746 research outputs found

    Maturation trajectories of cortical resting-state networks depend on the mediating frequency band

    Full text link
    The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13–30 Hz) and gamma (31–80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development.This work was supported by grants from the Nancy Lurie Marks Family Foundation (TK, SK, MGK), Autism Speaks (TK), The Simons Foundation (SFARI 239395, TK), The National Institute of Child Health and Development (R01HD073254, TK), National Institute for Biomedical Imaging and Bioengineering (P41EB015896, 5R01EB009048, MSH), and the Cognitive Rhythms Collaborative: A Discovery Network (NFS 1042134, MSH). (Nancy Lurie Marks Family Foundation; Autism Speaks; SFARI 239395 - Simons Foundation; R01HD073254 - National Institute of Child Health and Development; P41EB015896 - National Institute for Biomedical Imaging and Bioengineering; 5R01EB009048 - National Institute for Biomedical Imaging and Bioengineering; NFS 1042134 - Cognitive Rhythms Collaborative: A Discovery Network

    Maturation trajectories of cortical resting-state networks depend on the mediating frequency band.

    Get PDF
    The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development

    The anatomical distance of functional connections predicts brain network topology in health and schizophrenia.

    Get PDF
    The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive "pruning" of short-distance functional connections in schizophrenia.PEV is supported by the Medical Research Council (grant number MR/K020706/1). This work was supported by the Neuroscience in Psychiatry Network (NSPN) which is funded by a Wellcome Trust strategy award to the University of Cambridge and University College London. ETB is employed half-time by the University of Cambridge and half-time by GlaxoSmithKline; he holds stock in GSK.This is the final published version. It first appeared at http://onlinelibrary.wiley.com/doi/10.1111/jcpp.12365/full

    Mental sleep activity and disturbing dreams in the lifespan

    Get PDF
    Sleep significantly changes across the lifespan, and several studies underline its crucial role in cognitive functioning. Similarly, mental activity during sleep tends to covary with age. This review aims to analyze the characteristics of dreaming and disturbing dreams at dierent age brackets. On the one hand, dreams may be considered an expression of brain maturation and cognitive development, showing relations with memory and visuo-spatial abilities. Some investigations reveal that specific electrophysiological patterns, such as frontal theta oscillations, underlie dreams during sleep, as well as episodic memories in the waking state, both in young and older adults. On the other hand, considering the role of dreaming in emotional processing and regulation, the available literature suggests that mental sleep activity could have a beneficial role when stressful events occur at dierent age ranges. We highlight that nightmares and bad dreams might represent an attempt to cope the adverse events, and the degrees of cognitive-brain maturation could impact on these mechanisms across the lifespan. Future investigations are necessary to clarify these relations. Clinical protocols could be designed to improve cognitive functioning and emotional regulation by modifying the dream contents or the ability to recall/non-recall them

    Early Sexual Trauma Exposure and Neural Response Inhibition in Adolescence and Young Adults: Trajectories of Frontal Theta Oscillations During a Go/No-Go Task

    Get PDF
    Objective Trauma, particularly when experienced early in life, can alter neurophysiologic and behavioral development, thereby increasing risk for substance use disorders and related psychopathology. However, few studies have empirically examined trauma using well-characterized developmental samples that are followed longitudinally. Method The association of assaultive, non-assaultive, and sexual assaultive experiences before 10 years of age with developmental trajectories of brain function during response inhibition was examined by measuring electrophysiologic theta and delta oscillations during no-go and go conditions in an equal probability go/no-go task. Data were drawn from the Collaborative Study of the Genetics of Alcoholism (COGA) prospective cohort, composed of offspring from high-risk and comparison families who were 12 to 22 years old at enrollment, with follow-ups at 2-year intervals since 2004. In addition, other important predictors of neurophysiologic functioning (eg, substance use, impulsivity, and parental alcohol use disorders) were investigated. Moreover, associations of neurophysiologic functioning with alcohol and cannabis use disorder symptom counts and externalizing and internalizing psychopathology were examined. Results Individuals exposed to sexual assaultive trauma before 10 years of age had slower rates of change in developmental trajectories of no-go frontal theta during response inhibition. Importantly, effects remained significant after accounting for exposure to other traumatic exposures, such as parental history of alcohol use disorder and participants’ substance use, but not measures of impulsivity. Further, slower rates of change in no-go frontal theta adolescent and young adult development were associated with increased risk for alcohol use disorder symptoms and internalizing psychopathology, but not for cannabis use disorder symptoms or externalizing psychopathology. Conclusion Childhood sexual assault is associated with atypical frontal neurophysiologic development during response inhibition. This could reflect alterations in frontal lobe development, synaptic pruning, and/or cortical maturation involving neural circuits for inhibitory control. These same areas could be associated with increased risk for young adult alcohol use disorder symptoms and internalizing psychopathology. These findings support the hypothesis that changes in neurocognitive development related to early sexual trauma exposure could increase the risk for mental health and substance use problems in young adulthood

    GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia

    Get PDF
    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions

    Top ten discoveries of the year: Neurodevelopmental disorders

    Get PDF
    Developmental brain disorders, a highly heterogeneous group of disorders with a prevalence of around 3% of worldwide population, represent a growing medical challenge. They are characterized by impaired neurodevelopmental processes leading to deficits in cognition, social interaction, behavior and motor functioning as a result of abnormal development of brain. This can include developmental brain dysfunction, which can manifest as neuropsychiatric problems or impaired motor function, learning, language or non-verbal communication. Several of these phenotypes can often co-exist in the same patient and characterize the same disorder. Here I discuss some contributions in 2019 that are shaking our basic understanding of the pathogenesis of neurodevelopmental disorders. Recent developments in sophisticated in-utero imaging diagnostic tools have raised the possibility of imaging the fetal human brain growth, providing insights into the developing anatomy and improving diagnostics but also allowing a better understanding of antenatal pathology. On the other hand, advances in our understanding of the pathogenetic mechanisms reveal a remarkably complex molecular neuropathology involving a myriad of genetic architectures and regulatory elements that will help establish more rigorous genotype-phenotype correlations
    corecore