various evaluations such as the Root Mean Square Error (RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error (MAPE), and CPU Time. Overall, the experimental results have demonstrated the capability of ABC in enhancing the learning phase of RBFNN-2SAT as compared to the Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Individual And Ensemble Pattern Classification Models Using Enhanced Fuzzy Min-Max Neural Networks

    Get PDF
    Pattern classification is one of the major components for the design and development of a computerized pattern recognition system. Focused on computational intelligence models, this thesis describes in-depth investigations on two possible directions to design robust and flexible pattern classification models with high performance. Firstly is by enhancing the learning algorithm of a neural-fuzzy network; and secondly by devising an ensemble model to combine the predictions from multiple neural-fuzzy networks using an agent-based framework. Owing to a number of salient features which include the ability of learning incrementally and establishing nonlinear decision boundary with hyperboxes, the Fuzzy Min-Max (FMM) network is selected as the backbone for designing useful and usable pattern classification models in this research. Two enhanced FMM variants, i.e. EFMM and EFMM2, are proposed to address a number of limitations in the original FMM learning algorithm. In EFMM, three heuristic rules are introduced to improve the hyperbox expansion, overlap test, and contraction processes. The network complexity and noise tolerance issues are undertaken in EFMM2. In addition, an agent-based framework is capitalized as a robust ensemble model to house multiple EFMM-based networks. A useful trust measurement method known as Certified Belief in Strength (CBS) is developed and incorporated into the ensemble model for exploiting the predictive performances of different EFMM-based networks

    Application of Neuro-Fuzzy system to solve Traveling Salesman Problem

    Get PDF
    This paper presents the application of adaptive neuro-fuzzy inference system (ANFIS) in solving the traveling salesman problem. Takagi-Sugeno-Kang neuro-fuzzy architecture model is used for this purpose. TSP, although, simple to describ
    corecore