273 research outputs found

    Matroid 3-connectivity and branch width

    Get PDF
    We prove that, for each nonnegative integer k and each matroid N, if M is a 3-connected matroid containing N as a minor, and the the branch width of M is sufficiently large, then there is a k-element subset X of E(M) such that one of M\X and M/X is 3-connected and contains N as a minor

    Matroid 3-connectivity and branch width

    Get PDF
    We prove that, for each nonnegative integer k and each matroid N, if M is a 3-connected matroid containing N as a minor, and the the branch width of M is sufficiently large, then there is a k-element subset X of E(M) such that one of M\X and M/X is 3-connected and contains N as a minor

    Matroid 3-connectivity and branch width

    Full text link
    We prove that, for each nonnegative integer k and each matroid N, if M is a 3-connected matroid containing N as a minor, and the the branch width of M is sufficiently large, then there is a k-element subset X of E(M) such that one of M\X and M/X is 3-connected and contains N as a minor.Comment: 21 page

    On matroids of branch-width three

    Get PDF
    For the abstract of this paper, please see the PDF file

    Branch-depth: Generalizing tree-depth of graphs

    Get PDF
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 34 pages, 2 figure

    Fork-decompositions of matroids

    Get PDF
    For the abstract of this paper, please see the PDF file

    Branch-depth: Generalizing tree-depth of graphs

    Full text link
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 36 pages, 2 figures. Final versio

    Rank-width and Well-quasi-ordering of Skew-Symmetric or Symmetric Matrices

    Get PDF
    We prove that every infinite sequence of skew-symmetric or symmetric matrices M_1, M_2, ... over a fixed finite field must have a pair M_i, M_j (i<j) such that M_i is isomorphic to a principal submatrix of the Schur complement of a nonsingular principal submatrix in M_j, if those matrices have bounded rank-width. This generalizes three theorems on well-quasi-ordering of graphs or matroids admitting good tree-like decompositions; (1) Robertson and Seymour's theorem for graphs of bounded tree-width, (2) Geelen, Gerards, and Whittle's theorem for matroids representable over a fixed finite field having bounded branch-width, and (3) Oum's theorem for graphs of bounded rank-width with respect to pivot-minors.Comment: 43 page
    corecore