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We prove that every infinite sequence of skew-symmetric or sym-

metric matricesM1,M2, . . . over a fixed finite field must have a pair

Mi ,Mj (i < j) such thatMi is isomorphic to a principal submatrix of

the Schur complement of a nonsingular principal submatrix in Mj ,

if those matrices have bounded rank-width. This generalizes three

theorems on well-quasi-ordering of graphs or matroids admitting

good tree-like decompositions; (1) Robertson and Seymour’s the-

orem for graphs of bounded tree-width, (2) Geelen, Gerards, and

Whittle’s theorem formatroids representable over a fixed finite field

having bounded branch-width, and (3) Oum’s theorem for graphs of

bounded rank-width with respect to pivot-minors.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

For a V1 × V1 matrix A1 and a V2 × V2 matrix A2, an isomorphism f from A1 to A2 is a bijective

function that maps V1 to V2 such that the (i, j) entry of A1 is equal to the (f (i), f (j)) entry of A2 for

all i, j ∈ V1. Two square matrices A1, A2 are isomorphic if there is an isomorphism from A1 to A2. Note

that an isomorphism allows permuting rows and columns simultaneously. For a V × V matrix A and

a subset X of its ground set V , we write A[X] to denote the principal submatrix of A induced by X .

Similarly, we write A[X, Y] to denote the X × Y submatrix of A. Suppose that a V × V matrix M has

the following form:

M =
( Y V \ Y

Y A B

V \ Y C D

)
.
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If A = M[Y] is nonsingular, then we define the Schur complement (M/A) of A in M to be

(M/A) = D − CA−1B.

(If Y = ∅, then A is nonsingular and (M/A) = M.) Notice that if M is skew-symmetric or symmetric,

then (M/A) is skew-symmetric or symmetric, respectively.

Weprove that skew-symmetric or symmetricmatrices over afixedfinitefield arewell-quasi-ordered

under the relationdefined in termsof takingaprincipal submatrixandaSchurcomplement, if theyhave

bounded rank-width. Rank-width of a skew-symmetric or symmetric matrix will be defined precisely

in Section 2. Roughly speaking, it is a measure to describe how easy it is to decompose the matrix

into a tree-like structure so that the connecting matrices have small rank. Rank-width of matrices

generalizes rank-width of simple graphs introduced by Oum and Seymour [12], and branch-width of

graphs and matroids by Robertson and Seymour [15]. Here is our main theorem.

Theorem 7.1. Let F be a finite field and let k be a constant. Every infinite sequence M1, M2, . . . of skew-

symmetric or symmetric matrices over F of rank-width at most k has a pair i < j such that Mi is isomorphic

to a principal submatrix of (Mj/A) for some nonsingular principal submatrix A of Mj.

It may look like a purely linear algebraic result. However, it implies the following well-quasi-

ordering theorems on graphs and matroids admitting ‘good tree-like decompositions.’

• (Robertson and Seymour [15]) Every infinite sequence G1, G2, . . . of graphs of bounded tree-width

has a pair i < j such that Gi is isomorphic to a minor of Gj .• (Geelen et al. [8]) Every infinite sequence M1, M2, . . . of matroids representable over a fixed finite

field having bounded branch-width has a pair i < j such thatMi is isomorphic to a minor of Mj .• (Oum [11]) Every infinite sequence G1, G2, . . . of simple graphs of bounded rank-width has a pair

i < j such that Gi is isomorphic to a pivot-minor of Gj .

We ask, as an open problem, whether the requirement on rank-width is necessary in Theorem 7.1.

It is likely that our theorem for matrices of bounded rank-width is a step towards this problem, as

Robertson and Seymour also started with graphs of bounded tree-width. If we have a positive answer,

then this would imply Robertson and Seymour’s graphminor theorem [16] as well as an open problem

on the well-quasi-ordering of matroids representable over a fixed finite field [10].

A big portionof this paper is devoted to introduce Lagrangian chain-groups andprove their relations

to skew-symmetric or symmetric matrices. One can regard Sections 3 and 4 as an almost separate

paper introducing Lagrangian chain-groups, their matrix representations, and their relations to delta-

matroids. In particular, Lagrangian chain-groups provide an alternative definition of representable

delta-matroids. Thesituation is comparable toTuttechain-groups, 1 introducedbyTutte [20]. Tutte [21]

showed that a matroid is representable over a field F if and only if it is representable by a Tutte chain-

group over F. We prove an analogue of his theorem; a delta-matroid is representable over a field F if and

only if it is representable by a Lagrangian chain-group over F. We believe that the notion of Lagrangian

chain-groups will be useful to extend the matroid theory to representable delta-matroids.

To prove well-quasi-ordering, we work on Lagrangian chain-groups instead of skew-symmetric

or symmetric matrices for the convenience. The main proof of the well-quasi-ordering of Lagrangian

chain-groups is in Sections 5 and 6. Section 5 proves a theorem generalizing Tutte’s linking theorem

for matroids, which in turn generalizes Menger’s theorem. The proof idea in Section 6 is similar to the

proof of Geelen, Gerards, and Whittle’s theorem [8] for representable matroids.

The last two sections discuss how the result on Lagrangian chain-groups imply our main theorem

and itsothercorollaries. Section7 formulates the resultof Section6 in termsof skew-symmetricor sym-

metric matrices with respect to the Schur complement and explain its implications for representable

delta-matroids and simple graphs of bounded rank-width. Section 8 explainswhy our theorem implies

the theorem for representable matroids by Geelen et al. [8] via Tutte chain-groups.

1 We call Tutte’s chain-groups as Tutte chain-groups to distinguish from chain-groups defined in Section 3.
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2. Preliminaries

2.1. Matrices

For two sets X and Y , we write X�Y = (X \ Y) ∪ (Y \ X). A V × V matrix A is called symmetric if

A = At , skew-symmetric if A = −At and all of its diagonal entries are zero. We require each diagonal

entry of a skew-symmetric matrix to be zero, even if the underlying field has characteristic 2.

Suppose that a V × V matrixM has the following form:

M =
( Y V \ Y

Y A B

V \ Y C D

)
.

If A = M[Y] is nonsingular, then we define a matrix M ∗ Y by

M ∗ Y =
( Y V \ Y

Y A−1 A−1B

V \ Y −CA−1 (M/A)

)
.

This operation is called a pivot. In the literature, it has been called a principal pivoting, a principal pivot

transformation, and other various names; we refer to the survey by Tsatsomeros [18].

Notice that if M is skew-symmetric, then so is M ∗ Y . If M is symmetric, then so is (IY )(M ∗ Y),
where IY is a diagonal matrix such that the diagonal entry indexed by an element in Y is −1 and all

other diagonal entries are 1.

The following theorem implies that (M ∗Y)[X] is nonsingular if and only ifM[X�Y] is nonsingular.
Theorem 2.1 (Tucker [19]). Let M[Y] be a nonsingular principal submatrix of a V × V matrix M. Then for

all X ⊆ V,

det(M ∗ Y)[X] = detM[Y�X]/ detM[Y].
Proof. See Bouchet’s proof in Geelen’s thesis paper [7, Theorem 2.7]. �

2.2. Rank-width

A tree is called subcubic if every vertex has at most three incident edges. We define rank-width of a

skew-symmetric or symmetric V×V matrix A over a field F by rank-decompositions as follows. A rank-

decomposition of A is a pair (T,L) of a subcubic tree T and a bijection L : V → {t : t is a leaf of T}. For
each edge e = uv of the tree T , the connected components of T \e form a partition (Xe, Ye) of the leaves
of T and we call rank A[L−1(Xe),L−1(Ye)] thewidth of e. Thewidth of a rank-decomposition (T,L) is
themaximumwidth of all edges of T . The rank-width rwd(A) of a skew-symmetric or symmetric V ×V

matrix A over F is the minimum width of all its rank-decompositions. (If |V | ≤ 1, then we define that

rwd(A) = 0.)

2.3. Delta-matroids

Delta-matroids were introduced by Bouchet [2]. A delta-matroid is a pair (V,F) of a finite set V and

a nonempty collection F of subsets of V such that the following symmetric exchange axiom holds.

If F, F ′ ∈ F and x ∈ F�F ′, then there exists y ∈ F�F ′ such that F�{x, y} ∈ F. (SEA)

A member of F is called feasible. A delta-matroid is even, if cardinalities of all feasible sets have the

same parity.

Let M = (V,F) be a delta-matroid. For a subset X of V , it is easy to see that M�X = (V,F�X)
is also a delta-matroid, where F�X = {F�X : F ∈ F}; this operation is referred to as twisting. Also,

M \ X = (V \ X,F \ X) defined by F \ X = {F ⊆ V \ X : F ∈ F} is a delta-matroid if F \ X is
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nonempty; we refer to this operation as deletion. Two delta-matroids M1 = (V,F1), M2 = (V,F2)
are called equivalent if there exists X ⊆ V such that M1 = M2�X . A delta-matroid that comes from

M by twisting and/or deletion is called a minor of M.

2.4. Representable delta-matroids

For a V × V skew-symmetric or symmetric matrix A over a field F, let

F(A) = {X ⊆ V : A[X] is nonsingular}
andM(A) = (V,F(A)). Bouchet [4] showed thatM(A) forms a delta-matroid.We call a delta-matroid

representable over a field F or F-representable if it is equivalent to M(A) for some skew-symmetric or

symmetric matrix A over F. We also say that M is represented by A if M is equivalent toM(A).
Twisting (by feasible sets) and deletions are both natural operations for representable delta-

matroids. For X ⊆ V , M(A) \ X = M(A[V \ X]), and for a feasible set X , M(A)�X = M(A ∗ X)
by Theorem 2.1. Therefore minors of a F-representable delta-matroid are F-representable [5].

2.5. Well-quasi-order

In general, we say that a binary relation ≤ on a set X is a quasi-order if it is reflexive and transitive.

For a quasi-order ≤, we say “≤ is a well-quasi-ordering” or “X is well-quasi-ordered by ≤” if for every

infinite sequence a1, a2, . . . of elements of X , there exist i < j such that ai ≤ aj . For more detail, see

Diestel [6, Chapter 12].

3. Lagrangian chain-groups

3.1. Definitions

IfW is a vector space with a bilinear form 〈 , 〉 andW ′ is a subspace of W satisfying

〈x, y〉 = 0 for all x, y ∈ W ′,
thenW ′ is called totally isotropic. A vector v ∈ W is called isotropic if 〈v, v〉 = 0. Awell-known theorem

in linear algebra states that if a bilinear form 〈 , 〉 is non-degenerate inW andW ′ is a totally isotropic

subspace of W , then dim(W) = dim(W ′) + dim(W ′⊥) ≥ 2 dim(W ′) because W ′ ⊆ W ′⊥.

Let V be a finite set and F be a field. Let K = F2 be a two-dimensional vector space over F. Let

b+ ((
a

b

)
,
(
c

d

))
= ad + bc and b− ((

a

b

)
,
(
c

d

))
= ad − bc be bilinear forms on K . We assume that K

is equipped with a bilinear form 〈 , 〉K that is either b+ or b−. Clearly b+ is symmetric and b− is

skew-symmetric.

A chain on V to K is a mapping f : V → K . If x ∈ V , the element f (x) of K is called the coefficient

of x in f . If V is nonnull, there is a zero chain on V whose coefficients are 0. When V is null, we say that

there is just one chain on V to K and we call it a zero chain.

The sum f + g of two chains f , g is the chain on V satisfying (f + g)(x) = f (x) + g(x) for all x ∈ V .

If f is a chain on V to K and λ ∈ F, the product λf is a chain on V such that (λf )(x) = λf (x) for all

x ∈ V . It is easy to see that the set of all chains on V to K , denoted by KV , is a vector space. We give a

bilinear form 〈 , 〉 to KV as following:

〈f , g〉 = ∑
x∈V

〈f (x), g(x)〉K .

If 〈f , g〉 = 0, we say that the chains f and g are orthogonal. For a subspace L of KV , we write L⊥ for the

set of all chains orthogonal to every chain in L.

A chain-group on V to K is a subspace of KV . A chain-group is called isotropic if it is a totally isotropic

subspace. It is called Lagrangian if it is isotropic and has dimension |V |. We say a chain-group N is over

a field F if K is obtained from F as described above.
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A simple isomorphism froma chain-groupN onV toK to another chain-groupN′ onV ′ toK is defined

as a bijective function μ : V → V ′ satisfying that N = {f ◦ μ : f ∈ N′} where f ◦ μ is a chain on V

to K such that (f ◦ μ)(x) = f (μ(x)) for all x ∈ V . We require both N and N′ have the same type of

bilinear forms on K , that is either skew-symmetric or symmetric. A chain-group N on V to K is simply

isomorphic to another chain-group N′ on V ′ to K if there is a simple isomorphism from N to N′.

Remark. Bouchet’s definition [4] of isotropic chain-groups is slightly more general than ours, since

he allows
〈(

a

b

)
,
(
c

d

)〉
K

= −ad ± bc. His notation, however, is different; he uses FV ′
instead of KV

where V ′ is a union of V and its disjoint copy V∼. Since K = F2, two definitions are equivalent. Our

notation has advantages which we will see in the next subsection. Bouchet’s notation also has its own

virtues because, in Bouchet’s sense, isotropic chain-groups are Tutte chain-groups. Strictly speaking,

our isotropic chain-groups are not Tutte chain-groups, because we define chains differently. We are

mainly interested in Lagrangian chain-groups because they are closely related to representable delta-

matroids. We note that the notion of Lagrangian chain-groups is motivated by Tutte’s chain-groups

and Bouchet’s isotropic systems [3].

3.2. Minors

Consider a subset T of V . If f is a chain on V to K , we define its restriction f · T to T as the chain on T

such that (f · T)(x) = f (x) for all x ∈ T . For a chain-group N on V ,

N · T = {f · T : f ∈ N}
is a chain-group on T to K . We note that N · T is not necessarily isotropic, even if N is isotropic. We

write

N × T = {f · T : f ∈ N, f (x) = 0 for all x ∈ V \ T}.
For a chain-group N on V , we define

N � T =
{
f · (V \ T) : f ∈ N,

〈
f (x),

(
1

0

)〉
K

= 0 for all x ∈ T
}
.

We call this the deletion. Similarly we define

N � T =
{
f · (V \ T) : f ∈ N,

〈
f (x),

(
0

1

)〉
K

= 0 for all x ∈ T
}
.

We call this the contraction. We refer to a chain-group of the form N � X � Y on V \ (X ∪ Y) as aminor

of N.

Proposition 3.1. A minor of a minor of a chain-group N on V to K is a minor of N.

Proof. We can deduce this from the following easy facts.

N � X � Y = N � (X ∪ Y),

N � X � Y = N � Y � X,

N � X � Y = N � (X ∪ Y). �

Lemma 3.2. Let x, y ∈ K. If x ∈ K is isotropic, x �= 0, and 〈x, y〉K = 0, then y = cx for some c ∈ F.

Proof. Since 〈 , 〉K is non-degenerate, there exists a vector x′ ∈ K such that
〈
x, x′〉

K �= 0. Hence {x, x′}
is a basis of K . Let y = cx + dx′ for some c, d ∈ F. Since

〈
x, cx + dx′〉

K = d
〈
x, x′〉

K = 0, we deduce

d = 0. �

Proposition 3.3. A minor of an isotropic chain-group on V to K is isotropic.
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Proof. By Lemma 3.2, if
〈
x,

(
1

0

)〉
K

=
〈
y,

(
1

0

)〉
K

= 0, then 〈x, y〉K = 0 and similarly if
〈
x,

(
0

1

)〉
K

=〈
y,

(
0

1

)〉
K

= 0, then 〈x, y〉K = 0. This easily implies the lemma. �

We will prove that every minor of a Lagrangian chain-group is Lagrangian in the next section.

3.3. Algebraic duality

For an element v of a finite set V , if N is a chain-group on V to K and B is a basis of N, then we

may assume that the coefficient at v of every chain in B is zero except at most two chains in B because

dim(K) = 2. So, it is clear that dimensions of N × (V \ {v}), N · (V \ {v}), N � {v}, and N � {v} are at

least dim(N) − 2. In this subsection, we discuss conditions for those chain-groups to have dimension

dim(N) − 2, dim(N) − 1, or dim(N). Note that we do not assume that N is isotropic.

Theorem 3.4. If N is a chain-group on V to K and X ⊆ V, then

(N · X)⊥ = N⊥ × X.

Proof. (Tutte [25, TheoremVIII.7]) Let f ∈ (N ·X)⊥. There exists a chain f1 on V toK such that f1 ·X = f

and f1(v) = 0 for all v ∈ V \ X . Since 〈f1, g〉 = 〈f , g · X〉 = 0 for all g ∈ N, we have f ∈ N⊥ × X .

Conversely, if f ∈ N⊥ × X , it is the restriction to X of a chain f1 of N⊥ specified as above. Hence
〈f , g · X〉 = 〈f1, g〉 = 0 for all g ∈ N. Therefore f ∈ (N · X)⊥. �

Lemma 3.5. Let N be a chain-group on V to K. If X ∪ Y = V and X ∩ Y = ∅, then
dim(N · X) + dim(N × Y) = dim(N).

Proof. Let ϕ : N → N · X be a linear transformation defined by ϕ(f ) = f · X . The kernel ker(ϕ) of

this transformation is the set of all chains f in N having f · X = 0. Thus, dim(ker(ϕ)) = dim(N × Y).
Since ϕ is surjective, we deduce that dim(N · X) = dim(N) − dim(N × Y). �

For v ∈ V , let v∗, v∗ be chains on V to K such that

v∗(v) =
(
1

0

)
, v∗(v) =

(
0

1

)
,

v∗(w) = v∗(w) = 0 for all w ∈ V \ {v}.
Proposition 3.6. Let N be a chain-group on V to K and v ∈ V. Then

dim(N � {v}) =
⎧⎪⎨⎪⎩
dimN if v∗ /∈ N, v∗ ∈ N⊥,

dimN − 2 if v∗ ∈ N, v∗ /∈ N⊥,

dimN − 1 otherwise,

dim(N � {v}) =
⎧⎪⎨⎪⎩
dimN if v∗ /∈ N, v∗ ∈ N⊥,

dimN − 2 if v∗ ∈ N, v∗ /∈ N⊥,

dimN − 1 otherwise.

Proof. By symmetry, it is enough to show for dim(N � {v}). Let N′ = {f ∈ N :
〈
f (v),

(
1

0

)〉
K

= 0}. By
definition, N � {v} = N′ · (V \ {v}).

Observe that N′ = N if and only if v∗ ∈ N⊥. If N′ �= N, then there is a chain g in N such that〈
g(v),

(
1

0

)〉
K

�= 0. Then, for every chain f ∈ N, there exists c ∈ F such that f − cg ∈ N′. Therefore
dim(N′) = dimN − 1 if v∗ /∈ N⊥ and dim(N′) = dimN if v∗ ∈ N⊥.

By Lemma 3.5, dim(N′ · (V \ {v})) = dimN′ −dim(N′ × {v}). Clearly, dim(N′ × {v}) = 0 if v∗ /∈ N

and dim(N′ × {v}) = 1 if v∗ ∈ N. This concludes the proof. �
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Corollary 3.7. If N is an isotropic chain-group on V to K and M is a minor of N on V ′, then

|V ′| − dimM ≤ |V | − dimN.

Proof. We proceed by induction on |V \ V ′|. Since N is isotropic, every minor of N is isotropic by

Proposition 3.3. Since v∗ /∈ N \ N⊥ and v∗ /∈ N \ N⊥, dim(N) − dim(N � {v}) ∈ {0, 1} and dim(N) −
dim(N � {v}) ∈ {0, 1}. So |V \ {v}| − dim(N � {v}) ≤ |V | − dimN and |V \ {v}| − dim(N � {v}) ≤
|V | − dimN. Since M is a minor of either N � {v} or N � {v}, |V ′| − dimM ≤ |V | − dimN by the

induction hypothesis. �

Proposition 3.8. A minor of a Lagrangian chain-group is Lagrangian.

Proof. Let N be a Lagrangian chain-group on V to K and N′ be its minor on V ′ to K . By Proposition 3.3,

N′ is isotropic and therefore dim(N′) ≤ |V ′|. Thus it is enough to show that dim(N′) ≥ |V ′|. Since
dim(N) = |V |, it follows that dim(N′) ≥ |V ′| by Corollary 3.7. �

Theorem 3.9. If N is a chain-group on V to K and X ⊆ V, then

(N � X)⊥ = N⊥
� X and (N � X)⊥ = N⊥

� X.

Proof. By symmetry, it is enough to show that (N � X)⊥ = N⊥ � X . By induction, we may assume

|X| = 1. Let v ∈ X .

Let f be a chain in N⊥ � X . There is a chain f1 ∈ N⊥ such that f1 · (V \ X) = f and
〈
f1(v),

(
1

0

)〉
K

= 0.

Let g ∈ N be a chain such that
〈
g(v),

(
1

0

)〉
K

= 0. Then 〈f1(v), g(v)〉K = 0 by Lemma 3.2. Therefore

〈f , g · (V \ X)〉 = 〈f1, g〉 = 0 and so f ∈ (N � X)⊥. We conclude that N⊥ � X ⊆ (N � X)⊥.

We now claim that dim(N⊥ � X) = dim(N � X)⊥. We apply Proposition 3.6 to deduce that

dim(N � X) − dim(N) =
⎧⎪⎨⎪⎩
0 if v∗ /∈ N, v∗ ∈ N⊥,

−2 if v∗ ∈ N, v∗ /∈ N⊥,

−1 otherwise,

dim(N⊥
� X) − dim(N⊥) =

⎧⎪⎨⎪⎩
0 if v∗ /∈ N⊥, v∗ ∈ N,

−2 if v∗ ∈ N⊥, v∗ /∈ N,

−1 otherwise.

By summing these equations, we obtain the following:

dim(N � X) − dim(N) + dim(N⊥
� X) − dim(N⊥) = −2.

Since dim(N) + dim(N⊥) = 2|V | and dim(N � X) + dim(N � X)⊥ = 2(|V | − 1), we deduce that

dim(N⊥ � X) = dim(N � X)⊥.

SinceN⊥�X ⊆ (N�X)⊥ anddim(N⊥�X) = dim(N�X)⊥,we conclude thatN⊥�X = (N�X)⊥. �

3.4. Connectivity

We define the connectivity of a chain-group. Later it will be shown that this definition is related to

the connectivity function of matroids (Lemma 8.5) and rank functions of matrices (Theorem 4.13).

Let N be a chain-group on V to K . If U is a subset of V , then we write

λN(U) = dimN − dim(N × (V \ U)) − dim(N × U)

2
.
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This function λN is called the connectivity function of a chain-group N. By Lemma 3.5, we can rewrite

λN as follows:

λN(U) = dim(N · U) − dim(N × U)

2
.

From Theorem 3.4, it is easy to derive that λN⊥(U) = λN(U).
In general λN(X) need not be an integer. But if N is Lagrangian, then λN(X) is always an integer by

the following lemma.

Lemma 3.10. If N is a Lagrangian chain-group on V to K, then

λN(X) = |X| − dim(N × X)

for all X ⊆ V.

Proof. From the definition of λN(X),

2λN(X) = dim(N · X) − dim(N × X)

= 2|X| − dim(N · X)⊥ − dim(N × X)

= 2|X| − dim(N⊥ × X) − dim(N × X),

and since N = N⊥, we have

= 2(|X| − dim(N × X)). �

By definition, it is easy to see that λN(U) = λN(V \ U). Thus λN is symmetric. We prove that λN is

submodular.

Lemma 3.11. Let N be a chain-group on V to K and X, Y be two subsets of V. Then,

dim(N × (X ∪ Y)) + dim(N × (X ∩ Y)) ≥ dim(N × X) + dim(N × Y).

Proof. For T ⊆ V , let NT = {f ∈ N : f (v) = 0 for all v /∈ T}. Let NX +NY = {f + g : f ∈ NX, g ∈ NY }.
We know that dim(NX + NY ) + dim(NX ∩ NY ) = dimNX + dimNY from a standard theorem in the

linear algebra. Since NX ∩ NY = NX∩Y and NX + NY ⊆ NX∪Y , we deduce that

dimNX∪Y + dimNX∩Y ≥ dimNX + dimNY .

Since dimNT = dim(N × T), we are done. �

Theorem 3.12 (Submodular inequality). Let N be a chain-group on V to K. Then λN is submodular; in

other words,

λN(X) + λN(Y) ≥ λN(X ∪ Y) + λN(X ∩ Y)

for all X, Y ⊆ V.

Proof. We use Lemma 3.11. Let S = V \ X and T = V \ Y .

2λN(X) + 2λN(Y) = 2 dim(N) − (dim(N × X) + dim(N × S) + dim(N × Y) + dim(N × T))

≥ 2 dim(N) − dim(N × (X ∪ Y)) − dim(N × (X ∩ Y))

− dim(N × (S ∩ Y)) − dim(N × (S ∪ Y))

= 2λN(X ∪ Y) + 2λN(X ∩ Y). �

What happens to the connectivity functions if we take minors of a chain-group? As in the matroid

theory, the connectivity does not increase.
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Theorem 3.13. Let N, M be chain-groups on V, V ′ respectively. If M is a minor of a chain-group N, then

λM(T) ≤ λN(T ∪ U) for all T ⊆ V ′ and all U ⊆ V \ V ′.

Proof. By induction on |V \ V ′|, it is enough to prove this when |V \ V ′| = 1. Let v ∈ V \ V ′. By
symmetry we may assume thatM = N � {v}.

We claim that λM(T) ≤ λN(T). From the definition, we deduce

2λM(T) − 2λN(T) = dim(N � {v} · T) − dim(N � {v} × T) − dim(N · T) + dim(N × T).

Clearly N � {v} · T ⊆ N · T and N × T ⊆ N � {v} × T . Thus λM(T) ≤ λN(T).
Since λN and λM are symmetric, λM(T) = λM(V ′ \ T) ≤ λN(V ′ \ T) = λN(T ∪ {v}). �

3.5. Branch-width

A branch-decomposition of a chain-group N on V to K is a pair (T,L) of a subcubic tree T and a

bijection L : V → {t : t is a leaf of T}. For each edge e = uv of the tree T , the connected components

of T \ e form a partition (Xe, Ye) of the leaves of T and we call λN(L−1(Xe)) the width of e. The width

of a branch-decomposition (T,L) is the maximumwidth of all edges of T . The branch-width bw(N) of
a chain-group N is the minimum width of all its branch-decompositions. (If |V | ≤ 1, then we define

that bw(N) = 0.)

4. Matrix representations of Lagrangian chain-groups

4.1. Matrix representations

We say that two chains f and g on V to K are supplementary if, for all x ∈ V ,

(i) 〈f (x), f (x)〉K = 〈g(x), g(x)〉K = 0 and

(ii) 〈f (x), g(x)〉K = 1.

Givena skew-symmetricor symmetricmatrixA,wemayconstruct a Lagrangianchain-groupas follows.

Proposition 4.1. Let M = (mij : i, j ∈ V) be a skew-symmetric or symmetric V × V matrix over a field

F. Let a, b be supplementary chains on V to K = F2 where 〈 , 〉K is skew-symmetric if M is symmetric and

symmetric if M is skew-symmetric.

For i ∈ V, let fi be a chain on V to K such that for all j ∈ V,

fi(j) =
{
mija(j) + b(j) if j = i,

mija(j) if j �= i.

Then the subspace N of KV spanned by chains {fi : i ∈ V} is a Lagrangian chain-group on V to K.

If M is a skew-symmetric or symmetric matrix and a, b are supplementary chains on V to K ,

then we call (M, a, b) a (general) matrix representation of a Lagrangian chain-group N. Furthermore if

a(v), b(v) ∈
{
±

(
1

0

)
, ±

(
0

1

)}
for each v ∈ V , then (M, a, b) is called a special matrix representation of N.

Proof. For all i ∈ V ,

〈fi, fi〉 = ∑
j∈V

〈fi(j), fi(j)〉K = mii(〈a(i), b(i)〉K + 〈b(i), a(i)〉K) = 0,

because either mii = 0 (if M is skew-symmetric) or 〈 , 〉K is skew-symmetric.

Now let i and j be two distinct elements of V . Then,〈
fi, fj

〉 = 〈
fi(i), fj(i)

〉
K

+ 〈
fi(j), fj(j)

〉
K

= mji 〈b(i), a(i)〉K + mij 〈a(j), b(j)〉K = 0,
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because either mij = −mji and 〈b(i), a(i)〉K = 〈a(j), b(j)〉K or mij = mji and 〈b(i), a(i)〉K =
−〈a(j), b(j)〉K .

It is easy to see that {fi : i ∈ V} is linearly independent and therefore dim(N) = |V |. This proves
that N is a Lagrangian chain-group. �

4.2. Eulerian chains

A chain a on V to K is called a (general) eulerian chain of an isotropic chain-group N if

(i) a(x) �= 0, 〈a(x), a(x)〉K = 0 for all x ∈ V and

(ii) there is no nonzero chain f ∈ N such that 〈f (x), a(x)〉K = 0 for all x ∈ V .

A general eulerian chain a is a special eulerian chain if for all v ∈ V , a(v) ∈ {±
(
1

0

)
, ±

(
0

1

)
}. It is easy

to observe that if (M, a, b) is a general (special) matrix representation of a Lagrangian chain-group N,

then a is a general (special) eulerian chain of N. We will prove that every general eulerian chain of a

Lagrangian chain-group induces amatrix representation. Before proving that, we first show that every

Lagrangian chain-group has a special eulerian chain.

Proposition 4.2. Every isotropic chain-group has a special eulerian chain.

Proof. Let N be an isotropic chain-group on V to K = F2. We proceed by induction on |V |. We may

assume that dim(N) > 0. Let v ∈ V .

If |V | = 1, then dim(N) = 1. Then either v∗ or v∗ is a special eulerian chain.

Now let us assume that |V | > 1. LetW = V \{v}. BothN�{v} andN�{v} are isotropic chain-groups
on W to K . By the induction hypothesis, both N � {v} and N � {v} have special eulerian chains a′

1, a
′
2,

respectively, on W to K such that a′
i(x) ∈ {

(
1

0

)
,
(
0

1

)
} for all x ∈ W .

Let a1, a2 be chains on V to K such that a1(v) =
(
1

0

)
, a2(v) =

(
0

1

)
, and ai · W = a′

i for i = 1, 2.

We claim that either a1 or a2 is a special eulerian chain of N. Suppose not. For each i = 1, 2, there is a

nonzero chain fi ∈ N such that 〈fi(x), ai(x)〉K = 0 for all x ∈ V . By construction f1 · W ∈ N � {v} and
f2 · W ∈ N � {v}. Since a′

1, a
′
2 are special eulerian chains of N � {v} and N � {v}, respectively, we have

f1 · W = f2 · W = 0.

Since fi �= 0, by Lemma 3.2, f1 = c1v
∗ and f2 = c2v∗ for some nonzero c1, c2 ∈ F. Then 〈f1, f2〉 =

〈f1(v), f2(v)〉K = c1c2 �= 0, contradictory to the assumption that N is isotropic. �

Proposition 4.3. Let N be a Lagrangian chain-group on V to K and let a be a general eulerian chain of N

and let b be a chain supplementary to a.

(1) For every v ∈ V, there exists a unique chain fv ∈ N satisfying the following two conditions.

(i) 〈a(v), fv(v)〉K = 1,

(ii) 〈a(w), fv(w)〉K = 0 for all w ∈ V \ {v}.
Moreover, {fv : v ∈ V} is a basis of N. This basis is called the fundamental basis of N with respect to a.

(2) If 〈 , 〉K is symmetric and either the characteristic of F is not 2 or fv(v) = b(v) for all v ∈ V, then

M = (〈fi(j), b(j)〉K : i, j ∈ V) is a skew-symmetric matrix such that (M, a, b) is a general matrix

representation of N.

(3) If 〈 , 〉K is skew-symmetric,M = (〈fi(j), b(j)〉K : i, j ∈ V) is a symmetricmatrix such that (M, a, b)
is a general matrix representation of N.

Proof. Existence in (1): For each x ∈ V , let gx be a chain on V to K such that gx(x) = a(x) and

gx(y) = 0 for all y ∈ V \ {x}. Let W be a chain-group spanned by {gx : x ∈ V}. It is clear that

dim(W) = |V |. Let N + W = {f + g : f ∈ N, g ∈ W}. Since a is eulerian, N ∩ W = {0} and therefore

dim(N +W) = dim(N) + dim(W) = 2|V |, because N is Lagrangian. We conclude that N +W = KV .

Let hv be a chain on V to K such that 〈a(v), hv(v)〉K = 1 and hv(w) = 0 for allw ∈ V \ {v}. We express
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hv = fv + g for some fv ∈ N and g ∈ W . Then 〈a(v), fv(v)〉K = 〈a(v), hv(v)〉K − 〈a(v), g(v)〉K = 1

and 〈a(w), fv(w)〉K = 〈a(w), hv(w)〉K − 〈a(w), g(w)〉K = 0 for all w ∈ V \ {v}.
Uniqueness in (1): Suppose that there are two chains fv and f ′v in N satisfying two conditions (i), (ii)

in (1). Then
〈
a(v), fv(v) − f ′v(v)

〉
K = 0. By Lemma3.2, there exists c ∈ F such that fv(v)−f ′v(v) = ca(v).

Let f = fv − f ′v ∈ N. Then 〈a(w), f (w)〉K = 0 for all w ∈ V . Since a is eulerian, f = 0 and therefore

fv = f ′v .
Beingabasis in (1):Weclaimthat {fv : v ∈ V} is linearly independent. Suppose that∑w∈V cwfw = 0

for some cw ∈ F. Then cv = ∑
w∈V cw 〈a(v), fw(v)〉K = 0 for all v ∈ V .

Constructing a matrix for (2) and (3): Let i, j ∈ V . By (ii) and Lemma 3.2, there exists mij ∈ F such

that fi(j) = mija(j) if i �= j and fi(i)−b(i) = miia(i). Then, 〈fi(j), b(j)〉K = mij for all i, j ∈ V . Therefore

M = (mij : i, j ∈ V).
Since N is isotropic,〈

fi, fj
〉 = ∑

v∈V

〈
fi(v), fj(v)

〉
K

= 0

and we deduce that
〈
fi(i), fj(i)

〉
K

+ 〈
fi(j), fj(j)

〉
K

= 0 if i �= j and 〈fi(i), fi(i)〉K = 0. This implies that

mji 〈b(i), a(i)〉K + mij 〈a(j), b(j)〉K = 0 for all i, j ∈ V .

If 〈 , 〉K is skew-symmetric, then 〈b(i), a(i)〉K = −1 and thereforemji = mij .

If 〈 , 〉K is symmetric, then 〈b(i), a(i)〉K = 1 and so mji = −mij . This also imply that mii = 0 if

the characteristic of F is not 2. If the characteristic of F is 2, then we assumed that fi(i) = b(i) and

therefore mii = 0. Note that 〈fi(i), fi(i)〉K = 0 and therefore the chain b with b(i) = fi(i) for all i ∈ V

is supplementary to a.

It is easy to observe that (M, a, b) is a general matrix representation of N because a, b are supple-

mentary and fi(j) = mija(j) + b(j) if i = j ∈ V and fi(j) = mija(j) if i �= j. �

Proposition 4.4. Let (M, a, b) be a special matrix representation of a Lagrangian chain-group N on V to

K = F2. Suppose that a′ is a chain such that a′(v) ∈ {±
(
1

0

)
, ±

(
0

1

)
} for all v ∈ V. Then a′ is special eulerian

if and only if M[Y] is nonsingular for Y = {x ∈ V : a′(x) �= ±a(x)}.
Proof. Let M = (mij : i, j ∈ V). Let fi ∈ N be a chain such that fi(j) = mija(j) if j �= i and

fi(i) = miia(i) + b(i).
We first prove that if M[Y] is nonsingular, then f is special eulerian. Suppose that there is a chain

f ∈ N such that
〈
f (x), a′(x)

〉
K = 0 for all x ∈ V . We may express f as a linear combination

∑
i∈V cifi

with some ci ∈ F. If j /∈ Y , then a′(j) = ±a(j) and 〈f (j), a(j)〉K = cj 〈b(j), a(j)〉K = 0 and therefore

cj = 0 for all j /∈ Y .

If j ∈ Y , then a′(j) = ±b(j) and so

〈f (j), b(j)〉K = ∑
i∈Y

cimij 〈a(j), b(j)〉K = ∑
i∈Y

cimij = 0.

Since M[Y] is invertible, the only solution {ci : i ∈ Y} satisfying the above linear equation is zero. So

ci = 0 for all i ∈ V and therefore f = 0, meaning that a′ is special eulerian.
Conversely suppose thatM[Y] is singular. Then there is a linear combination of rows inM[Y]whose

sum is zero. Thus there is a nonzero linear combination
∑

i∈Y cifi such that〈∑
i∈Y

cifi(x), b(x)

〉
K

= 0 for all x ∈ Y .

Clearly 〈∑i∈Y cifi(x), a(x)〉K = 0 for all x /∈ Y . Since at least one ci is nonzero,
∑

i∈Y cifi is nonzero.

Therefore a′ can not be special eulerian. �
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For a subset Y of V , let IY be a V × V indicator diagonal matrix such that each diagonal entry

corresponding to Y is −1 and all other diagonal entries are 1.

Proposition 4.5. Suppose that (M, a, b) is a special matrix representation of a Lagrangian chain-group

N on V to K = F2. Let Y ⊆ V. Assume that M[Y] is nonsingular.
(1) If 〈 , 〉K is symmetric, then (M ∗ Y, a′, b′) is another special matrix representation of N where M ∗ Y

is skew-symmetric and

a′(v) =
{
a(v) if v /∈ Y,

b(v) otherwise,
b′(v) =

{
b(v) if v /∈ Y,

a(v) otherwise.

(2) If 〈 , 〉K is skew-symmetric, then (IY (M ∗ Y), a′, b′) is another special matrix representation of N

where IY (M ∗ Y) is symmetric and

a′(v) =
{
a(v) if v /∈ Y,

b(v) otherwise,
b′(v) =

{
b(v) if v /∈ Y,

−a(v) otherwise.

Proof. Let M = (mij : i, j ∈ V). For each i ∈ V , let fi ∈ N be a chain such that fi(j) = mija(j) if j �= i

and fi(i) = mija(j) + b(j) if j = i. Since (M, a, b) is a special matrix representation of N, {fi : i ∈ V} is
a fundamental basis of N.

Proposition 4.4 implies that a′ is eulerian. According to Proposition 4.3, we should be able to con-

struct a special matrix representation with respect to the eulerian chain a′. To do so, we first construct

the fundamental basis {gv : v ∈ V} of N with respect to a′.
Suppose that for each x ∈ V , gx = ∑

i∈V cxifi for some cxi ∈ F. By definition,
〈
a′(x), gx(x)

〉
K = 1 and〈

a′(j), gx(j)
〉
K = 0 for all j �= x. Then〈

a′(j), gx(j)
〉
K

=
{∑

i∈V cximij 〈b(j), a(j)〉K , if j ∈ Y,

cxj. if j /∈ Y .

Suppose that x ∈ Y . If j ∈ Y , then∑
i∈Y

cximij 〈b(j), a(j)〉K =
{
1 if x = j,

0 if x �= j.

Let (m′
ij : i, j ∈ Y) = (M[Y])−1. Then cxi is given by the row of x in (M[Y])−1; in other words, if

x, i ∈ Y , then cxi = m′
xi if 〈 , 〉K is symmetric and cxi = −m′

xi otherwise. If x ∈ Y and i /∈ Y , then

cxi = 0.

Ifx /∈ Y , thenclearly cxx = 1and cxi = 0 forall i ∈ V\(Y∪{x}). If j ∈ Y , then
∑

i∈Y cximij 〈b(j), a(j)〉K+ cxxmxj 〈b(j), a(j)〉K = 0 and therefore
∑

i∈Y cximij = −mxj . For each k in Y , we have cxk =∑
i∈Y cxi

∑
j∈Y mijm

′
jk = ∑

j∈Y m′
jk

∑
i∈Y cximij = − ∑

j∈Y m′
jkmxj and therefore for x /∈ Y and i ∈ Y ,

cxi = − ∑
j∈Y mxjm

′
ji

We determined the fundamental basis {gx : x ∈ V} with respect to a′. We now wish to compute

the matrix according to Proposition 4.3. Let us compute
〈
gx(y), b

′(y)
〉
K .

If x, y ∈ Y , then〈∑
i∈Y

cxifi(y), b
′(y)

〉
K

= cxy

〈
b(y), b′(y)

〉
K

= cxy =
{
m′

xy if 〈 , 〉K is symmetric,

−m′
xy if 〈 , 〉K is skew-symmetric.

If x ∈ Y and y /∈ Y , then〈∑
i∈Y

cxifi(y), b
′(y)

〉
K

=∑
i∈Y

cximiy 〈a(y), b(y)〉K =
{∑

i∈Y m′
ximiy. if 〈 , 〉K is symmetric,

− ∑
i∈Y m′

ximiy. if 〈 , 〉K is skew-symmetric.
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If x /∈ Y and y ∈ Y , then〈∑
i∈Y

cxifi(y) + fx(y), b
′(y)

〉
K

= cxy = − ∑
j∈Y

mxjm
′
jy.

If x /∈ Y and y /∈ Y , then〈∑
i∈Y

cxifi(y) + fx(y), b
′(y)

〉
K

= − ∑
i,j∈Y

mxjm
′
jimiy + mxy

If 〈 , 〉K is symmetric and the characteristic of F is 2, then we need to ensure thatM has no nonzero

diagonal entries by verifying the additional assumption in (2) of Proposition 4.3 asking that b′(x) =
gx(x) for all x ∈ V . It is enough to show that〈

gx(x), b
′(x)

〉
K

= 0 for all x ∈ V,

because, if so, then
〈
a′(x), b′(x)

〉
K = 1 = 〈

a′(x), gx(x)
〉
K implies that gx(x) = b′(x). Since M[Y] is

skew-symmetric, so is its inverse and therefore m′
xx = 0 for all x ∈ Y . Furthermore, for each i, j ∈ Y

and x ∈ V \ Y , we have mxjm
′
jimix = −mxim

′
ijmjx because M and (M[Y])−1 are skew-symmetric

and therefore
∑

i,j∈Y mxjm
′
jimix = 0. Thus gx(x) = b′(x) for all x ∈ V if 〈 , 〉K is symmetric and the

characteristic of F is 2.

We conclude that the matrix (
〈
gi(j), b

′(j)
〉
K : i, j ∈ V) is indeed M ∗ Y if 〈 , 〉K is symmetric or

(IY )(M ∗ Y) if 〈 , 〉K is skew-symmetric. This concludes the proof. �

A matrix M is called a fundamental matrix of a Lagrangian chain-group N if (M, a, b) is a special

matrix representation of N for some chains a and b. We aim to characterize when twomatricesM and

M′ are fundamental matrices of the same Lagrangian chain-group.

Theorem 4.6. Let M and M′ be V × V skew-symmetric or symmetric matrices over F. The following are

equivalent.

(i) There is a Lagrangian chain-group N such that both (M, a, b) and (M′, a′, b′) are special matrix

representations of N for some chains a, a′, b, b′.
(ii) There is Y ⊆ V such that M[Y] is nonsingular and

M′ =
{
D(M ∗ Y)D if 〈 , 〉K is symmetric,

DIY (M ∗ Y)D if 〈 , 〉K is skew-symmetric

for some diagonal matrix D whose diagonal entries are ±1.

Proof. To prove (i) from (ii), we use Proposition 4.5. Let a(v) =
(
1

0

)
and b(v) =

(
0

1

)
for all v ∈ V . Let

N be the Lagrangian chain-group with the special matrix representation (M, a, b). Let M0 = M ∗ Y

if 〈 , 〉K is symmetric and M0 = IY (M ∗ Y) if 〈 , 〉K is skew-symmetric. By Proposition 4.5, there are

chains a0, b0 so that (M0, a0, b0) is a special matrix representation of N. Let Z be a subset of V such

that IZ = D. For each v ∈ V , let

a′(v) =
{−a0(v) if v ∈ Z,

a0(v) if v /∈ Z,
b′(v) =

{−b0(v) if v ∈ Z,

b0(v) if v /∈ Z.

Then a′, b′ are supplementary and (M′, a′, b′) is a special matrix representation of N because M′ =
DM0D.

Now let us assume (i) and prove (ii). Let Y = {x ∈ V : a′(x) �= ±a(x)}. Since a′ is a special

eulerian chain of N, M[Y] is nonsingular by Proposition 4.4. By replacing M with M ∗ Y if 〈 , 〉K is

symmetric, or IY (M ∗ Y) if 〈 , 〉K is skew-symmetric, we may assume that Y = ∅. Thus a′(x) = ±a(x)
and b′(x) = ±b(x) for all x ∈ V . Let Z = {x ∈ V : a′(x) = −a(x)} and D = IZ . Since

〈
a′(x), b′(x)

〉
K =

1, b′(x) = −b(x) if and only if x ∈ Z. Then (DMD, a′, b′) is a special matrix representation of N,
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Fig. 1. Commuting pivots and negations.

because the fundamental basis generated by (DMD, a′, b′) spans the same subspace N spanned by the

fundamental basis generatedby (M, a, b).Wenowhave two specialmatrix representations (M′, a′, b′)
and (DMD, a′, b′). By Proposition 4.3,M′ = DMD because of the uniqueness of the fundamental basis

with respect to a′. This concludes the proof. �

Negating a row or a column of a matrix is to multiply −1 to each of its entries. Obviously a matrix

obtained by negating some rows and columns of a V × V matrix M is of the form IXMIY for some

X, Y ⊆ V . We now prove that the order of applying pivots and negations can be reversed.

Lemma 4.7. Let M be a V × V matrix and let Y be a subset of V such that M[Y] is nonsingular. Let M′ be
a matrix obtained fromM by negativing some rows and columns. Then M′ ∗ Y can be obtained fromM ∗ Y

by negating some rows and columns. (See Fig. 1.)

Proof. More generally we writeM and M′ as follows:

M =
(Y V \ Y

Y A B

V \ Y C D

)
, M′ =

( Y V \ Y

Y JAK JBL

V \ Y UCK UDL

)
,

for some nonsingular diagonal matrices J, K , L, U. Then

M ∗ Y =
⎛⎝ A−1 A−1B

−CA−1 D − CA−1B

⎞⎠ ,

M′ ∗ Y =
⎛⎝ K−1A−1J−1 K−1A−1J−1JBL

−UCKK−1A−1J−1 UDL − UCKK−1A−1J−1JBL

⎞⎠
=

⎛⎝K−1(A−1)J−1 K−1(A−1B)L

U(−CA−1)J−1 U(D − CA−1B)L

⎞⎠ .

This lemma follows because we can set J, K , L, U to be diagonal matrices with ±1 on the diagonal

entries and then M′ ∗ Y can be obtained fromM ∗ Y by negating some rows and columns. �

4.3. Minors

Suppose that (M, a, b) is a special matrix representation of a Lagrangian chain-group N. We will

find special matrix representations of minors of N.

Lemma 4.8. Let (M, a, b) be a special matrix representation of a Lagrangian chain-group N on V to

K = F2. Let v ∈ V and T = V \ {v}. Suppose that a(v) = ±
(
1

0

)
.

(1) The triple (M[T], a · T, b · T) is a special matrix representation of N � {v}.
(2) There is Y ⊆ V such that M[Y] is nonsingular and (M′[T], a′ · T, b′ · T) is a special matrix repre-

sentation of N � {v}, where
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M′ =
{
M ∗ Y if 〈 , 〉K is symmetric,

(IY )(M ∗ Y) if 〈 , 〉K is skew-symmetric,

and a′ and b′ are given by Proposition 4.5.

Proof. LetM = (mij : i, j ∈ V) and for each i ∈ V , let fi ∈ N bea chain as it is defined inProposition4.1.

(1):We know that fi ·T ∈ N�{v} for all i �= v. Since a is eulerian, v∗ /∈ N and therefore {fi ·T : i ∈ T}
is linearly independent. Then {fi ·T : i ∈ T} is a basis ofN� {v}, because dim(N� {v}) = |T| = |V |−1.

Now it is easy to verify that (M[T], a · T, b · T) is a special matrix representation of N � {v}.
(2): If miv = mvi = 0 for all i ∈ V , then we may simply replace a(v) with ±

(
0

1

)
and b(v) with

±
(
1

0

)
without changing the Lagrangian chain-group N. In this case, we simply apply (1) to deduce that

Y = ∅ works.

Otherwise, there exists Y ⊆ V such that v ∈ Y and M[Y] is nonsingular because M is skew-

symmetric or symmetric. We applyM ∗ Y to get (M′, a′, b′) as an alternative special matrix represen-

tation of N by Proposition 4.5. Then a′(v) = ±
(
0

1

)
and then we apply (1) to (M′, a′, b′). �

Theorem 4.9. For i = 1, 2, let Mi be a fundamental matrix of a Lagrangian chain-group Ni on Vi to

K = F2. If N1 is simply isomorphic to a minor of N2, then M1 is isomorphic to a principal submatrix of a

matrix obtained from M2 by taking a pivot and negating some rows and columns.

Proof. Since K is shared by N1 and N2, M1 and M2 are skew-symmetric if 〈 , 〉K is symmetric and

symmetric if 〈 , 〉K is skew-symmetric.

We may assume that N1 is a minor of N2 and V1 ⊆ V2. Then by Lemmas 4.7 and 4.8, N1 has a

fundamental matrix M′ that is a principal submatrix of a matrix obtained from M by taking a pivot

and negativing some rows if necessary. Then both M′ and M1 are fundamental matrices of N1. By

Theorem 4.6, there is a method to get M1 from M′ by applying a pivot and negating some rows and

columns if necessary. �

4.4. Representable delta-matroids

Theorem 2.1 implies the following proposition.

Proposition 4.10. Let A, B be skew-symmetric or symmetric matrices over a field F. If A is a principal

submatrix of a matrix obtained from B by taking a pivot and negating some rows and columns, then the

delta-matroid M(A) is a minor of M(B).

Bouchet [4] showed that there is a natural way to construct a delta-matroid from an isotropic

chain-group.

Theorem 4.11 (Bouchet [4]). Let N be an isotropic chain-groups N on V to K. Let a and b be supplementary

chains on V to K. Let

F = {X ⊆ V :there is no nonzero chain f ∈ N such that 〈f (x), a(x)〉K = 0 for all x ∈ V \ X

and 〈f (x), b(x)〉K = 0 for all x ∈ X.}
Then, M = (V,F) is a delta-matroid.

The triple (N, a, b) given as above is called the chain-group representation of the delta-matroidM.

In addition, if a(v), b(v) ∈ {±
(
1

0

)
, ±

(
0

1

)
}, then (N, a, b) is called the special chain-group representation

of M.

We remind you that a delta-matroid M is representable over a field F if M = M(A)�Y for some

skew-symmetric or symmetric V ×V matrix A over F and a subset Y of V whereM(A) = (V,F)where

F = {Y : A[Y] is nonsingular}.
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Suppose thatN is aLagrangianchain-grouprepresentedbyaspecialmatrix representation (M, a, b).
Then (N, a, b) induces a delta-matroidM by the above theorem. Proposition 4.4 characterizes all the

special eulerian chains in terms of the singularity of M[Y] and special eulerian chains coincide with

the feasible sets of M given by Theorem 4.11. In other words, Y is feasible in M if and only if a chain

a′ is special eulerian in N when a(v) = a′(v) if v ∈ Y and a′(v) = b(v) if v /∈ Y .

Then twisting operations M�Y on delta-matroids can be simulated by swapping supplementary

chains a(x) and b(x) for x ∈ Y in the chain-group representation as it is in Proposition 4.5. Thus we

can alternatively define representable delta-matroids as follows.

Theorem 4.12. A delta-matroid on V is representable over a field F if and only if it admits a special chain-

group representation (N, a, b) for a Lagrangian chain-group N on V to K = F2 and special supplementary

chains a, b on V to K where 〈 , 〉K is either skew-symmetric or symmetric.

4.5. Connectivity

When the rank-width of matrices is defined, the function rankM[X, V \ X] is used to describe how

complex the connection between X and V \ X is. In this subsection, we express rankM[X, V \ X] in
terms of a Lagrangian chain-group represented by M.

Theorem 4.13. LetM be a skew-symmetric or symmetric V ×V matrix over a field F. Let N be a Lagrangian

chain-group on V to K = F2 such that (M, a, b) is a matrix representation of N with supplementary chains

a and b on V to K. Then,

rankM[X, V \ X] = λN(X) = |X| − dim(N × X).

Proof. LetM = (mij : i, j ∈ V). As we described in Proposition 4.1, we let fi(j) = mija(j) if j ∈ V \ {i}
and fi(i) = mii + b(i). We know that {fi : i ∈ V} is a fundamental basis of N. Let A = M[X, V \ X]. We

have rank A = rank At = |X| − nullity(At), where the nullity of At is dim({x ∈ FX : Atx = 0}), that is
equal to dim({x ∈ FX : xtA = 0}).

Let ϕ : FV → N be a linear transformation with ϕ(p) = ∑
v∈V p(v)fv . Then, ϕ is an isomorphism

and therefore we have the following:

dim(N × X) = dim({y ∈ N : y(j) = 0 for all j ∈ V \ X})
= dim(ϕ−1({y ∈ N : y(j) = 0 for all j ∈ V \ X}))
= dim({x ∈ F

V : ∑
i∈V

x(i)fi(j) = 0 for all j ∈ V \ X})

= dim({x ∈ F
X : ∑

i∈X

x(i)mij = 0 for all j ∈ V \ X})

= dim({x ∈ F
X : xtA = 0})

= nullity(At).

We deduce that rank A = |X| − dim(N × X). �

The above theorem gives the following corollaries.

Corollary 4.14. Let F be a field and let N be a Lagrangian chain-group on V to K = F2. If M1 and M2 are

two fundamental matrices of N, then rankM1[X, V \ X] = rankM2[X, V \ X] for all X ⊆ V.

Corollary 4.15. LetM be a skew-symmetric or symmetric V×V matrix over a field F. Let N be a Lagrangian

chain-group on V to K = F2 such that (N, a, b) is a matrix representation of N. Then the rank-width of M

is equal to the branch-width of N.



2024 S.-i. Oum / Linear Algebra and its Applications 436 (2012) 2008–2036

5. Generalization of Tutte’s linking theorem

We prove an analogue of Tutte’s linking theorem [23] for Lagrangian chain-groups. Tutte’s linking

theorem is a generalization of Menger’s theorem of graphs to matroids. Robertson and Seymour [14]

uses Menger’s theorem extensively for proving well-quasi-ordering of graphs of bounded tree-width.

When generalizing this result to matroids, Geelen et al. [8] used Tutte’s linking theorem for matroids.

To further generalize this to Lagrangian chain-groups, we will need a generalization of Tutte’s linking

theorem for Lagrangian chain-groups.

A crucial step for proving this is to ensure that the connectivity function behaves nicely on one of

twominors N � {v} and N � {v} of a Lagrangian chain-group N. The following inequality was observed

by Bixby [1] for matroids.

Proposition 5.1. Let v ∈ V. Let N be a chain-group on V to K = F2 and let X, Y ⊆ V \ {v}. Then,
λN�{v}(X) + λN�{v}(Y) ≥ λN(X ∩ Y) + λN(X ∪ Y ∪ {v}) − 1.

We first prove the following lemma for the above proposition.

Lemma 5.2. Let v ∈ V. Let N be a chain-group on V to K = F2 and let X, Y ⊆ V \ {v}. Then,
dim(N × (X ∩ Y)) + dim(N × (X ∪ Y ∪ {v})) ≥ dim((N � {v}) × X) + dim((N � {v}) × Y).

Moreover, the equality does not hold if v∗ ∈ N or v∗ ∈ N.

Proof. Wemay assume that V = X ∪ Y ∪ {v}. Let
N1 =

{
f ∈ N :

〈
f (v),

(
1

0

)〉
K

= 0, f (x) = 0 for all x ∈ V \ X \ {v}
}
,

N2 =
{
f ∈ N :

〈
f (v),

(
0

1

)〉
K

= 0, f (x) = 0 for all x ∈ V \ Y \ {v}
}
.

We use the fact that dim(N1 + N2) + dim(N1 ∩ N2) = dim(N1) + dim(N2). It is easy to see that if

f ∈ N1 ∩ N2, then f (v) = 0 and therefore (N1 ∩ N2) · (X ∩ Y) = N × (X ∩ Y) and dim(N1 ∩ N2) =
dim(N × (X ∩ Y)). Moreover, N1 + N2 ⊆ N and therefore dim(N) ≥ dim(N1 + N2). It is clear

that dim(N � {v} × X) ≤ dimN1 and dim(N � {v} × X) ≤ dimN2. Therefore we conclude that

dim(N × (X ∩ Y)) + dimN ≥ dim(N � {v} × X) + dim(N � {v} × Y).
If v∗ ∈ N, then dim(N � {v} × X) < dimN1 and therefore the equality does not hold. Similarly if

v∗ ∈ N, then the equality does not hold as well. �

Proof of Proposition 5.1. Since N and N⊥ have the same connectivity function λ and N⊥ � {v} =
(N � {v})⊥, N⊥ � {v} = (N � {v})⊥, (Lemma 3.9), wemay assume that dimN − dim(N � {v}) ∈ {0, 1}
(Proposition 3.6) by replacing N by N⊥ if necessary. Let X′ = V \ X \ {v} and Y ′ = V \ Y \ {v}. We

recall that

2λN(X ∩ Y) = dimN − dim(N × (X ∩ Y)) − dim(N × (X′ ∪ Y ′ ∪ {v})),
2λN(X ∪ Y ∪ {v}) = dimN − dim(N × (X ∪ Y ∪ {v})) − dim(N × (X′ ∩ Y ′)),

2λN�{v}(X) = dim(N � {v}) − dim(N � {v} × X) − dim(N � {v} × X′),
2λN�{v}(Y) = dim(N � {v}) − dim(N � {v} × Y) − dim(N � {v} × Y ′).

It is easy to deduce this lemma from Lemma 5.2 if

2 dimN − dim(N � {v}) − dim(N � {v}) ≤ 2. (1)

Therefore we may assume that (1) is false. Since we have assumed that dimN − dim(N � {v})
∈ {0, 1}, we conclude that dimN − dim(N � {v}) ≥ 2. By Proposition 3.6, we have v∗ ∈ N.

Then the equality in the inequality of Lemma 5.2 does not hold. So, we conclude that
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dim(N× (X∩Y))+dim(N× (X∪Y ∪{v})) ≥ dim(N� {v}×X)+dim(N� {v}×Y)+1 and the same

inequality for X′ and Y ′. Then, λN�{v}(X) + λN�{v}(Y) ≥ λN(X ∩ Y) + λN(X ∪ Y ∪ {v}) − 3/2+ 1. �

We are now ready to prove an analogue of Tutte’s linking theorem for Lagrangian chain-groups.

Theorem 5.3. Let V be a finite set and X, Y be disjoint subsets of V. Let N be a Lagrangian chain-group on

V to K. The following two conditions are equivalent:

(i) λN(Z) ≥ k for all sets Z such that X ⊆ Z ⊆ V \ Y,

(ii) there is a minor M of N on X ∪ Y such that λM(X) ≥ k.

In other words,

min{λN(Z) : X ⊆ Z ⊆ V \ Y} = max{λN�U�W (X) : U ∪ W = V \ (X ∪ Y),U ∩ W = ∅}.
Proof. By Theorem 3.13, (ii) implies (i). Now let us assume (i) and show (ii). We proceed by induction

on |V \ (X ∪ Y)|. If V = X ∪ Y , then it is trivial. So wemay assume that |V \ (X ∪ Y)| ≥ 1. Since λN(X)
are integers for all X ⊆ V by Lemma 3.10, we may assume that k is an integer.

Let v ∈ V \ (X ∪Y). Suppose that (ii) is false. Then there is nominorM ofN � {v} orN � {v} on X ∪Y

having λM(X) ≥ k. By the induction hypothesis, we conclude that there are sets X1 and X2 such that

X ⊆ X1 ⊆ V \ Y \ {v}, X ⊆ X2 ⊆ V \ Y \ {v}, λN�{v}(X1) < k, and λN�{v}(X2) < k. By Lemma 3.10,

λN�{v}(X1) and λN�{v}(X2) are integers. Therefore λN�{v}(X1) ≤ k − 1 and λN�{v}(X2) ≤ k − 1. By

Proposition 5.1,

λN�{v}(X1) + λN�{v}(X2) ≥ λN(X1 ∩ X2) + λN(X1 ∪ X2 ∪ {v}) − 1.

This is a contradiction because λN(X1 ∩ X2) ≥ k and λN(X1 ∪ X2 ∪ {v}) ≥ k. �

Corollary 5.4. Let N be a Lagrangian chain-group on V to K and let X ⊆ Y ⊆ V. If λN(Z) ≥ λN(X) for
all Z satisfying X ⊆ Z ⊆ Y, then there exist disjoint subsets C and D of Y \ X such that C ∪ D = Y \ X and

N × X = N × Y � C � D.

Proof. For all C and D if C ∪ D = Y \ X and C ∩ D = ∅, then N × X ⊆ N × Y � C � D. So it is enough

to show that there exists a partition (C,D) of Y \ X such that

dim(N × X) ≥ dim(N × Y � C � D).

By Theorem5.3, there is aminorM = N�C�D ofN on X∪(V \Y) such thatλM(X) ≥ λN(X). It follows

that |X|−dim(N�C�D×X) ≥ |X|−dim(N×X).Nowweuse the fact thatN�C�D×X = N×Y�C�D. �

6. Well-quasi-ordering of Lagrangian chain-groups

In this section, we prove that Lagrangian chain-groups of bounded branch-width are well-quasi-

ordered under taking a minor. Here we state its simplified form.

Theorem 6.1 (Simplified). Let F be a finite field and let k be a constant. Every infinite sequence N1,N2, . . .
of Lagrangian chain-groups over F having branch-width at most k has a pair i < j such that Ni is simply

isomorphic to a minor of Nj.

This simplified version is enough to obtain results in Sections 7 and 8. Onemay first read corollaries

in later sections and return to this section.

6.1. Boundaried chain-groups

For an isotropic chain-group N on V to K = F2, we write N⊥/N for a vector space over F containing

vectors of the form a + N where a ∈ N⊥ such that
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(i) a + N = b + N if and only if a − b ∈ N,

(ii) (a + N) + (b + N) = (a + b) + N,

(iii) c(a + N) = ca + N for c ∈ F.

An ordered basis of a vector space is a sequence of vectors in the vector space such that the vectors

in the sequence form a basis of the vector space. An ordered basis of N⊥/N is called a boundary of N.

An isotropic chain-group N on V to K with a boundary B is called a boundaried chain-group on V to K ,

denoted by (V,N, B).
By the theorem in the linear algebra, we know that

|B| = dim(N⊥) − dim(N) = 2(|V | − dimN).

We define contractions and deletions of boundaries B of an isotropic chain-group N on V to K . Let

B = {b1 + N, b2 + N, . . . , bm + N} be a boundary of N. For a subset X of V , if |V \ X| − dim(N � X) =
|V | − dimN, then we define B � X as a sequence

{b′
1 · (V \ X) + N � X, b′

2 · (V \ X) + N � X, . . . , b′
m · (V \ X) + N � X}

wherebi+N = b′
i+N and

〈
b′
i(v),

(
1

0

)〉
K

= 0 for allv ∈ X . Similarly if |V\X|−dim(N�X) = |V |−dimN,

then we define B � X as a sequence

{b′
1 · (V \ X) + N � X, b′

2 · (V \ X) + N � X, . . . , b′
m · (V \ X) + N � X}

where bi + N = b′
i + N and

〈
b′
i(v),

(
0

1

)〉
K

= 0 for all v ∈ X . We prove that B � X and B � X are

well-defined.

Lemma6.2. LetN be an isotropic chain-grouponV toK. Let X be a subset of V. IfdimN−dim(N�X) = |X|
and f ∈ N⊥, then there exists a chain g ∈ N⊥ such that f − g ∈ N and

〈
g(x),

(
1

0

)〉
K

= 0 for all x ∈ X.

Proof. We proceed by induction on |X|. If X = ∅, then it is trivial. Let us assume that X is nonempty.

Notice thatN ⊆ N⊥ becauseN is isotropic.Wemay assume that there is v ∈ X such that
〈
f (v),

(
1

0

)〉
K

�=
0, because otherwise we can take g = f .

Thenv∗ /∈ N. Since |V\X|−dim(N�X) = |V |−dimN,wehave |V |−1−dim(N�{v}) = |V |−dimN

(Corollary 3.7) and therefore v∗ /∈ N⊥ by Proposition 3.6.

Thus there exists a chain h ∈ N such that 〈h, v∗〉 =
〈
h(v),

(
1

0

)〉
K

�= 0. By multiplying a nonzero

constant to h, we may assume that〈
f (v) − h(v),

(
1

0

)〉
K

= 0.

Let f ′ = f − h ∈ N⊥. Then
〈
f ′(v),

(
1

0

)〉
K

= 0 and therefore f ′ · (V \ {v}) ∈ N⊥ � {v} = (N � {v})⊥. By

using the induction hypothesis based on the fact that dim(N�{v})−dim(N�X) = |X|−1, we deduce

that there exists a chain g′ ∈ (N � {v})⊥ such that f ′ · (V \ {v}) − g′ ∈ N � {v} and
〈
g′(x),

(
1

0

)〉
K

= 0

for all x ∈ X \ {v}. Let g be a chain in N⊥ such that g · (V \ {v}) = g′ and
〈
g(v),

(
1

0

)〉
K

= 0.

We know that
〈
f ′(v) − g(v),

(
1

0

)〉
K

= 0. Since (f ′ − g) · (V \ {v}) ∈ N � {v} and v∗ /∈ N, we deduce

that f ′ − g ∈ N. Thus f − g = f ′ − g + h ∈ N. Moreover for all x ∈ X ,
〈
g(x),

(
1

0

)〉
K

= 0. �

Lemma 6.3. Let N be an isotropic chain-group on V to K. Let X be a subset of V. Let f be a chain in N⊥
such that

〈
f (x),

(
1

0

)〉
K

= 0 if x ∈ X and f (x) = 0 if x ∈ V \ X. If dimN − dim(N � X) = |X|, then f ∈ N.
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Proof. Weproceedby inductionon |X|.Wemayassume thatX is nonempty. Let v ∈ X . By Corollary 3.7,

dim(N � {v}) = dimN − 1 and dim(N � {v}) − dim(N � X) = |X| − 1. Proposition 3.6 implies that

either v∗ ∈ N or v∗ /∈ N⊥.

By Theorem 3.9, f · (V \{v}) ∈ (N� {v})⊥. By the induction hypothesis, f · (V \{v}) ∈ N� {v}. There
is a chain f ′ ∈ N such that f ′(x) = f (x) for all x ∈ V \ {v} and

〈
f ′(v),

(
1

0

)〉
K

= 0. Then f − f ′ = cv∗ for

some c ∈ F by Lemma 3.2. Because N is isotropic, f − f ′ ∈ N⊥.

If v∗ ∈ N, then f = f ′ + cv∗ ∈ N. If v∗ /∈ N⊥, then c = 0 and therefore f ∈ N. �

Proposition 6.4. Let N be an isotropic chain-group on V to K with a boundary B. Let X be a subset of V. If

|V \ X| − dim(N � X) = |V | − dimN, then B � X is well-defined and it is a boundary of N � X. Similarly

if |V \ X| − dim(N � X) = |V | − dimN, then B � X is well-defined and it is a boundary of N � X.

Proof. By symmetry it is enough to show for B � X . Let B = {b1 + N, b2 + N, . . . , bm + N}.
By Lemma 6.2, there exists a chain b′

i ∈ N⊥ such that bi + N = b′
i + N and

〈
b′
i(x),

(
1

0

)〉
K

= 0 for all

x ∈ X .

Suppose that there are chains ci and di inN⊥ such that bi+N = ci+N = di+N and
〈
ci(x),

(
1

0

)〉
K

=〈
di(x),

(
1

0

)〉
K

= 0 for all x ∈ X . Since ci −di ∈ N and
〈
ci(x) − di(x),

(
1

0

)〉
K

= 0 for all x ∈ X , we deduce

that (ci − di) · (V \ X) ∈ N � X and therefore

ci · (V \ X) + N � X = di · (V \ X) + N � X.

Hence B � X is well-defined.

Now we claim that B � X is a boundary of N � X . Since dim((N � X)⊥/(N � X)) = 2|V \ X| −
2 dim(N � X) = 2|V | − 2 dimN = dimN⊥/N = |B| = |B � X|, it is enough to show that B � X is

linearly independent in (N � X)⊥/N � X . We may assume that
〈
bi(x),

(
1

0

)〉
K

= 0 for all x ∈ X . Let

fi = bi · (V \ X) ∈ N⊥ � X . We claim that {fi + N � X : i = 1, 2, . . . ,m} is linearly independent.

Suppose that
∑m

i=1 ai(fi + N � X) = 0 for some constants ai ∈ F. This means
∑m

i=1 aifi ∈ N � X . Let f

be a chain in N such that f · (V \ X) = ∑m
i=1 aifi and

〈
f (x),

(
1

0

)〉
K

= 0 for all x ∈ X . Let b = ∑m
i=1 aibi.

Clearly b ∈ N⊥.

We consider the chain b − f . Since N is isotropic, f ∈ N⊥ and so b − f ∈ N⊥. Moreover (b − f ) ·
(V \ X) = 0 and

〈
b(x) − f (x),

(
1

0

)〉
K

= 0 for all x ∈ X . By Lemma 6.3, we deduce that b − f ∈ N and

therefore b = (b − f ) + f ∈ N. Since B is a basis of N⊥/N, ai = 0 for all i. We conclude that B � X is

linearly independent. �

A boundaried chain-group (V ′,N′, B′) is aminor of another boundaried chain-group (V,N, B) if

|V ′| − dimN′ = |V | − dimN

and there exist disjoint subsets X and Y of V such that V ′ = V \ (X ∪ Y), N′ = N � X � Y , and

B′ = B � X � Y .

Proposition6.5. Aminor of aminor of a boundaried chain-group is aminor of the boundaried chain-group.

Proof. Let (V0,N0, B0), (V1,N1, B1), (V2,N2, B2) be boundaried chain-groups. Suppose that for i ∈
{0, 1}, (Vi+1,Ni+1, Bi+1) is a minor of (Vi,Ni, Bi) as follows:

Ni+1 = Ni � Xi � Yi, Bi+1 = Bi � Xi � Yi.

It is easy to deduce that |V0| − dimN0 = |V2| − dimN2 and N2 = N0 � (X0 ∪ X1) � (Y0 ∪ Y1).
We claim that B2 = B0 � (X0 ∪ X1) � (Y0 ∪ Y1). By Corollary 3.7, we deduce that |V0 \ (X0 ∪ X1)|− dimN0 � (X0 ∪ X1) = |V0|− dimN0 = |V2|− dimN2 and so it is possible to delete X0 ∪ X1 from V0

and then contract Y0∪Y1. From the definition, it is easy to show that B�(X0 ∪X1)�(Y0 ∪Y1) = B2. �
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6.2. Sums of boundaried chain-groups

Two boundaried chain-groups over the same field are disjoint if their ground sets are disjoint. In

this subsection, we define sums of disjoint boundaried chain-groups and their connection types.

A boundaried chain-group (V,N, B) over a field F is a sum of disjoint boundaried chain-groups

(V1,N1, B1) and (V2,N2, B2) over F if

N1 = N × V1, N2 = N × V2, and V = V1 ∪ V2.

For a chain f on V1 to K and a chain g on V2 to K , we denote f ⊕ g for a chain on V1 ∪ V2 to K

such that (f ⊕ g) · V1 = f and (f ⊕ g) · V2 = g. The connection type of the sum is a sequence

(C0, C1, . . . , C|B|) of sets of sequences in F|B1| ×F|B2| such that, for B = {b1 +N, b2 +N, . . . , b|B| +N},
B1 = {b11 + N1, b

1
2 + N1, . . . , b

1|B1| + N1}, and B2 = {b21 + N2, b
2
2 + N2, . . . , b

2|B2| + N2},

C0 =
⎧⎨⎩(x, y) ∈ F

|B1| × F
|B2| :

⎛⎝|B1|∑
i=1

xib
1
i

⎞⎠ ⊕
⎛⎝|B2|∑

j=1

yjb
2
j

⎞⎠ ∈ N

⎫⎬⎭ ,

and for s ∈ {1, 2, . . . , |B|},

Cs =
⎧⎨⎩(x, y) ∈ F

|B1| × F
|B2| :

⎛⎝|B1|∑
i=1

xib
1
i

⎞⎠ ⊕
⎛⎝|B2|∑

j=1

yjb
2
j

⎞⎠ − bs ∈ N

⎫⎬⎭ .

Proposition 6.6. The connection type is well-defined.

Proof. It is enough to show that the choices of bi, b
1
i , and b2i do not affect Cs for s ∈ {0, 1, 2, . . . , |B|}.

Suppose that bi + N = di + N, b1i + N1 = d1i + N1, and b2i + N2 = d2i + N2. Then for every

(x, y) ∈ F|B1| × F|B2|,
|B1|∑
i=1

xi(b
1
i − d1i ) ⊕

|B2|∑
j=1

yj(b
2
j − d2j ) ∈ N

because (b1i − d1i ) ⊕ 0 ∈ N and 0 ⊕ (b2j − d2j ) ∈ N. Moreover if s �= 0, then bs − ds ∈ N. Hence Cs is

well-defined. �

Proposition 6.7. The connection type uniquely determines the sum of two disjoint boundaried chain-

groups.

Proof. Suppose that both (V,N, B) and (V,N′, B′) are sums of disjoint boundaried chain-groups

(V1,N1, B1), (V2,N2, B2) over a field F with the same connection type (C0, C1, . . . , C|B|).
We first claim that N = N′. By symmetry, it is enough to show that N ⊆ N′. Let a ∈ N. Since

a ∈ N⊥ and (N × V1)
⊥ = N⊥ · V1 by Theorem 3.4, we deduce that a · V1 ∈ (N × V1)

⊥ and similarly

a · V2 ∈ (N × V2)
⊥. Therefore there exists (x, y) ∈ F|B1| × F|B2| such that

f =
|B1|∑
i=1

xib
1
i − a · V1 ∈ N1 and g =

|B2|∑
j=1

yjb
2
j − a · V2 ∈ N2.

Since f ⊕ 0 ∈ N and 0 ⊕ g ∈ N, we have f ⊕ g ∈ N. We deduce that
∑|B1|

i=1 xib
1
i ⊕ ∑|B2|

j=1 yjb
2
j =

a+ (f ⊕ g) ∈ N. Therefore (x, y) ∈ C0. So, a+ (f ⊕ g) ∈ N′ as well. Since f ⊕ 0, 0⊕ g ∈ N′, we have

a ∈ N′. We conclude that N ⊆ N′.
Now we show that B = B′. Let bs + N be the sth element of B where bs ∈ N⊥. Let b′

s + N be

the sth element of B′ with b′
s ∈ N⊥. Since bs · V1 ∈ (N × V1)

⊥ and bs · V2 ∈ (N × V2)
⊥, there is

(x, y) ∈ F|B1| × F|B2| such that
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f =
|B1|∑
i=1

xib
1
i − bs · V1 ∈ N1 and g =

|B2|∑
j=1

yjb
2
j − bs · V2 ∈ N2.

Since f ⊕ 0, 0 ⊕ g ∈ N, we have f ⊕ g ∈ N. Therefore
∑|B1|

i=1 xib
1
i ⊕ ∑|B2|

j=1 yjb
2
j − bs ∈ N. This implies

that (x, y) ∈ Cs and therefore
∑|B1|

i=1 xib
1
i ⊕ ∑|B2|

j=1 yjb
2
j − b′

s ∈ N′ = N. Thus, bs + N = b′
s + N. �

In the next proposition, we prove that minors of a sum of disjoint boundaried chain-groups are

sums of minors of the boundaried chain-groups with the same connection type.

Proposition 6.8. Suppose that a boundaried chain-group (V,N, B) is a sum of disjoint boundaried chain-

groups (V1,N1, B1), (V2,N2, B2) over a field F. Let (C0, C1, . . . , C|B|) be the connection type of the sum. If

|V1 \ (X ∪ Y)| − dim(N1 � X � Y) = |V1| − dimN1

and

|V2 \ (Z ∪ W)| − dim(N2 � Z � W) = |V2| − dimN2,

then (V \(X∪Y∪Z∪W),N�(X∪Z)�(Y∪W), B�(X∪Z)�(Y∪W)) is awell-definedminor of (V,N, B).
Moreover it is a sum of (V1 \ (X ∪Y),N1 �X �Y, B1 �X �Y) and (V2 \ (Z ∪W),N2 � Z �W, B2 � Z �W)
with the connection type (C0, C1, . . . , C|B|).

Proof. We proceed by induction on |X ∪ Y ∪ Z ∪ W|. If X ∪ Y ∪ Z ∪ W = ∅, then it is trivial.

Suppose that |X ∪ Y ∪ Z ∪W| = 1. By symmetry, wemay assume that Y = Z = W = ∅. Let v ∈ X .

Since |V1 \ {v}|−dim(N1 � {v}) = |V1|−dimN1, either v
∗ ∈ N1 or v

∗ /∈ N⊥
1 by Proposition 3.6. Since

N1 = N×V1, we deduce that either v∗ ∈ N or v∗ /∈ N⊥. Thus, |V \ {v}|−dim(N � {v}) = |V |−dimN

and so (V \ {v},N � {v}, B � {v}) is a minor of (V,N, B).
To show that (V \ {v},N � {v}, B � {v}) is a sum of (V1 \ {v},N1 � {v}, B � {v}) and (V2,N2, B2), it

is enough to show that

N × V1 � {v} = N � {v} × (V1 \ {v}), (2)

N × V2 = N � {v} × V2. (3)

It is easy to see (2) and N × V2 ⊆ N � {v} × V2. We claim that N � {v} × V2 ⊆ N × V2. Suppose that

f is a chain in N � {v} × V2. There exists a chain f ′ in N such that f ′ · V2 = f ,
〈
f ′(v),

(
1

0

)〉
K

= 0, and

f ′(x) = 0 for all x ∈ V \ (V2 ∪ {v}) = V1 \ {v}.
If f ′(v) �= 0, then f ′ ·V1 = cv∗ for a nonzero c ∈ F by Lemma3.2. SinceN⊥

1 = N⊥·V1 (Theorem3.4),

we deduce v∗ = c−1f ′ · V1 ∈ N⊥
1 . Therefore v∗ ∈ N1 and so v∗ ∈ N. We may assume that f ′(v) = 0

by adding a multiple of v∗ to f ′. This implies that f ∈ N × V2. We conclude (3).

Let (C′
0, C

′
1, . . . , C

′|B|) be the connection type of the sum of (V1 \ {v},N1 � {v}, B1 � {v}) and

(V2,N2, B2). Let B = {b1 + N, b2 + N, . . . , b|B| + N}, B1 = {b11 + N1, b
1
2 + N1, . . . , b

1|B1| + N1}, and
B2 = {b21+N2, b

2
2+N2, . . . , b

2|B2| +N2}.Wemay assume that
〈
bi(v),

(
1

0

)〉
K

= 0 and
〈
b1i (v),

(
1

0

)〉
K

= 0

by Lemma 6.2.

We claim that Cs = C′
s for all s ∈ {0, 1, . . . , |B|}. Let g be a chain in N⊥ such that g = 0 if s = 0 or

g = bs otherwise. If (x, y) ∈ Cs, then⎛⎝|B1|∑
i=1

xib
1
i ⊕

|B2|∑
j=1

yjb
2
j

⎞⎠ − g ∈ N. (4)

Since
〈
b1i (v),

(
1

0

)〉
K

= 0 and
〈
g(v),

(
1

0

)〉
K

= 0, we conclude that⎛⎝|B1|∑
i=1

xib
1
i · (V1 \ {v}) ⊕

|B2|∑
j=1

yjb
2
j

⎞⎠ − g · (V \ {v}) ∈ N � {v}, (5)

and therefore (x, y) ∈ C′
s.
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Conversely suppose that (x, y) ∈ C′
s. Then (5) is true. By Lemma 6.3, we deduce (4). Therefore

(x, y) ∈ Cs.

To complete the inductive proof, we now assume that |X ∪ Y ∪ Z ∪ W| > 1. If X is nonempty, let

v ∈ X . Let X′ = X \ {v}. Then, by Corollary 3.7 we have |V1 \ {v}| − dimN1 � {v} = |V1| − dimN1.

So (V1 \ {v},N � {v}, B � {v}) is the sum of (V1 \ {v},N1 � {v}, B1 � {v}) and (V2,N2, B2) with

the connection type (C0, C1, . . . , C|B|). We deduce our claim by applying the induction hypothesis to

(V1 \ {v},N1 � {v}, B1 � {v}) and (V2,N2, B2). Similarly if one of Y or Z orW is nonempty, we deduce

our claim. �

6.3. Linked branch-decompositions

Suppose (T,L) is a branch-decomposition of a Lagrangian chain-group N on V to K = F2. For two

edges f and g of T , let F be the set of elements in V corresponding to the leaves in the component of T \ f
not containing g and let G be the set of elements in V corresponding to the leaves in the component

of T \ g not containing f . Let P be the unique path from e to f in T . We say that f and g are linked if the

minimumwidth of the edges on P is equal tominF⊆X⊆V\G λN(X). We say that a branch-decomposition

(T,L) is linked if every pair of edges in T is linked.

The following lemma is shownbyGeelen et al. [8,9].We state it in termsof Lagrangian chain-groups,

because the connectivity function of chain-groups are symmetric submodular (Theorem 3.12).

Lemma 6.9 (Geelen et al. [8,9, Theorem 2.1]). A chain-group of branch-width n has a linked branch-

decomposition of width n.

Having a linked branch-decompositionwill be very useful for provingwell-quasi-ordering because

it allows Tutte’s linking theorem to be used. It was the first step to prove well-quasi-ordering of

matroids of bounded branch-width by Geelen et al. [8]. An analogous theorem by Thomas [17] was

used to prove well-quasi-ordering of graphs of bounded tree-width in [14].

6.4. Lemma on cubic trees

We use “lemma on trees,” proved by Robertson and Seymour [14]. It has been used by Robertson

and Seymour to prove that a set of graphs of bounded tree-width is well-quasi-ordered by the graph

minor relation. It has been also used by Geelen et al. [8] to prove that a set of matroids representable

over a fixed finite field and having bounded branch-width is well-quasi-ordered by thematroidminor

relation. We need a special case of “lemma on trees,” in which a given forest is cubic, which was also

useful for branch-decompositions of matroids in [8].

The following definitions are in [8]. A rooted tree is a finite directed tree where all but one of the

vertices have indegree 1. A rooted forest is a collection of countably many vertex disjoint rooted trees.

Its vertices with indegree 0 are called roots and those with outdegree 0 are called leaves. Edges leaving

a root are root edges and those entering a leaf are leaf edges.

An n-edge labeling of a graph F is a map from the set of edges of F to the set {0, 1, . . . , n}. Let λ be

an n-edge labeling of a rooted forest F and let e and f be edges in F . We say that e is λ-linked to f if F

contains a directed path P starting with e and ending with f such that λ(g) ≥ λ(e) = λ(f ) for every
edge g on P.

A binary forest is a rooted orientation of a cubic forest with a distinction between left and right

outgoing edges. More precisely, we call a triple (F, l, r) a binary forest if F is a rooted forest where roots

have outdegree 1 and l and r are functions defined on non-leaf edges of F , such that the head of each

non-leaf edge e of F has exactly two outgoing edges, namely l(e) and r(e).

Lemma 6.10 (Geelen et al. [8, (3.2)]). Let (F, l, r) be an infinite binary forest with an n-edge labeling λ.
Moreover, let≤ be a quasi-order on the set of edges of F with no infinite strictly descending sequences, such

that e ≤ f whenever f is λ-linked to e. If the set of leaf edges of F is well-quasi-ordered by ≤ but the set of

root edges of F is not, then F contains an infinite sequence (e0, e1, . . .) of non-leaf edges such that
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(i) {e0, e1, . . .} is an antichain with respect to ≤,

(ii) l(e0) ≤ l(e1) ≤ l(e2) ≤ · · · ,
(iii) r(e0) ≤ r(e1) ≤ r(e2) ≤ · · · .

6.5. Main theorem

We are now ready to prove ourmain theorem. Tomake it more useful, we label each element of the

ground set by a well-quasi-ordered set Q with an ordering � and enforce the minor relation to follow

the ordering �. More precisely, for a chain-group N on V to K , a Q-labeling is a mapping from V to Q .

A Q-labeled chain-group is a chain-group equipped with a Q-labeling. A Q-labeled chain-group N′ on
V ′ to K with a Q-labeling μ′ is a Q-minor of a Q-labeled chain-group N with a Q-labeling μ if N′ is a
minor of N and μ′(v) � μ(v) for all v ∈ V ′.

Theorem6.1 (Labeled version). Let Q be awell-quasi-ordered set with an ordering�. Let k be a constant.

Let F be a finite field. Let N1,N2, . . . be an infinite sequence of Q-labeled Lagrangian chain-groups over F

having branch-width at most k. Then there exist i < j such that Ni is simply isomorphic to a Q-minor of Nj.

Proof. Wemay assume that all bilinear forms 〈 , 〉K for allNi’s are the same bilinear form, that is either

skew-symmetric or symmetric by taking a subsequence. Let Vi be the ground set ofNi. Letμi : Vi → Q

be the Q-labeling of Ni. We may assume that |Vi| > 1 for all i. By Lemma 6.9, there is a linked branch-

decomposition (Ti,Li) of Ni of width at most k for each i. Let T be a forest such that the ith component

is Ti. Tomake T a binary forest, for each Ti, we create a vertex ri of degree 1, called a root, create a vertex

of degree 3 by subdividing an edge of Ti andmaking it adjacent to ri, and direct every edge of Ti so that

each leaf has a directed path from the root ri.

We now define a k-edge labeling λ of T , necessary for Lemma 6.10. For each edge e of Ti, let Xe be

the set of leaves of Ti having a directed path from e. Let Ae = L−1
i (Xe). We let λ(e) = λNi

(Ae).
We want to associate each edge e of Ti with a Q-labeled boundaried chain-group Pe = (Ae,Ni ×

Ae, Be) with a Q-labeling μe = μi|Ae and some boundary Be satisfying the following property:

if f is λ-linked to e, then Pe is a Q-minor of Pf . (6)

We note that μi|Ae is a function on Ae such that μi|Ae(x) = μi(x) for all x ∈ Ae.

We claim that we can assign Be to satisfy (6). We prove it by induction on the length of the directed

path from the root edge of Ti to an edge e of Ti. If no other edge isλ-linked to e, then let Be be an arbitrary

boundary of Ni × Ae. If f , other than e, is λ-linked to e, then choose f such that the distance between

e and f is minimal. We claim that we can obtain Be from Bf by Corollary 5.4 (Tutte’s linking theorem)

as follows; since Ti is a linked branch-decomposition, for all Z , if Ae ⊆ Z ⊆ Af , then λNi
(Z) ≥ λNi

(Ae).
By Corollary 5.4, there exist disjoint subsets C and D of Af \ Ae such that N × Ae = N × Af � C � D.

Since |Ae| − dimNi × Ae = |Af | − dimNi × Af , Be = Bf � C � D is well-defined. This proves the claim.

For e, f ∈ E(T), we write e ≤ f when a Q-labeled boundaried chain-group Pe is simply isomorphic

to a Q-minor of Pf . Clearly≤ has no infinitely strictly descending sequences, because there are finitely

many boundaried chain-groups on bounded number of elements up to simple isomorphisms and

furthermore Q is well-quasi-ordered. By construction, if f is λ-linked to e, then e ≤ f .

The leaf edges of T are well-quasi-ordered because there are only finite many distinct boundaried

chain-groups on one element up to simple isomorphisms and Q is well-quasi-ordered.

Suppose that the root edges are notwell-quasi-orderedby the relation≤. By Lemma6.10, T contains

an infinite sequence e0, e1, . . . of non-leaf edges such that

(i) {e0, e1, . . .} is an antichain with respect to ≤,

(ii) l(e0) ≤ l(e1) ≤ · · · ,
(iii) r(e0) ≤ r(e1) ≤ · · · .

Since λ(ei) ≤ k for all i, we may assume that λ(ei) is a constant for all i, by taking a subsequence.
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The boundaried chain-group Pei is the sum of Pl(ei) and Pr(ei). The number of possible distinct

connection types for this sum is finite, because F is finite and k is fixed, Therefore, wemay assume that

the connection types for all sums for all ei are same for all i, by taking a subsequence.

Since l(e0) ≤ l(e1), there exists a simple isomorphism sl from Al(e0) to a subset of Al(e1). Similarly,

there exists a simple isomorphism sr from Ar(e0) to a subset of Ar(e1) in r(e0) ≤ r(e1). Let s be a

function on Ae0 = Al(e0) ∪ Ar(e0) such that s(v) = sl(v) if v ∈ Al(e0) and s(v) = sr(v) otherwise. By

Proposition 6.8, Pe0 is simply isomorphic to a Q-minor of Pe1 with the simple isomorphism s. Since

l(e0) ≤ l(e1) and r(e0) ≤ r(e1), we deduce that Pe0 is simply isomorphic to a Q-minor of Pe1 and

therefore e0 ≤ e1. This contradicts to (i). Hence we conclude that the root edges are well-quasi-

ordered by ≤. So there exist i < j such that Ni is simply isomorphic to a Q-minor of Nj . �

7. Well-quasi-ordering of skew-symmetric or symmetric matrices

In this section, we will prove the following main theorem for skew-symmetric or symmetric ma-

trices from Theorem 6.1.

Theorem 7.1. Let F be a finite field and let k be a constant. Every infinite sequence M1, M2, . . . of skew-

symmetric or symmetric matrices over F of rank-width at most k has a pair i < j such that Mi is isomorphic

to a principal submatrix of (Mj/A) for some nonsingular principal submatrix A of Mj.

Tomove from the principal pivot operation given by Theorem4.9 to a Schur complement, we need a

finer control howwe obtain amatrix representation under taking aminor of a Lagrangian chain-group.

Lemma 7.2. Let M1, M2 be skew-symmetric or symmetric matrices over a field F. For i = 1, 2, let Ni be a

Lagrangian chain-group with a special matrix representation (Mi, ai, bi) where ai(v) =
(
1

0

)
, bi(v) =

(
0

1

)
for all v. If N1 = N2 � X � Y, then M1 is a principal submatrix of the Schur complement (M2/A) of some

nonsingular principal submatrix A in M2.

Proof. For i = 1, 2, let Vi be the ground set of Ni. Wemay assume that X is a minimal set having some

Y such that N1 = N2 � X � Y . We may assume X �= ∅, because otherwise we apply Lemma 4.8. Note

that the Schur complement of a ∅ × ∅ submatrix inM2 isM2 itself.

Suppose that M2[X] is singular. Let aX be a chain on V2 to K = F2 such that aX(v) =
(
1

0

)
if

v /∈ X and aX(v) =
(
0

1

)
if v ∈ X . By Proposition 4.4, a′ is not an eulerian chain of N2. Therefore

there exists a nonzero chain f ∈ N2 such that 〈f (v), aX(v)〉K = 0 for all v ∈ V2. Then f · V1 = 0

because f · V1 ∈ N1 and a1 is an eulerian chain of N1 = N2 � X � Y . There exists w ∈ X such that

f (w) �= 0 because a2 is an eulerian chain of N2. For every chain g ∈ N2, if
〈
g(v),

(
1

0

)〉
K

= 0 for

v ∈ Y and
〈
g(v),

(
0

1

)〉
K

= 0 for v ∈ X , then g(w) = cgf (w) for some cg ∈ F by Lemma 3.2 and

therefore g · V1 = (g − cgf ) · V1 ∈ N2 � (X \ {w}) � (Y ∪ {w}). This implies that N2 � X � Y ⊆
N2 � (X \ {w}) � (Y ∪ {w}). Since dim(N2 � X � Y) = dim(N2 � (X \ {w}) � (Y ∪ {w})) = |V1|, we

have N2 � X � Y = N2 � (X \ {w}) � (Y ∪ {w}), contradictory to the assumption that X is minimal.

This proves that M2[X] is nonsingular.
By Proposition 4.5, (M′, a′, b′) is another special matrix representation of N1 whereM′ = M ∗ X if

〈 , 〉K is symmetric orM′ = IX(M∗X) if 〈 , 〉K is skew-symmetric and a′, b′ are given in Proposition 4.5.

We observe that a′ · V1 = a1 and b′ · V1 = b1. We apply Lemma 4.8 to deduce that (M′[V1], a1, b1) is
a matrix representation of N1. This implies that M′[V1] = M1. Let A = M2[X]. Notice that M′[V1] =
(M2/A)[V1]. This proves the lemma. �

Proof of Theorem 7.1. By taking an infinite subsequence, we may assume that all of the matrices in

the sequence are skew-symmetric or symmetric. Let K = F2 and assume 〈 , 〉K is a bilinear form that

is symmetric if the matrices are skew-symmetric and skew-symmetric if the matrices are symmet-

ric. Let Ni be the Lagrangian chain-group represented by a matrix representation (Mi, ai, bi) where
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ai(x) =
(
1

0

)
, bi(x) =

(
0

1

)
for all x. Thenby Theorem6.1, there are i < j such thatNi is simply isomorphic

to a minor of Nj . By Lemma 7.2, we deduce the conclusion. �

Now let us consider the notion of delta-matroids, a generalization of matroids. Delta-matroids lack

the notion of the connectivity and hence it is not clear how to define the branch-width naturally for

delta-matroids.We define the branch-width of a F-representable delta-matroid as theminimum rank-

width of all skew-symmetric or symmetric matrices over F representing the delta-matroid. Then we

can deduce the following theorem from Theorem 4.12 and Proposition 4.10.

Theorem 7.3. Let F be a finite field and k be a constant. Every infinite sequence M1, M2, . . . of F-

representable delta-matroids of branch-width at most k has a pair i < j such that Mi is isomorphic to a

minor ofMj .

Proof. LetM1,M2, . . . be an infinite sequence of skew-symmetric or symmetric matrices over F such

that the rank-width of Mi is equal to the branch-width of Mi and Mi = M(Mi)�Xi. We may assume

that Xi = ∅ for all i. By Theorem 7.1, there are i < j such thatMi is isomorphic to a principal submatrix

of the Schur complement of a nonsingular principal submatrix in Mj . This implies that Mi is a minor

of Mj as a delta-matroid. �

In particular, when F = GF(2), then binary skew-symmetric matrices correspond to adjacency

matrices of simple graphs. Then taking a pivot on such matrices is equivalent to taking a sequence of

graph pivots on the corresponding graphs. We say that a simple graph H is a pivot-minor of a simple

graph G if H is obtained from G by applying pivots and deleting vertices. As a matter of a fact, a pivot-

minor of a simple graph corresponds to a minor of an even binary delta-matroid. The rank-width of a

simple graph is defined to be the rank-width of its adjacency matrix over F. Then Theorem 7.1 or 7.3

implies the following corollary, originally proved by Oum [11].

Corollary 7.4 (Oum [11]). Let k be a constant. Every infinite sequence G1, G2, . . . of simple graphs of

rank-width at most k has a pair i < j such that Gi is isomorphic to a pivot-minor of Gj.

8. Corollaries to matroids and graphs

In this section, we will show how Theorem 6.1 implies the theorem by Geelen et al. [8] on well-

quasi-ordering of F-representable matroids of bounded branch-width for a finite field F as well as the

theorem by Robertson and Seymour [14] on well-quasi-ordering of graphs of bounded tree-width.

We will briefly review the notion of matroids in the first subsection. In the second subsection,

we will discuss how Tutte chain-groups are related to representable matroids and Lagrangian chain-

groups. In the last subsection, we deduce the theorem of Geelen et al. [8] on matroids which in turn

implies the theorem of Robertson and Seymour [14] on graphs.

8.1. Matroids

Let us review matroid theory briefly. For more on matroid theory, we refer readers to the book by

Oxley [13].

A matroid M = (E, r) is a pair formed by a finite set E of elements and a rank function r : 2E → Z

satisfying the following axioms:

(i) 0 ≤ r(X) ≤ |X| for all X ⊆ E.

(ii) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y).
(iii) For all X, Y ⊆ E, r(X) + r(Y) ≥ r(X ∩ Y) + r(X ∪ Y).

A subset X of E is called independent if r(X) = |X|. A base is a maximally independent set. We write

E(M) = E. For simplicity, wewrite r(M) for r(E(M)). For Y ⊆ E(M),M \Y is thematroid (E(M)\Y, r′)
where r′(X) = r(X). For Y ⊆ E(M),M/Y is thematroid (E(M)\Y, r′)where r′(X) = r(X ∪Y)− r(Y).
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If Y = {e}, we denote M \ e = M \ {e} and M/e = M/{e}. It is routine to prove that M \ Y and M/Y
are matroids. Matroids of the form M \ X/Y are called aminor of the matroid M.

Given afield F and a set of vectors in Fm, we can construct amatroid by letting r(X)be the dimension

of the vector space spanned by vectors in X . If a matroid permits this construction, then we say that

the matroid is F-representable or representable over F.

The connectivity function of a matroid M = (E, r) is λM(X) = r(X) + r(E \ X) − r(E) + 1. A

branch-decomposition of a matroid M = (E, r) is a pair (T,L) of a subcubic tree T and a bijection

L : E → {t : t is a leaf of T}. For each edge e = uv of the tree T , the connected components of T \ e

induce a partition (Xe, Ye) of the leaves of T and we call λM(L−1(Xe)) the width of e. The width of a

branch-decomposition (T,L) is the maximum width of all edges of T . The branch-width bw(M) of a

matroidM = (E, r) is theminimumwidth of all its branch-decompositions. (If |E| ≤ 1, thenwe define

that bw(M) = 1.)

8.2. Tutte chain-groups

We review Tutte chain-groups [24]. For a finite set V and a field F, a chain on V to F is a mapping

f : V → F. The sum f + g of two chains f , g is the chain on V satisfying

(f + g)(x) = f (x) + g(x) for all x ∈ V .

If f is a chain on V to F and λ ∈ F, the product λf is a chain on V such that

(λf )(x) = λf (x) for all x ∈ V .

It is easy to see that the set of all chains on V to F, denoted by FV , is a vector space. A Tutte chain-group

on V to F is a subspace of FV . The support of a chain f on V to F is {x ∈ V : f (x) �= 0}.
Theorem 8.1 (Tutte [22]). Let N be a Tutte chain-group on a finite set V to a field F. Theminimal nonempty

supports of N form the circuits of a F-representablematroidM{N} on V, whose rank is equal to |V |−dimN.

Moreover every F-representable matroid M admits a Tutte chain-group N such that M = M{N}.
Let S be a subset of V . For a chain f on V to F, we denote f · S for a chain on S to F such that

(f · S)(v) = f (v) for all v ∈ S. For a Tutte chain-group N on V to F, we let N · S = {f · S : f ∈ N},
N× S = {f · S : f ∈ N, f (v) = 0 for all v /∈ S}, andN⊥ = {g : g is a chain on V to F,

∑
v∈V f (v)g(v) =

0 for all f ∈ N}.
A minor of a Tutte chain-group N on V to F is a Tutte chain-group of the form (N × S) · T where

T ⊆ S ⊆ V . Bydefinition, it is easy to see thatM{N}\X = M{N×(V\X)} andM{N}/X = M{N ·(V\X)}.
So the notion of representablematroidminors is equivalent to the notion of Tutte chain-groupminors.

Tutte [25, Theorem VIII.7] showed the following theorem. The proof is basically equivalent to the

proof of Theorem 3.4.

Lemma 8.2 (Tutte [25, TheoremVIII.7]). If N is a Tutte chain-group on V to F and X ⊆ V, then (N ·X)⊥ =
N⊥ × X.

We now relate Tutte chain-groups to Lagrangian chain-groups. For a chain f on V to F, let f ∗, f∗ be

chains on V to K = F2 such that f ∗(v) =
(
f (v)
0

)
∈ K , f∗(v) =

(
0

f (v)

)
∈ K for every v ∈ V . For a Tutte

chain-group N on V to F, we let Ñ be a Tutte chain-group on V to K such that Ñ = {f ∗ + g∗ : f ∈
N, g ∈ N⊥}. Assume that 〈 , 〉K is symmetric.

Lemma 8.3. If N is a Tutte chain-group on V to F, then Ñ is a Lagrangian chain-group on V to K = F2.

Proof. By definition, for all f ∈ N and g ∈ N⊥, 〈f ∗, f ∗〉 = 〈g∗, g∗〉 = 0 and 〈f ∗, g∗〉 = ∑
v∈V f (v)g(v)

= 0. Thus, Ñ is isotropic. Moreover, dimN + dimN⊥ = dim FV = |V | and therefore dim Ñ = |V |.
(Note that Ñ is isomorphic to N ⊕ N⊥ as a vector space.) So Ñ is a Lagrangian chain-group. �
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Lemma 8.4. Let N1, N2 be Tutte chain-groups on V1, V2 (respectively) to F. Then N1 is a minor of N2 as a

Tutte chain-group if and only if Ñ1 is a minor of Ñ2 as a Lagrangian chain-group.

Proof. Let N be a Tutte chain-group on V to F and let S be a subset of V . It is enough to show that

˜N · S = Ñ � (V \ S) and ˜N × S = Ñ � (V \ S).

Let us first show that˜N · S = Ñ � (V \ S). Since dim˜N · S = dim Ñ � (V \ S) = |S| by Lemma 8.3,

it is enough to show that˜N · S ⊆ Ñ � (V \ S). Suppose that f ∈ N · S and g ∈ (N · S)⊥. By Lemma 8.2,

(N · S)⊥ = N⊥ × S. So there are f̄ , ḡ ∈ N such that f̄ · S = f , ḡ · S = g, and ḡ(v) = 0 for all v ∈ V \ S.

Now it is clear that f ∗ + g∗ = (f̄ ∗ + ḡ∗) · S ∈ N � (V \ S).

Now it remains to show that ˜N × S = Ñ � (V \ S). Let f ∈ N × S, g ∈ (N × S)⊥ = N⊥ · S. A
similar argument shows that f ∗ + g∗ ∈ Ñ � S and therefore ˜N × S ⊆ Ñ � (V \ S). This proves our

claim because these two Lagrangian chain-groups have the same dimension. �

Now let us show that for a Tutte chain-group N on V to F, the branch-width of a matroid M{N} is
exactly one more than the branch-width of the Lagrangian chain-group Ñ. It is enough to show the

following lemma.

Lemma 8.5. Let N be a Tutte chain-group on V to F. Let X be a subset of V. Then,

λM{N}(X) = λÑ(X) + 1.

Proof. Recall that the connectivity function of a matroid is λM{N}(X) = r(X) + r(V \ X) − r(V) + 1

and the connectivity function of a Lagrangian chain-group is λÑ(X) = |X| − dim(Ñ × X). Let Y =
V \ X . Let r be the rank function of the matroid M{N}. Then r(X) is equal to the rank of the matroid

M{N} \ Y = M{N × X}. So by Theorem 8.1, r(X) = |X| − dim(N × X). Therefore

λM{N}(X) = dimN − dim(N × X) − dim(N × Y) + 1.

From our construction, λÑ(X) = |X| − dim(Ñ × X) = |X| − (dim(N × X) + dim(N⊥ × X)) =
|X| − dimN × X − dim(N · X)⊥ = |X| − dimN × X − (|X| − dimN · X) = dimN · X − dimN × X .

It is enough to show that dimN = dimN × Y + dimN · X . Let L : N → N · X be a surjective linear

transformation such that L(f ) = f · X . Then dim ker L = dim({f ∈ N : f · X = 0}) = dim(N × Y).
Thus, dimN · X = dimN − dimN × Y . �

8.3. Application to matroids

We are now ready to deduce the following theorem by Geelen et al. [8] from Theorem 6.1.

Theorem 8.6 (Geelen et al. [8]). Let k be a constant and let F be a finite field. If M1,M2, . . . is an infinite

sequence of F-representable matroids having branch-width at most k, then there exist i and j with i < j

such that Mi is isomorphic to a minor of Mj.

To deduce this theorem, we use Tutte chain-groups.

Proof. LetNi be the Tutte chain-group on E(Mi) to F such thatM{Ni} = Mi. By Lemma 8.5, the branch-

width of the Lagrangian chain-group Ñi is at most k − 1. By Theorem 6.1, there are i < j such that

Ñi is simply isomorphic to a minor of Ñj . This implies that Mi = M{Ni} is isomorphic to a minor of

Mj = M{Nj} by Lemma 8.4. �

Geelen et al. [8] showed that Theorem 8.6 implies the following theorem. (We omit the definition

of tree-width.) Thus our theorem also implies the following theorem of Robertson and Seymour.

Theorem 8.7 (Robertson and Seymour [14]). Let k be a constant. Every infinite sequence G1, G2, . . . of
graphs having tree-width at most k has a pair i < j such that Gi is isomorphic to a minor of Gj.
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8.4. Alternative approach to matroids via matrices

For an m × n matrix A, let us define the branch-width of A to be the branch-width of the matroid

represented by
(
I A

)
, where I is them×m identitymatrix. Theorem7.1 implies the following corollary,

which then implies Theorem 8.6 easily.

Corollary 8.8. Let F be a finite field and let k be a constant. Every infinite sequence M1, M2, . . . of matrices

over F of branch-width at most k has a pair i < j such that Mi can be obtained from a submatrix of (Mj/A)
by permuting rows and columns separately for some nonsingular submatrix A of Mj.

Proof. LetM′
i =

(
0 Mi

−Mt
i 0

)
. By Higman’s lemma [6, Lemma 12.1.3], we may assumeMi does not admit

the form
(
0 X
Y 0

)
after permuting rowsandcolumns separately. So, ifM′

i is isomorphic to
(

0 N
−Nt 0

)
, thenMi

is obtained fromN or−Nt bypermuting columnsand rows separately. Since rank-widthofM′
i is atmost

k− 1, there exists an infinite subsequenceM′
k1
,M′

k2
,M′

k3
, . . . such thatM′

ki
is isomorphic to a principal

submatrix of (M′
ki+1

/A′
i) for some nonsingular principal submatrix A′

i of M
′
ki+1

by Theorem 7.1. Let Ai

be a nonsingular submatrix ofMki+1
such that A′

i =
(

0 Ai
−Ati 0

)
. Now it is easy to deduce the conclusion

with (i, j) = (k1, k2), (k2, k3), or (k1, k3). �
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