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MODEL PENGECAMAN CORAK INDIVIDU DAN GABUNGAN 

DENGAN MENGGUNAKAN RANGKAIAN NEURAL MIN-MAX 

KABUR YANG DIPERTINGKATKAN 

ABSTRAK 

Klasifikasi corak adalah salah satu daripada komponen utama untuk rekabentuk dan 

pembangunan sistem pengecaman corak berkomputer. Tertumpu kepada model 

kecerdasan berkomputer, tesis ini menerangkan secara mendalam kajian-kajian 

menerusi dua pendekatan yang berkemungkinan bagi tujuan merekabentuk model 

klasifikasi corak yang kukuh dan anjal serta berprestasi tinggi. Pertamanya, dengan 

meningkatkan prestasi pembelajaran rangkaian neural-kabur dan keduanya dengan 

merangka model gabungan bagi menggabungkan ramalan daripada pelbagai 

rangkaian neural-kabur menggunakan rangka kerja berasaskan ejen. Disebabkan 

terdapat beberapa ciri penting termasuk keupayaan pembelajaran secara berperingkat 

dan wujudnya sempadan keputusan tak linear dengan „hyperboxes’, rangkaian Min-

Max Kabur (FMM) dipilih sebagai asas bagi merekabentuk model klasifikasi corak 

yang boleh digunakan dalam kajian ini. Dua varian FMM yang dipertingkatkan, iaitu 

EFMM dan EFMM2, telah dicadangkan bagi menangani beberapa kelemahan yang 

terdapat dalam algoritma pembelajaran FMM asal. Untuk EFMM, tiga kaedah 

heuristik diperkenalkan bagi meningkatkan perkembangan „hyperbox’, ujian 

pertindihan, dan proses-proses penguncupan. Kerumitan rangkaian dan isu-isu 

toleransi hingar diambil kira dalam EFMM2. Di samping itu, rangka kerja berasaskan 

ejen digunapakai sebagai model gabungan yang kukuh bagi menempatkan rangkaian 

berganda berasaskan EFMM. Satu kaedah pengukuran berguna yang dikenali sebagai 
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Certified Belief in Strength (CBS) telah dibangunkan dan dimasukkan ke dalam 

model gabungan bagi mengeksploitasi prestasi ramalan rangkaian berasaskan EFMM 

yang berbeza. Model yang terhasil ini dipanggil „Multi-Agent Classifier System with 

Certified Belief in Strength (MACS-CBS)‟.  Prestasi kedua-dua model berasaskan 

kedua-dua EFMM iaitu yang tunggal dan gabungan dikaji secara sistematik 

menggunakan satu siri kajian penanda aras, yang mana keputusan tersebut di analisis 

dan dibincangkan. Dari sudut penilaian empirikal, model EFMM dan model EFMM2 

yang dibangunkan menunjukkan peningkatan prestasi jika dibandingkan dengan 

rangkaian–rangkaian FMM asal. Keputusan kajian juga menunjukkan bahawa 

prestasi kedua-dua model adalah setanding atau lebih baik daripada kebanyakan 

sistem pembelajaran mesin yang telah dilaporkan dalam kajian ilmiah. Tambahan 

pula, dua aplikasi sebenar yang melibatkan permasalahan dalam bidang perubatan 

dan industri telah digunakan bagi tujuan penilaian. Keputusan positif yang diperolehi 

menunjukkan potensi dan keberkesanan model gabungan berasaskan EFMM 

sekiranya dibandingkan dengan FMM dan model berkaitan yang lain berdasarkan 

kajian ilmiah dalam menyelesaikan masalah klasifikasi corak dalam persekitaran 

sebenar. 
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INDIVIDUAL AND ENSEMBLE PATTERN CLASSIFICATION 

MODELS USING ENHANCED FUZZY MIN-MAX NEURAL 

NETWORKS 

ABSTRACT 

Pattern classification is one of the major components for the design and development 

of a computerized pattern recognition system. Focused on computational intelligence 

models, this thesis describes in-depth investigations on two possible directions to 

design robust and flexible pattern classification models with high performance. 

Firstly is by enhancing the learning algorithm of a neural-fuzzy network; and 

secondly by devising an ensemble model to combine the predictions from multiple 

neural-fuzzy networks using an agent-based framework. Owing to a number of 

salient features which include the ability of learning incrementally and establishing 

nonlinear decision boundary with hyperboxes,  the Fuzzy Min-Max (FMM) network 

is selected as the backbone for designing useful and usable pattern classification 

models in this research.  Two enhanced FMM variants, i.e. EFMM and EFMM2, are 

proposed to address a number of limitations in the original FMM learning algorithm.  

In EFMM, three heuristic rules are introduced to improve the hyperbox expansion, 

overlap test, and contraction processes.  The network complexity and noise tolerance 

issues are undertaken in EFMM2. In addition, an agent-based framework is 

capitalized as a robust ensemble model to house multiple EFMM-based networks.  A 

useful trust measurement method known as Certified Belief in Strength (CBS) is 

developed and incorporated into the ensemble model for exploiting the predictive 

performances of different EFMM-based networks.  The resulting model is known as 



 

xx 

 

a Multi-Agent Classifier System with Certified Belief in Strength (MACS-CBS).  

The usefulness of both individual and ensemble EFMM-based models is evaluated 

systematically using a series of benchmark studies, with the results analyzed and 

discussed.  From the empirical evaluation, the proposed EFMM and EFMM2 models 

show improved performances as compared with those from the original FMM 

network.  The results are also either comparable with or better than those from many 

other machine learning systems reported in the literature.  Furthermore, two real-

world medical and industrial problems are used for evaluation.  The outcomes 

positively demonstrate the potential and efficacy of the proposed ensemble EFMM-

based model, as compared with FMM and other related models in the literature, in 

undertaking pattern classification problems in the real environments. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Since ancient times, humans are considered as the best pattern recognizer in most 

instances (Jain et al., 2000). Our brain receives patterns from sensing organs and 

processes them to become useful information, and subsequently allows us to make 

appropriate decisions based on the received patterns.  The development in sciences 

and technologies has led humans to research into models and techniques to emulate 

the functionality of the human brain.  One of the attempts is to understand the 

process and action of pattern recognition by the human brain, and subsequently 

develop computerized systems to imitate this pattern recognition capability.  

However, for a computerized system to function as a useful pattern recognizer, it 

needs to be equipped with robust algorithms in order to be able to extract meaningful 

features from events or objects, and classify them into different categories.  

Nowadays, pattern recognition has attracted the attention of many researchers from 

different fields, and is becoming one of the most important characteristics of 

intelligent behaviours.  In general, the design and development of a computerized 

pattern recognition system comprises four major components (Rosenfeld and 

Wechsler, 2000), i.e.: 

 Data Acquisition and Collection: it is the procedure for finding patterns from 

physical conditions (events or objects) and changing them from analog to 

digital values that a computer can process.   In other words, a data acquisition 
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element of a computerized pattern recognition system is considered as the 

equivalent to the sensing organs in humans.  

 Feature Extraction and Representation:  It is the procedure for transforming 

raw data (digit values) into a set of specific attributes or features.  The input 

features are then processed by using some form of mathematical function to 

provide informative and representative measurements for the raw data. 

 Similarity Detection and Pattern Classification: It is the procedure for 

categorizing and assigning the input features into one of the target clusters 

(for unsupervised learning) or target classes (for supervised learning) by 

applying some form of decision rule. 

 Performance Evaluation: It is the procedure for applying mathematical 

measurements to estimate the effectiveness of the computerized pattern 

recognition system quantitatively, normally based on a set of new and unseen 

data samples.  

The focus of this thesis is on the pattern classification aspect of the overall 

design and development of a computerized pattern recognition system.  

Many methods have been developed for pattern classification. One of the 

earliest methods for pattern classification was statistical approaches, which were 

started by designing classical linear discrimination methods proposed in Fisher 

(1936) and Rao (1948). Then, the Bayesian decision method became one of the most 

popular statistical approaches for pattern classification (Devijver and Kittler, 1982; 

Duda and Hart, 1973).  However, statistical approaches have difficulties in handling 

contextual/structural information in patterns, as indicated in Pal and Pal (2002).  This 
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problem was then tackled by using syntactic approaches related to the theory of 

formal language for pattern classification (Hopcroft and Ullman, 1979).  While 

syntactic approaches work fine for idealized patterns, they are inefficient in handling 

noisy and distorted patterns (Pal and Pal, 2002).  On the other hand, the use of 

classification trees constitutes another useful method for pattern classification 

(Breiman et al., 1984). Nevertheless, the method faces the same inefficiency problem 

as syntactic approaches in dealing with noisy, distorted patterns (Pal and Pal, 2002). 

Recently, Computational Intelligence (CI) (Bezdek, 1994) models have 

emerged as one of the useful methods for pattern classification.  CI is a new field that 

capitalizes on interdisciplinary theories and principles for designing and developing 

computerized intelligent systems (Jain et al., 2008). In the following sections, a 

definition of CI is provided. The motivations for developing an ensemble of CI-based 

systems are given.  Then, the research objectives and scope are explained, which is 

followed by the research methodology.  Finally, an overview of the organization of 

this thesis is presented. 

1.2 Computational Intelligence 

Imitating human behaviours is the main driving force that inspires researchers 

to develop CI-based systems.  Bezdek (1994) introduced one of the earliest 

definitions for CI, as follows: 

“…A system is computationally intelligent when it: deals with only 

numerical (low-level) data, has pattern recognition components, 

does not use knowledge in the AI sense; and additionally when it 
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(begins to) exhibit i) computational adaptivity, ii) computational 

fault tolerance, iii) speed approaching human-like tumaround and 

iv) error rates that approximate human performance.” 

CI is an emerging field which comprise of a highly interdisciplinary 

framework that can solve various problems with the use of computers to perform 

numerical calculations (Rutkowski, 2008).  A number of paradigms exist under the 

umbrella of CI models (Rutkowski, 2008), which include neural networks (Oong and 

Isa, 2011), fuzzy logic (Chen et al., 2012), evolutionary algorithms (Michalewicz, 

1996), rough sets (Pawlak, 1992), and probabilistic methods (Pagan and Ullah, 

1999).  There are a lot of successful applications of CI-based systems in different 

areas, which include industrial (West and West, 2000), web intelligence (Cercone et 

al., 2002), management (Meesad and Yen, 2003), finance and economics (Isasi et al., 

2007), medical decision (Papageorgiou, 2009), future power systems (Vale et al., 

2011), as well as education (Kim and Cho, 2013).  

The focus of this thesis is on Artificial Neural Network (ANN) and other 

complementary paradigms for developing useful pattern classification systems. An 

ANN is a mathematical representation model inspired from the biological neural 

network in the human brain.  One of the earlier attempts to understand the organizing 

principles of the brain was implemented in McCulloch and Pitts (1943).  The aim 

was to imitate the biological neural structure by formulating a mathematical model of 

biological neurons.  The attempt then brought about the development of ANNs.  To 

date, there are a number of different ANN architectures, which include the Multi-

Layer Perceptron (MLP) networks (Rumelhart and Zipser, 1986), Hopfield network 
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(Hopfield, 1982; Hopfield, 1984), and Radial Basis Function (RBF) network (Lowe 

and Broomhead, 1988). 

1.3 Problems and Motivations 

ANNs have emerged as one of the popular methods in tackling pattern 

classification problems.  ANNs are useful for handling noisy data collected from real 

environments. The learning property of ANNs gives them the ability to recognize 

different types of input patterns.  Most of the ANN learning strategies are related to 

batch or offline learning (Puttige and Anavatti, 2007).  However, one of the problems 

of batch learning in ANN models, such as MLP and RBF, is catastrophic forgetting 

(Robins, 1993; Ratcliff, 1990; McCloskey and Cohen, 1989).  The phenomenon of 

catastrophic forgetting is concerned with the inability of an ANN to remember what 

it has previously learned when new information is learned by the ANN (Polikar et al., 

2001; Polikar et al., 2000).  

There have been many attempts from researchers to solve this catastrophic 

forgetting problem.   One of these attempts was by McCloskey and Cohen (1989), 

where they used the back-propagation ANN to understand the catastrophic forgetting 

problem.  They found that the network created a new solution based only on the most 

recent information, when it was given multiple materials to learn (McCloskey and 

Cohen, 1989).  This is obviously different from the functionality of the human brain.   

On the other hand, the stability plasticity dilemma in learning systems 

(Simpson, 1992; Goldberg, 1989; Grossberg, 1980) is also related to the catastrophic 
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forgetting problem.  The dilemma aims to address a number of issues, e.g. how a 

learning system can remain plastic enough to learn new information, and how to 

retain previously learned information when new information is provided (Carpenter 

and Grossberg, 1987; Carpenter and Grossberg, 1988).  Solving the stability 

plasticity dilemma is a crucial issue in ANN learning, especially when the number of 

data samples increases with time and the ANN has to learn these samples in an 

autonomous and incremental manner.  As a result, Simpson (1992, 1993) proposed 

two hybrids ANN models, i.e., the Fuzzy min-max (FMM) networks, in an attempt to 

combat this stability-plasticity dilemma.  The first ANN is for pattern classification 

(Simpson, 1992); while the second is for pattern clustering (Simpson, 1993).  In this 

thesis, the focus is on the supervised FMM (hereafter known as just FMM) network 

for pattern classification, owing to a number of reasons, as follows.  

The FMM network is a supervised CI model which integrates both ANN and 

fuzzy set theory together in a unified framework. It uses hyperbox fuzzy sets to 

create and store knowledge (as hidden nodes) in its network structure.  Each 

hyperbox is defined by its minimum (min) and maximum (max) points in an n-

dimensional pattern space. The fuzzy part in FMM is created by combining the 

hyperbox min-max points with the fuzzy membership function.  The fuzzy 

membership function determines the degree by which an input pattern belongs to one 

particular class or another. There are a number of useful properties for FMM to 

handle pattern classification problems (Simpson, 1992): 
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a) Online Learning: the ability to learn new classes and refine existing classes 

quickly and without losing old information. This property is important to 

tackle the stability plasticity dilemma. 

b) Nonlinear Separability: the ability to build decision regions that separate 

classes of any shape and size.  

c) Overlapping Classes: the ability to form a decision boundary to minimize the 

misclassification rate by eliminating the overlapping regions from different 

classes. 

d) Training Time: the ability to learn and revise the decision boundaries of 

different classes within a short training time and using only one pass learning. 

e) Soft and Hard Decisions: the ability to provide both soft and hard 

classification decisions. The hard decision indicates whether a pattern is in a 

specific class or otherwise (either 0 or 1), while the soft decision describes 

the degree to which an input pattern fits within a particular class.  

All the above salient properties make FMM a unique pattern classifier. 

However, there are rooms to enhance the FMM learning algorithm.  In particular, its 

expansion, overlapping test, and contraction processes need further improvements. 

Another shortcoming of FMM is its network complexity and noise tolerance 

capability.  Learning with large data sets increases the FMM network complexity, 

while learning with noisy data samples results in spurious knowledge stored in its 

network structure. All these limitations affect the performance of FMM.  Therefore, 

this thesis addresses techniques and strategies to solve these limitations and improve 

the robustness of FMM for tackling pattern classification problems.    
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In addition to a robust and efficient learning algorithm, improved 

performance in CI-based systems for pattern classification can also be achieved by 

using multiple classifier decisions, instead of using single classifier.  In this case, 

each classifier has to make independent classification errors.  By using multiple 

classifiers with a suitable decision combination scheme, the chance of avoiding 

classification errors and getting the correct decision for each input pattern can be 

increased; hence improving the overall classification performance. One of the ways is 

to use ensemble methods to combine the decisions from a set of classifiers 

(Dietterich, 2000).  In this aspect, the Multi Agent System (MAS) is a viable 

ensemble method, which has been  widely used in different fields, e.g. decision 

support (Fazlollahi and Vahidov, 2000), industrial steel processing (Gao et al., 2003), 

robot navigation (Ambastha et al., 2005), power systems (Baxevanos and Labridis, 

2007), medical service (Lopez et al., 2008), mobile agent technology (Chen et al., 

2009), urban traffic signal control (Balaji and Srinivasan, 2010), military network 

(Hancock and Lamont, 2011), and energy management (Mets et al., 2012).  While the 

MAS framework can be used for building an ensemble of pattern classifiers, 

designing an effective MAS model is not as simple as it seems. One of the potential 

problems is the trust measurement of MAS agents (Yu et al., 2013), i.e. how can one 

agent trust another agent, and how to measure the trustworthiness of an agent.  

Therefore, this thesis investigates how to solve these problems in an MAS model, in 

order to improve the robustness of MAS functioning as a useful ensemble method for 

tackling pattern classification problems. 
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1.4 Research Aim and Objectives 

The main aim of this research is to investigate the efficacy of the FMM 

network as a useful and usable pattern classification system. In addition to 

algorithmic investigations of FMM, the MAS framework is capitalized as a robust 

ensemble method to devise a multiple classifier model. The rationale is to formulate 

a useful trust measurement for exploiting the strength of different FMM-based 

classifiers using the MAS framework.  The research objectives are as follows: 

1. to propose an Enhanced FMM (EFMM) model by modifying the learning 

algorithm of FMM through tackling issues related to the expansion, 

overlapping test, and contraction processes among different classes; 

2. to reduce the EFMM network complexity and enhance its noise tolerance 

ability in handling large and/or noisy data sets;  

3. to devise a novel trust measurement scheme that is able to differentiate 

between good and poor predictions from different classifiers based on 

performance indicators;  

4. to evaluate the usefulness of individual and ensemble EFMM-based models 

in undertaking pattern classification problems using both benchmark and real-

world data sets, quantify their performances using statistical indicators, as 

well as analyze and compare their effectiveness with different classifiers. 

 

A step-by-step approach is taken in this research to achieve the above 

objectives. The research methodology is explained in the next section. 
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1.5 Overview of Methodology 

Figure 1.1 depicts an overview of this research.  The scope of this research is 

focused on pattern classification, which is an important part of the overall pattern 

recognition system as explained in section 1.1.   As such, the FMM neural network as 

single classifier and the MAS framework that supports multiple decisions are 

discussed, studied, and analysed in this research.  The FMM network is selected as 

the backbone for developing the pattern classifier used in this research, owing to a 

number of salient features, especially the ability to combat the catastrophic forgetting 

problem or the stability-plasticity dilemma as explained in section 1.2.  In order to 

enhance the classification performance, two directions are focused: (i) enhancing the 

learning algorithm of FMM; and (ii) devising a robust MAS-based ensemble 

framework to combine the predictions from multiple EFMM-based networks. 

In this research, in-depth investigations are conducted in two stages, i.e., the 

learning stage of individual EFMM networks, and the decision combination stage of 

multiple EFMM networks using the MAS framework.  In the learning stage, the 

challenge is to overcome the expansion, overlapping test, and contraction processes 

among different classes in FMM and EFMM.  In addition, the network complexity 

and noise tolerance issues resulting from large, noisy data sets are taken into 

consideration.  In the decision combination stage, the challenge is to formulate a 

useful trust measurement scheme for an ensemble of EFMM-based networks in an 

MAS framework. This problem is viewed from the angle of “how to measure trust 

for the predictions from different agents with different (good and poor) 

performances, and how to arrive at the best final decision”. As a result, a number of 

enhancements to the learning algorithm of FMM are proposed.  The EFMM networks 
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are evaluated thoroughly and systematically, then, the MAS framework is utilized, 

and a novel trust measurement scheme is proposed. All these investigations aim to 

improve the classification performance of EFMM-based models, making them a 

robust and useful pattern classifier for tackling real-world problems. Numerous 

simulations using benchmark and real data sets are conducted along the course of this 

research, with the results analyzed, discussed, and compared with those from other 

related classifiers reported in the literature. 

 

Figure  1.1: Research relationships 

A summary of the research methodology is shown in Figure 1.2.  The 

following activities are conducted in order to achieve the overall research objectives.   
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 Step 1: Examining the FMM and EFMM learning algorithms.  Three aspects 

of improvements are identified in order to overcome some of the existing 

limitations, i.e. the expansion, overlapping test, and contraction processes.  

 Step 2: Benchmarking the EFMM network with publicly available data sets.  

The results are analyzed and compared with the original FMM network and 

those from other methods reported in the literature. This step is necessary to 

evaluate the effectiveness of the enhanced processes in EFMM.  

 Step 3: Reducing the network complexity and increasing the noise tolerance 

capability of the EFMM network. Useful techniques to select the winning 

hyperbox and to prune hyperboxes with low confidence factors in EFMM are 

proposed.    

 Step 4: Benchmarking the second enhanced FMM network (EFMM2) with 

publicly available noisy and noise-free data sets. The results are analyzed and 

compared with the previous FMM and EFMM networks, and with those from 

other methods reported in the literature. This step is necessary to evaluate the 

effectiveness of the EFMMs performance in terms of network complexity and 

noise tolerance capability, in addition to classification accuracy.  

 Step 5: Formulating a trust measurement scheme for a Multi-Agent Classifier 

System (MACS), with the EFMM-based networks (i.e., EFMM and EFMM2) 

as its constituent agents.  This MACS model is designed to tackle issues 

related to multiple predictions from an ensemble of EFMM-based networks, 

each with a different performance indicator. This step aims to devise an 

MACS framework for combining different EFMM-based networks developed 

in previous steps.   
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 Step 6: Demonstrating the efficacy of the MACS model with publicly 

available noisy, noise-free data sets, as well as, real-world data sets.  The 

results are analyzed and compared with individual EFMM-based networks 

and those from other methods reported in the literature.  This step is 

necessary to ascertain the efficacy of the MACS model in real-world 

environments. 

 

 

Figure  1.2: Research methodology 
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1.6 Thesis Outline 

This thesis is organized in accordance with the objectives mentioned above.  

A review of methods and models for improving classification performances based on 

CI is given in Chapter 2.  The review covers the FMM neural network, ensemble 

methods for pattern classification, as well as multi agent systems as a useful 

ensemble method.   

The learning dynamics of FMM is explained in Chapter 3. A detailed 

description of the FMM learning algorithm along with a numerical example is 

presented.  Limitations of FMM learning algorithm are highlighted and analyzed.  

Based on the analysis, novel modifications are proposed to enhance the FMM 

learning algorithm; hence resulting in the EFMM network.  A number of simulations 

are conducted using benchmark data sets, and the results are compared with those 

from other methods published in the literature.   

Complexity and noise are important issues in pattern classification.  As such, 

a review of existing methods to tackle these issues is presented in Chapter 4.  The 

problems related to network complexity in EFMM are analyzed and discussed.  

Novel modifications for EFMM are further proposed; hence resulting in EFMM2.  

Again, a number of simulation studies are conducted using benchmark data sets, and 

the results are compared with those obtained from other methods. 

In Chapter 5, the notion of agent and the MAS model is introduced.  A review 

of trust and its importance in MAS is presented.  A novel trust measurement scheme 
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is proposed, which is known as Certified Belief in Strength (CBS).  CBS is 

incorporated into the MACS model, which comprise EFMM and EFMM2 networks 

as its agents.  The resulting system, MACS-CBS, is evaluated using a number of 

benchmark data sets, and the results are compared with those from other methods.   

To demonstrate the applicability of the MACS-CBS model devised in Chapter 

5, and the individual EFMM2 networks proposed in Chapter 4, two real-world case 

studies are considered in Chapter 6. These data sets are obtained from the medical 

and power systems domains, as an attempt to ascertain the efficacy of MACS-CBS in 

real-world environments.   

Finally, conclusions are drawn in Chapter 7.  Contributions of this research as 

well as a number of areas to be pursued as further work are presented in Chapter 7 

too. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

As explained in Chapter 1, the main focus of this research is to investigate the 

efficiency of the FMM-based network as a useful and usable pattern classification 

system.  Besides that, the MAS model is capitalized as a robust ensemble framework 

to devise a multiple classifier system. As such, this chapter presents a review on the 

FMM network and its variants, ensemble methods, as well as MAS models, whereby 

all these are utilized in this research.  A summary of the review is presented at the 

end of this chapter. 

2.2 Background of the Fuzzy Min-Max Neural Network 

An artificial neural network (ANN) is a computational model that consists of 

an interconnected group of artificial neurons organized in a network structure, which 

emulates the biological neural system (Li and Ma, 2010; Graupe, 1997).  Nowadays, 

ANNs are widely used in many fields, which include healthcare (Lin et al., 2013; 

Das and Kundu, 2013), business (Salles et al., 2011), marketing (Abhishek et al., 

2012; Azcarraga et al., 2008), financial economics (Li and Ma, 2010), security 

(Alvarez, 2009; Teoh and Tan, 2010), power (Wei, 2010; Wu and Rastgoufard, 

2004), robot programming (Stoica et al., 2010), fault detection (Seera et al., 2012; 

Seera and Lim, 2013), and airline (Turkmen and Korkmaz, 2010).  Among different 

domains, pattern classification is one of the active areas of ANN applications 
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(Zhang, 2000).  As an example, ANN models have been successfully applied to a 

variety of real-world classification tasks in industry, business, and science (Zhang, 

2000); medical prognosis and diagnosis (Economou et al., 1994), harmonic currents 

(Yap et al., 2011), as well as industrial fault detection and diagnosis (Quteishat et al., 

2009; Seera et al., 2012; Seera and Lim, 2013).  

Out of many different types of ANNs, the Fuzzy Min Max (FMM) neural 

network and its variants have been the focus of many researchers for tackling pattern 

classification problems (Simpson, 1992; Simpson, 1993; Gabrys and Bargiela, 2000; 

Nandedkar and Biswas, 2007a; Nandedkar and Biswas, 2007b; Quteishat and Lim, 

2008; Zhang et al., 2011; Bargiela et al., 2004; Kim and Yang, 2005).  The design of 

these FMM-based classifiers originates from two FMM models introduced by 

Simpson (Simpson, 1992; Simpson, 1993).  FMM was first presented as a supervised 

classification neural network (Simpson, 1992), and later as an unsupervised 

clustering neural network (Simpson, 1993).  Both FMM networks combine ANN and 

fuzzy set theory into a common framework for tackling pattern classification and 

clustering problems. The FMM structure is built from hyperboxes. A hyperbox is 

defined by its minimum and maximum points which are encoded from the input 

patterns. The FMM learning algorithm consists of three steps: expansion, overlapping 

test, and contraction (Simpson, 1992). The learning procedure in FMM starts by 

selecting an input pattern and then finding the closest hyperbox that matches the 

input pattern, as shown in Figure 2.1. The closest hyperbox in the FMM model is 

found by using a fuzzy membership function, which is defined with respect to 

hyperbox min–max points (Simpson, 1992). 



 

18 

 

 

Figure  2.1: The FMM learning process 

 

The membership function represents the degree to which an input pattern fits 

in the hyperbox, and the membership value ranges between 0 and 1. If the input 

pattern does not belong to any hyperboxes, even with the expansion process in FMM, 

a new hyperbox is created to include the input pattern.  The overlapping test is 

carried out to check whether there are any overlaps among hyperboxes from different 

classes caused by the expansion process, while the contraction process takes place to 
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eliminate the overlapping area. In other words, FMM entails a dynamic network 

structure with an online learning capability whereby the number of hyperboxes can 

be increased when necessary; therefore, avoiding the problem of re-training as faced 

by many neural network models with an off-line learning capability (Nakashima et 

al., 2010; Odeh and Khalil, 2011). Further details of FMM can be found in Chapter 3. 

A number of FMM variants are available in the literature.  An extension of 

the FMM classification network known as the General Fuzzy Min-Max (GFMM) 

neural network was proposed by Gabrys and Bargiela (2000).  GFMM is established 

using the expansion and contraction principles, and is able to handle both labelled 

and unlabelled data simultaneously.  The structure of GFMM is similar to that of 

FMM with three network layer. The advantages of GFMM include the abilities to 

process input data such as confidence limits, incorporate new information, avoid 

retraining the network, and combine both supervised and unsupervised learning 

strategies within a single structure (Gabrys and Bargiela, 2000).  

A stochastic FMM network for reinforcement learning was proposed by Likas 

(2001), which was an extension of the reinforcement FMM model (Likas and Blekas, 

1996). It uses the concept of random hyperboxes for reinforcement learning 

problems.  Unlike FMM, the proposed extension (Likas, 2001) uses a stochastic 

automaton instead of the action label (or class label), where the probability vector of 

the stochastic automaton determines the corresponding action through random 

selection.  Each hyperbox is associated with a stochastic learning automaton.  The 

location, boundaries of each hyperbox, as well as probability vector of each 

stochastic automaton are adjusted by the stochastic FMM network.  
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Inspired by the FMM network, the adaptive resolution Min-Max model was 

proposed as a new neuro-fuzzy classifier (Rizzi et al., 2002).  It employs two 

algorithms, i.e. the Adaptive Resolution Classifier (ARC) and the Pruned Adaptive 

Resolution Classifier (PARC). In the proposed model, the hyperbox expansion 

process is not limited by a fixed maximum size, in order to overcome some undesired 

properties of the original FMM algorithm.  As such, the proposed model possesses a 

less complex network structure, as compared with original FMM (Rizzi et al., 2002).  

In Bargiela et al. (2004), an inclusion/exclusion fuzzy hyperbox classifier was 

proposed.  As its name implies, this model creates two types of hyperboxes, i.e., the 

inclusion and exclusion hyperboxes.  The purpose of the inclusion hyperboxes is to 

contain the input patterns that belong to the same class. Other overlapped patterns are 

contained by the exclusion hyperboxes.  The use of the exclusion hyperboxes helps 

reduce the training process from three steps (expansion, overlap test, and contraction) 

to two (expansion and overlap test).  This is achieved through a contentious area of 

the pattern space to approximate the complex topology of data samples, which helps 

to solve the overlapping problem in FMM (Bargiela et al., 2004).   

A Weighted FMM network (WFMM) was proposed by Kim and Yang 

(2005).  In this model, both the hyperbox contraction and overlap test steps do not 

restrict hyperbox expansion.  A new membership function and a learning method 

(hyperbox creation, expansion, contraction, and weight update) are defined in 

WFMM (Kim and Yang, 2005).  On the other hand, a new model called FMM with 

compensatory neuron (i.e., FMCN) was proposed by Nandedkar and Biswas (2007a).  

Based on the compensatory neuron (CN) architecture, FMCN is used as a supervised 
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classification model that supports online learning.  The CNs are activated when the 

test sample falls in the overlapped area between two different classes, with the 

hyperbox contraction process eliminated. 

 Later, another General Reflex Fuzzy Min-Max Neural Network (GRFMN) 

was proposed by Nandedkar and Biswas (2007b).  GRFMM combines both FMM 

clustering and classification algorithms as well as the concept of human reflex 

mechanism to solve the problem of class overlaps (Nandedkar and Biswas, 2007b; 

Ries et al., 2006; Yuan et al., 2006) into one framework. GRFMN offers on-line 

training, and exhibits a better ability to identify the underlying data structure as 

compared with GFMM; hence enhancing classification accuracy (Nandedkar and 

Biswas, 2007b). 

A Modified FMM (MFMM) network that aimed to improve the FMM 

classification performance was proposed by Quteishat and Lim (2008).  MFMM is 

able to tackle the problem related to a small number of large hyperboxes formed in 

the network as well as to facilitate rule extraction.  In MFMM, the data set is divided 

into three sub-sets: a training set for learning; a prediction set for pruning and rule 

extraction; and a test set for performance evaluation. MFMM improves the 

classification performance with a two-stage process, i.e. (i) network pruning and rule 

extraction; (ii) prediction by using the Euclidean distance and membership function.  

Later, MFMM was further enhanced with a Genetic Algorithm (GA)-based rule 

extractor to form another model called FMM-GA (Quteishat et al., 2010). In the 

particular study, an application of FMM-GA to medical diagnosis problems has been 

demonstrated. 
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A Data-Core-Based Fuzzy Min–Max Neural Network (DCFMN) for pattern 

classification was recently proposed by Zhang et al. (2011).  DCFMN uses new 

membership functions for two types of neurons, i.e., Classifying Neurons (CNs) and 

Overlapping Neurons (OLNs).  These membership functions take into consideration 

three factors: noise, the geometric center of the hyperbox, and the data core.  The 

FMM contraction processes are removed in DCFMN.  When a new pattern falls in 

the overlapped area of different classes, DCFMN uses the OLN membership to 

determine the target class of the new pattern (Zhang et al., 2011). 

Table 2.1 shows the characteristics of FMM-based networks discussed in the 

section.  Even though many investigations have been conducted to improve the 

original FMM neural network, some limitations in the FMM learning algorithm 

remain unsolved (Hyperbox expansion rule, overlapping test rule, contraction rule, 

network complexity and noise tolerance capability), which affect its performance. It 

can be observed that all FMM variants suffer from at least two limitations, as shown 

in Table 2.2.  As such, there are rooms for improving the FMM learning algorithm 

and performance, and making it a more robust classifier. 

In this thesis, two strategies are adopted to enhance FMM.  The first is to 

improve its learning algorithm by solving issues related to overlapping hyperboxes, 

as detailed in Chapters 3 and 4.  Instead of single classifier, the second strategy 

examines the use of a multiple classifier framework to form an ensemble of 

classifiers so that the overall performance can be improved, as presented in Chapter 

5.  The next section reviews some of the ensemble methods that are related to this 

research. 
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Table  2.1: A summary of the reviewed FMM-based networks 

Model Characteristics 

FMM (Simpson, 1992) 

Suitable for supervised learning; combine ANN and fuzzy 

set theory into a common framework for tackling pattern 

classification problems;  

supports on-line adaptation which enables it to avoid the re-

training process;  

FMM (Simpson, 1993) 

Suitable for unsupervised learning; 

combine ANN and fuzzy set theory into a common 

framework for tackling pattern clustering problems; 

supports on-line adaptation. 

General Fuzzy Min-Max 

(GFMM) (Gabrys and 

Bargiela, 2000)  

Handles both labeled data and unlabeled data; 

suitable for supervised and unsupervised learning. 

Stochastic FMM (Likas, 2001) 

Uses a stochastic automaton, instead of the action label or 

class label in original FMM; 

suitable for reinforcement learning. 

Adaptive resolution Min-Max 

model (Rizzi et al., 2002) 

Comprises of the Adaptive Resolution Classifier (ARC) 

and Pruned Adaptive Resolution Classifier (PARC); 

the hyperbox expansion process is not limited by a fixed 

maximum threshold as in the original FMM algorithm;  

possesses a less complex network structure than that of the 

original FMM. 

Inclusion/Exclusion fuzzy 

hyperbox classifier (Bargiela 

et al., 2004) 

Uses the inclusion hyperboxes to contain input patterns 

from the same class; 

uses the exclusion hyperboxes to contain overlapped 

patterns. 

Weighted FMM network 

(WFMM) (Kim and Yang, 

2005) 

Does not restrict hyperbox expansion through the hyperbox 

contraction and overlap test steps; 

defines a new membership function; 

defines a new learning method for hyperbox creation, 

expansion, contraction, and weight update. 

FMM with compensatory 

neuron (FMCN) (Nandedkar 

and Biswas, 2007a) 

Uses the compensatory neuron (CN) architecture; 

uses new membership functions for two types of neurons, 

Classifying Neurons (CNs) and Overlapping Neurons 

(OLNs). 

General Reflex Fuzzy Min-

Max Neural Network 

(GRFMN) (Nandedkar and 

Biswas, 2007b) 

Combines both FMM clustering and classification 

algorithms; 

deploys the concept of human reflex mechanism to solve 

the problem of class overlaps. 

Modified FMM (MFMM) 

(Quteishat and Lim, 2008) 

Performs network pruning and rule extraction; 

uses the Euclidean distance and membership function for 

prediction. 

Modified  FMM with Genetic 

Algorithm (MFMM-GA) 

(Quteishat et al., 2010) 

Performs network pruning and rule extraction; 

uses the Euclidean distance and membership function for 

prediction; 

incorporates a Genetic Algorithm (GA) - based module for 

rule extraction. 

Data-Core-Based Fuzzy Min–

Max Neural Network 

(DCFMN) (Zhang et al., 2011) 

Uses membership functions for Classifying Neurons (CNs) 

and Overlapping Neurons (OLNs); 

Removing the contraction process. 
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Table  2.2: Limitations of the FMM-based networks 

 

              

Limitations 

Model Of 

Expansion 

rule 

Overlapping 

test rule 

Contraction 

rule 
Complexity  

Noise 

tolerance  

Simpson (1992) √ √ √ √ √ 

Simpson (1993) √ √ √ √ √ 

Gabrys and 

Bargiela (2000)  
√ √ √ √ √ 

Likas (2001) √ √ √ X √ 

Rizzi et al. (2002) √ √ √ X X 

Bargiela et al. 

(2004) √ √ X √ √ 

Kim and Yang 

(2005) √ √ √ √ X 

Nandedkar and 

Biswas (2007a) 
√ √ X √ √ 

Nandedkar and 

Biswas (2007b) 
√ √ √ √ √ 

Quteishat and Lim 

(2008) 
√ √ √ X X 

Quteishat et al. 

(2010) 
√ √ √ X X 

Zhang et al. (2011) √ √ X X X 

 

 

2.3 Ensemble Methods 

As explained in the previous section, FMM is a useful neural network that is 

able to produce good and accurate results in undertaking pattern classification 

problems.  In FMM (as well as other online ANN models), learning can be unstable 

whereby any small change in the sequence of the training samples, or parameters of 

the network could affect the network performance (Navone, 2001). Therefore, it is 

useful to enhance the learning algorithm and improve its performance.  To minimize 

the classification errors, one useful way is to deploy a group of classifiers for 


