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1. Introduction

For a V; x V; matrix A; and a V, x V, matrix Ay, an isomorphism f from A; to A, is a bijective
function that maps V; to V, such that the (i, j) entry of A; is equal to the (f(i), f(j)) entry of A, for
all i, j € V4. Two square matrices A1, A, are isomorphic if there is an isomorphism from A; to A;. Note
that an isomorphism allows permuting rows and columns simultaneously. For a V x V matrix A and
a subset X of its ground set V, we write A[X] to denote the principal submatrix of A induced by X.
Similarly, we write A[X, Y] to denote the X x Y submatrix of A. Suppose that a V x V matrix M has
the following form:

Y V\Y
m=ywv (¢ o)
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If A = M[Y] is nonsingular, then we define the Schur complement (M /A) of Ain M to be
(M/A) =D — CA™'B.

(If Y = @, then A is nonsingular and (M /A) = M.) Notice that if M is skew-symmetric or symmetric,
then (M/A) is skew-symmetric or symmetric, respectively.

We prove that skew-symmetric or symmetric matrices over a fixed finite field are well-quasi-ordered
under the relation defined in terms of taking a principal submatrix and a Schur complement, if they have
bounded rank-width. Rank-width of a skew-symmetric or symmetric matrix will be defined precisely
in Section 2. Roughly speaking, it is a measure to describe how easy it is to decompose the matrix
into a tree-like structure so that the connecting matrices have small rank. Rank-width of matrices
generalizes rank-width of simple graphs introduced by Oum and Seymour [12], and branch-width of
graphs and matroids by Robertson and Seymour [15]. Here is our main theorem.

Theorem 7.1. Let [ be a finite field and let k be a constant. Every infinite sequence My, M>, . . . of skew-
symmetric or symmetric matrices over F of rank-width at most k has a pairi < j such that M; is isomorphic
to a principal submatrix of (M;/A) for some nonsingular principal submatrix A of M;.

It may look like a purely linear algebraic result. However, it implies the following well-quasi-
ordering theorems on graphs and matroids admitting ‘good tree-like decompositions.’

® (Robertson and Seymour [15]) Every infinite sequence Gy, Gy, . . . of graphs of bounded tree-width
has a pair i < j such that G; is isomorphic to a minor of G;.

® (Geelen et al. [8]) Every infinite sequence M1, M>, . . . of matroids representable over a fixed finite
field having bounded branch-width has a pair i < j such that M; is isomorphic to a minor of M;.

® (Oum [11]) Every infinite sequence Gq, Gy, . . . of simple graphs of bounded rank-width has a pair
i < j such that G; is isomorphic to a pivot-minor of G;.

We ask, as an open problem, whether the requirement on rank-width is necessary in Theorem 7.1.
It is likely that our theorem for matrices of bounded rank-width is a step towards this problem, as
Robertson and Seymour also started with graphs of bounded tree-width. If we have a positive answer,
then this would imply Robertson and Seymour’s graph minor theorem [16] as well as an open problem
on the well-quasi-ordering of matroids representable over a fixed finite field [10].

Abig portion of this paper is devoted to introduce Lagrangian chain-groups and prove their relations
to skew-symmetric or symmetric matrices. One can regard Sections 3 and 4 as an almost separate
paper introducing Lagrangian chain-groups, their matrix representations, and their relations to delta-
matroids. In particular, Lagrangian chain-groups provide an alternative definition of representable
delta-matroids. The situation is comparable to Tutte chain-groups, ! introduced by Tutte [20]. Tutte [21]
showed that a matroid is representable over a field F if and only if it is representable by a Tutte chain-
group over . We prove an analogue of his theorem; a delta-matroid is representable over a field F if and
only if it is representable by a Lagrangian chain-group over F. We believe that the notion of Lagrangian
chain-groups will be useful to extend the matroid theory to representable delta-matroids.

To prove well-quasi-ordering, we work on Lagrangian chain-groups instead of skew-symmetric
or symmetric matrices for the convenience. The main proof of the well-quasi-ordering of Lagrangian
chain-groups is in Sections 5 and 6. Section 5 proves a theorem generalizing Tutte’s linking theorem
for matroids, which in turn generalizes Menger’s theorem. The proof idea in Section 6 is similar to the
proof of Geelen, Gerards, and Whittle’s theorem [8] for representable matroids.

The last two sections discuss how the result on Lagrangian chain-groups imply our main theorem
and its other corollaries. Section 7 formulates the result of Section 6 in terms of skew-symmetric or sym-
metric matrices with respect to the Schur complement and explain its implications for representable
delta-matroids and simple graphs of bounded rank-width. Section 8 explains why our theorem implies
the theorem for representable matroids by Geelen et al. [8] via Tutte chain-groups.

1 We call Tutte’s chain-groups as Tutte chain-groups to distinguish from chain-groups defined in Section 3.
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2. Preliminaries
2.1. Matrices

For two sets X and Y, we write XAY = (X \ Y) U (Y \ X). AV x V matrix A is called symmetric if
A = A', skew-symmetric if A = —A"! and all of its diagonal entries are zero. We require each diagonal
entry of a skew-symmetric matrix to be zero, even if the underlying field has characteristic 2.
Suppose that a V x V matrix M has the following form:

Y V\Y

MZ&\Y( ¢ b )

If A = M[Y] is nonsingular, then we define a matrix M * Y by

Y VY
Y A"l AT'B
M*Y=V\Y(—M’1MMM)

This operation is called a pivot. In the literature, it has been called a principal pivoting, a principal pivot
transformation, and other various names; we refer to the survey by Tsatsomeros [18].

Notice that if M is skew-symmetric, then so is M * Y. If M is symmetric, then so is (Iy)(M * Y),
where Iy is a diagonal matrix such that the diagonal entry indexed by an element in Y is —1 and all
other diagonal entries are 1.

The following theorem implies that (M * Y)[X] is nonsingular if and only if M[X AY] is nonsingular.

Theorem 2.1 (Tucker [19]). Let M[Y] be a nonsingular principal submatrix of a V x V matrix M. Then for
allx C v,

det(M * Y)[X] = det M[Y AX]/ det M[Y].

Proof. See Bouchet’s proof in Geelen’s thesis paper [7, Theorem 2.7]. O

2.2. Rank-width

A tree is called subcubic if every vertex has at most three incident edges. We define rank-width of a
skew-symmetric or symmetric V x V matrix A over a field F by rank-decompositions as follows. A rank-
decomposition of A is a pair (T, £) of a subcubic tree T and a bijection £ : V — {t : t is a leaf of T}. For
each edge e = uv of the tree T, the connected components of T \ e form a partition (X, Ye) of the leaves
of T and we call rank A[£ ™1 (X.), £~ (Y,)] the width of e. The width of a rank-decomposition (T, £) is
the maximum width of all edges of T. The rank-width rwd(A) of a skew-symmetric or symmetric V x V
matrix A over [ is the minimum width of all its rank-decompositions. (If |V| < 1, then we define that
rwd(A) = 0.)

2.3. Delta-matroids

Delta-matroids were introduced by Bouchet [2]. A delta-matroid is a pair (V, F) of a finite set V and
a nonempty collection F of subsets of V such that the following symmetric exchange axiom holds.

IfF, F € Fandx € FAF', then there exists y € FAF' such that FA{x,y} € F. (SEA)

A member of F is called feasible. A delta-matroid is even, if cardinalities of all feasible sets have the
same parity.

Let M = (V, F) be a delta-matroid. For a subset X of V, it is easy to see that MAX = (V, FAX)
is also a delta-matroid, where FAX = {FAX : F € F}; this operation is referred to as twisting. Also,
MA\X = (V\X,F\X)definedby F\ X = {F C V\ X : F € F}is adelta-matroid if 7 \ X is
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nonempty; we refer to this operation as deletion. Two delta-matroids M1 = (V, F1), My = (V, F)
are called equivalent if there exists X C V such that M; = M3 AX. A delta-matroid that comes from
M by twisting and/or deletion is called a minor of M.

2.4. Representable delta-matroids

For a V x V skew-symmetric or symmetric matrix A over a field F, let
F(A) = {X C V : A[X] is nonsingular}

and M(A) = (V, F(A)).Bouchet [4] showed that M (A) forms a delta-matroid. We call a delta-matroid
representable over a field [ or F-representable if it is equivalent to M (A) for some skew-symmetric or
symmetric matrix A over F. We also say that M is represented by A if M is equivalent to M(A).

Twisting (by feasible sets) and deletions are both natural operations for representable delta-
matroids. For X € V, M(A) \ X = M(A[V \ X]), and for a feasible set X, M(A)AX = M(A *x X)
by Theorem 2.1. Therefore minors of a F-representable delta-matroid are F-representable [5].

2.5. Well-quasi-order

In general, we say that a binary relation < on a set X is a quasi-order if it is reflexive and transitive.
For a quasi-order <, we say “< is a well-quasi-ordering” or “X is well-quasi-ordered by <” if for every
infinite sequence ay, ay, . . . of elements of X, there exist i < j such thata; < g;. For more detail, see
Diestel [6, Chapter 12].

3. Lagrangian chain-groups
3.1. Definitions

If W is a vector space with a bilinear form (, ) and W’ is a subspace of W satisfying
(x,y) =0forallx,y € W,

then W' is called totally isotropic. Avector v € W is called isotropic if (v, v) = 0.A well-known theorem
in linear algebra states that if a bilinear form (, ) is non-degenerate in W and W’ is a totally isotropic
subspace of W, then dim(W) = dim(W’) + dim(W’+) > 2 dim(W’) because W € W't

Let V be a finite set and F be a field. Let K = F? be a two-dimensional vector space over F. Let

bt ((g), (2)) = ad + bc and b~ ((l‘:), (2)) = ad — bc be bilinear forms on K. We assume that K

is equipped with a bilinear form (, )j that is either b™ or b™. Clearly b* is symmetric and b~ is
skew-symmetric.

A chainon V to K is a mapping f : V — K.If x € V, the element f(x) of K is called the coefficient
of x in f. If V is nonnull, there is a zero chain on V whose coefficients are 0. When V is null, we say that
there is just one chain on V to K and we call it a zero chain.

The sum f 4 g of two chains f, g is the chain on V satisfying (f + g)(x) = f(x) + g(x) forallx € V.
If fisachainonV to K and A € F, the product Af is a chain on V such that (Af)(x) = Af(x) for all
x € V.Itis easy to see that the set of all chains on V to K, denoted by K", is a vector space. We give a
bilinear form (, ) to K as following:

(f.8) =2 {f®), g -

xeV

If (f, g) = 0, we say that the chains f and g are orthogonal. For a subspace L of K", we write Lt for the
set of all chains orthogonal to every chain in L.

A chain-group on V to K is a subspace of KY. A chain-group is called isotropic if it is a totally isotropic
subspace. It is called Lagrangian if it is isotropic and has dimension |V|. We say a chain-group N is over
afield F if K is obtained from F as described above.
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A simple isomorphism from a chain-group N on V to K to another chain-group N’ on V’ to K is defined
as a bijective function w : V — V' satisfying that N = {f o u : f € N’} where f o u is a chain on V
to K such that (f o u)(x) = f(u(x)) for all x € V. We require both N and N’ have the same type of
bilinear forms on K, that is either skew-symmetric or symmetric. A chain-group N on V to K is simply
isomorphic to another chain-group N’ on V' to K if there is a simple isomorphism from N to N'.

Remark. Bouchet’s definition [4] of isotropic chain-groups is slightly more general than ours, since
he allows <(Z), (2)>K = —ad =+ bc. His notation, however, is different; he uses F instead of KV

where V' is a union of V and its disjoint copy V™. Since K = F?, two definitions are equivalent. Our
notation has advantages which we will see in the next subsection. Bouchet’s notation also has its own
virtues because, in Bouchet’s sense, isotropic chain-groups are Tutte chain-groups. Strictly speaking,
our isotropic chain-groups are not Tutte chain-groups, because we define chains differently. We are
mainly interested in Lagrangian chain-groups because they are closely related to representable delta-
matroids. We note that the notion of Lagrangian chain-groups is motivated by Tutte’s chain-groups
and Bouchet’s isotropic systems [3].

3.2. Minors

Consider a subset T of V. If f is a chain on V to K, we define its restriction f - T to T as the chainon T
such that (f - T)(x) = f(x) for all x € T. For a chain-group Non V,

N-T={f-T:f €N}

is a chain-group on T to K. We note that N - T is not necessarily isotropic, even if N is isotropic. We
write

NXxT={f-T:feN, f(x) =0forallx e V\T}.
For a chain-group N on V, we define
N\T = {f ~(V\T):f €N, <f(x), (})))K =0forallx € T}.
We call this the deletion. Similarly we define
NJT = {f ~(V\T):f €N, <f(x), (?))K —Oforallx e T} .

We call this the contraction. We refer to a chain-group of the form N / X\ YonV \ (X UY) as a minor
of N.

Proposition 3.1. A minor of a minor of a chain-group N on V to K is a minor of N.

Proof. We can deduce this from the following easy facts.
N/X/JY=N/)XUY),
N/X\Y=N\Y/X,
N\X\Y=N\(XUY). O

Lemma 3.2. Letx,y € K. Ifx € K is isotropic, x # 0, and (x, y)x = O, theny = cx for somec € F.
Proof. Since (, )i is non-degenerate, there exists a vector x' € K such that (x, '), # 0. Hence {x, x}
is a basis of K. Let y = cx + dx’ for some c, d € F. Since (x, cx + dx), = d(x, x), = 0, we deduce

d=0. 0O

Proposition 3.3. A minor of an isotropic chain-group on V to K is isotropic.
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Proof. By Lemma 3.2, if (x, (3)). = (v, (¢)), = 0. then (x,y)x = 0 and similarly if x, (7)) =

<y, (?) >1< = 0, then (x, y)x = 0. This easily implies the lemma. O

We will prove that every minor of a Lagrangian chain-group is Lagrangian in the next section.

3.3. Algebraic duality

For an element v of a finite set V, if N is a chain-group on V to K and B is a basis of N, then we
may assume that the coefficient at v of every chain in B is zero except at most two chains in B because
dim(K) = 2. So, it is clear that dimensions of N x (V' \ {v}),N - (V \ {v}),N\ {v},and N j {v} are at
least dim(N) — 2. In this subsection, we discuss conditions for those chain-groups to have dimension
dim(N) — 2,dim(N) — 1, or dim(N). Note that we do not assume that N is isotropic.

Theorem 3.4. If N is a chain-group on V to K and X C V, then
(N-X)t =Nt x X.

Proof. (Tutte[25, Theorem VIIL7]) Letf € (N -X)J-. There exists a chain f; on V to K such thatf; - X = f
and fi(v) = 0forallv € V \ X.Since (f1,g) = (f,g-X) = 0forallg € N, we have f € N1 x X.

Conversely, if f € N+ x X, it is the restriction to X of a chain f; of N specified as above. Hence
(f.g-X) = (fi,g) =0forallg € N.Therefore f € (N -X)~. O

Lemma 3.5. Let N be a chain-grouponVto K. IfXUY = Vand X N'Y = (, then
dim(N - X) 4+ dim(N x Y) = dim(N).
Proof. Let ¢ : N — N - X be a linear transformation defined by ¢(f) = f - X. The kernel ker(¢) of

this transformation is the set of all chains f in N having f - X = 0. Thus, dim(ker(¢)) = dim(N x Y).
Since g is surjective, we deduce that dim(N - X) = dim(N) — dim(N x Y). O

Forv € V, let v¥, v, be chains on V to K such that

v =(g), vm =),

Vi (w) = vye(w) =0 forallw e V\ {v}.

Proposition 3.6. Let N be a chain-group on V to K and v € V. Then
dimN ifve ¢ N,v* e Nt
dim(N\ {v}) = {dimN —2 ifv* € N, v* ¢ N,

dimN — 1 otherwise,

dimN ifve € N, vy eNL,
dim(N / {v}) = {dimN — 2 ifv, € N, v, ¢ N*,

dimN — 1 otherwise.

Proof. By symmetry, it is enough to show for dim(N \\ {v}).Let N’ = {f € N : <f(v), ((1))>1( = 0}.By
definition, N\ {v} = N"- (V \ {v}).

Observe that N’ = N if and only if v* € Nt IfN # N, then there is a chain g in N such that
<g(v), ((]))>K # 0. Then, for every chain f € N, there exists ¢ € F such that f — ¢cg € N’. Therefore
dim(N’) = dimN — 1ifv* ¢ N+ and dim(N') = dim N if v* € N,

By Lemma 3.5, dim(N’ - (V \ {v})) = dim N’ — dim(N’ x {v}). Clearly, dim(N" x {v}) = 0ifv* ¢ N
and dim(N" x {v}) = 1ifv* € N. This concludes the proof. [



2014 S.-i. Oum / Linear Algebra and its Applications 436 (2012) 2008-2036
Corollary 3.7. If N is an isotropic chain-group on V to K and M is a minor of N on V', then
|V'| = dimM < |V| — dimN.

Proof. We proceed by induction on |V \ V’|. Since N is isotropic, every minor of N is isotropic by
Proposition 3.3. Since v¥ ¢ N\ N*- and v, ¢ N\ N, dim(N) — dim(N \\ {v}) € {0, 1} and dim(N) —
dim(N / {v}) € {0,1}.So |V \ {v}| — dim(N \ {v}) < |[V| —dimN and |V \ {v}| — dim(N / {v}) <
|[V| — dim N. Since M is a minor of either N \\ {v} or N / {v}, |V/| — dimM < |V| — dimN by the
induction hypothesis. [

Proposition 3.8. A minor of a Lagrangian chain-group is Lagrangian.

Proof. Let N be a Lagrangian chain-group on V to K and N’ be its minor on V' to K. By Proposition 3.3,
N’ is isotropic and therefore dim(N’) < |V’|. Thus it is enough to show that dim(N’) > |V’|. Since
dim(N) = |V|, it follows that dim(N’) > |V’| by Corollary 3.7. O

Theorem 3.9. If N is a chain-group on V to K and X C V, then
(N\X)" =Nt \Xand (N yX)t =Nt ) X.

Proof. By symmetry, it is enough to show that (N \ X)J- =N+t \\ X. By induction, we may assume
IX| = 1.Letv € X.

Let f be a chain in N\ X. There is a chain f; € N* such that f; - (V \ X) = f and <f1 ), ((1))>1< =0.
Let g € N be a chain such that <g(v), ((1))>1< = 0. Then {f;(v), g(v))x = 0 by Lemma 3.2. Therefore

f,g-(V\X)) =(fi,g) =0andsof € (N \\X)J-.WeconcludethatNJ- \X C (N \\X)J-.
We now claim that dim(N-+ \ X) = dim(N \\ X)=. We apply Proposition 3.6 to deduce that

0 ifv*¢N,v*eNJ-,
dim(N \ X) — dim(N) = {—2 ifv* € N,v* ¢ N+,
—1 otherwise,

0 ifv* ¢ Nt vF eN,
dim(N* \ X) — dim(N*) = { =2 ifv* e N:,v* ¢ N,
—1 otherwise.

By summing these equations, we obtain the following:
dim(N \\ X) — dim(N) + dim(N* \\ X) — dim(N*) = —2.

Since dim(N) + dim(N+) = 2|V| and dim(N \\ X) 4+ dim(N \\ X)*= = 2(|V| — 1), we deduce that
dim(N+ \ X) = dim(N \\ X)*.
Since N \X € (N\X)' and dim(N+\X) = dim(N\X)", we conclude that N-\X = (N\X)*. O

3.4. Connectivity

We define the connectivity of a chain-group. Later it will be shown that this definition is related to
the connectivity function of matroids (Lemma 8.5) and rank functions of matrices (Theorem 4.13).
Let N be a chain-group on V to K. If U is a subset of V, then we write

dimN — dim(N x (V \ U)) — dim(N x U)

AnU) = 3
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This function Ay is called the connectivity function of a chain-group N. By Lemma 3.5, we can rewrite
Ay as follows:

dim(N - U) — dim(N x U)
5 .

From Theorem 3.4, it is easy to derive that Ay (U) = An(U).
In general Ay (X) need not be an integer. But if N is Lagrangian, then Ay (X) is always an integer by
the following lemma.

An(U) =

Lemma 3.10. IfN is a Lagrangian chain-group on'V to K, then
ANX) = |X| — dim(N x X)
forallX C V.

Proof. From the definition of Ay (X),
2An(X) = dim(N - X) — dim(N x X)
= 2|X| — dim(N - X)* — dim(N x X)
= 2|X| — dim(N* x X) — dim(N x X),
and since N = N, we have

= 2(|X| — dim(N x X)). O

By definition, it is easy to see that An(U) = An(V \ U). Thus Ay is symmetric. We prove that Ay is
submodular.

Lemma 3.11. Let N be a chain-group on V to K and X, Y be two subsets of V. Then,
dim(N x (XUY)) +dim(N x (XNY)) >dim(N x X) + dim(N x Y).

Proof. ForT C V,letNy = {f e N:f(v) =0forallv ¢ T}.LetNx +Ny = {f +g : f € Nx, g € Ny}.
We know that dim(Nx + Ny) + dim(Nx N Ny) = dim Nx + dim Ny from a standard theorem in the
linear algebra. Since Ny N Ny = Nxny and Nx + Ny € Nxyy, we deduce that

dim Nxuy + dim Nxny > dim Nx + dim Ny.

Since dim Ny = dim(N x T), we are done. [J

Theorem 3.12 (Submodular inequality). Let N be a chain-group on V to K. Then Ay is submodular; in
other words,
AN) +An(Y) = ANXUY) + An(XNY)

forallX,Y C V.

Proof. We use Lemma3.11.LetS =V \XandT =V Y.

2AN(X) + 2AN(Y) = 2dim(N) — (dim(N x X) 4+ dim(N x S) + dim(N x Y) 4+ dim(N x T))
> 2dim(N) — dim(N x (XUY)) —dim(N x (XNY))
—dim(N x (§NY)) —dim(N x (SUY))
= 22X UY) 4+ 2y NY). O

What happens to the connectivity functions if we take minors of a chain-group? As in the matroid
theory, the connectivity does not increase.
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Theorem 3.13. Let N, M be chain-groups on V, V' respectively. If M is a minor of a chain-group N, then
Am(T) < AN(TUU) forall T C V' andallU C V\ V.

Proof. By induction on |V \ V’|, it is enough to prove this when |V \ V/| = 1.Letv € V \ V'. By
symmetry we may assume that M = N \\ {v}.
We claim that Ap;(T) < An(T). From the definition, we deduce

2_m(T) — 2AN(T) = dim(N \ {v} - T) — dim(N \\ {v} x T) — dim(N - T) 4+ dim(N x T).
Clearly N\ {v} TS N-TandN x T € N \\ {v} x T.Thus Ay (T) < An(T).
Since Ay and Ay are symmetric, Ay (T) = Ay (V' \T) < AN(V'\T) = An(TU {v}). O
3.5. Branch-width

A branch-decomposition of a chain-group N on V to K is a pair (T, £) of a subcubic tree T and a
bijection £ : V — {t : tis aleaf of T}. For each edge e = uv of the tree T, the connected components
of T \ e form a partition (X, Ye) of the leaves of T and we call Ay(£~'(X,)) the width of e. The width
of a branch-decomposition (T, £) is the maximum width of all edges of T. The branch-width bw(N) of
a chain-group N is the minimum width of all its branch-decompositions. (If |V| < 1, then we define
that bw(N) = 0.)

4. Matrix representations of Lagrangian chain-groups
4.1. Matrix representations

We say that two chains f and g on V to K are supplementary if, for all x € V,

(1) (fC,fC))x = (g(x), g(x))x = 0and
(i) (fFx), gk =1.

Given a skew-symmetric or symmetric matrix A, we may construct a Lagrangian chain-group as follows.

Proposition 4.1. Let M = (my; : i,j € V) be a skew-symmetric or symmetric V X V matrix over a field

F. Let a, b be supplementary chains on V to K = F> where {, )y is skew-symmetric if M is symmetric and
symmetric if M is skew-symmetric.
Fori € V, let f; be a chain on V to K such that forallj € V,

ma(j) + b)) ifj =1,
mija(j) ifj #1.
Then the subspace N of KV spanned by chains {f; : i € V} is a Lagrangian chain-group on V to K.

fi(i)Z[

If M is a skew-symmetric or symmetric matrix and a, b are supplementary chains on V to K,
then we call (M, a, b) a (general) matrix representation of a Lagrangian chain-group N. Furthermore if

a(v),b(v) € {:I:(g)), :I:((l))} foreachv € V, then (M, a, b) is called a special matrix representation of N.

Proof. Foralli € V,
(flsfl) = Z (fl(])vfl(]))l( = mii((a(i)v b(l))K + <b(l)’ a(l))K) = 07
jev
because either m; = 0 (if M is skew-symmetric) or (, )i is skew-symmetric.
Now let i and j be two distinct elements of V. Then,

{fi fil = (i@, D) + (16, D) = mii (b(D), a@) + myi (a(@), b())x = 0,
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because either mj = —mj and (b(i), a(i))x = (a(j), b())x or mj = mj and (b(i), a(i))x =
—{a@), b())x-

It is easy to see that {f; : i € V} is linearly independent and therefore dim(N) = |V|. This proves
that N is a Lagrangian chain-group. 0O

4.2. Eulerian chains
A chaina on V to K is called a (general) eulerian chain of an isotropic chain-group N if

(i) a(x) # 0, (a(x), a(x))x = Oforallx € V and
(ii) there is no nonzero chain f € N such that (f(x), a(x))x = Oforallx € V.

A general eulerian chain a is a special eulerian chain if for allv € V, a(v) € {:I:((l)), :I:(?)}. It is easy

to observe that if (M, a, b) is a general (special) matrix representation of a Lagrangian chain-group N,
then a is a general (special) eulerian chain of N. We will prove that every general eulerian chain of a
Lagrangian chain-group induces a matrix representation. Before proving that, we first show that every
Lagrangian chain-group has a special eulerian chain.

Proposition 4.2. Every isotropic chain-group has a special eulerian chain.

Proof. Let N be an isotropic chain-group on V to K = F2. We proceed by induction on |V|. We may
assume that dim(N) > 0.Letv € V.

If [V| = 1, then dim(N) = 1. Then either v* or v, is a special eulerian chain.

Now let us assume that |V| > 1.Let W = V' \ {v}.Both N\\ {v} and N // {v} are isotropic chain-groups
on W to K. By the induction hypothesis, both N \\ {v} and N / {v} have special eulerian chains a}, dj,

respectively, on W to K such that a}(x) € {((])), (?)} forallx e W.

Let aq, ap be chains on V to K such that a;(v) = (é) a(v) = (?) andag; - W =g fori =1, 2.
We claim that either a; or a; is a special eulerian chain of N. Suppose not. For eachi = 1, 2, there is a
nonzero chain f; € N such that (fj(x), aj(x))x = 0 for all x € V. By construction f; - W € N\ {v} and
foa - W € N/ {v}. Since a}, d}, are special eulerian chains of N \\ {v} and N / {v}, respectively, we have
fi-W=f,-W=0.

Since f; # 0, by Lemma 3.2, f = ¢qv* and f, = cpv, for some nonzero ¢y, ¢c; € F. Then (i, ) =
(i(v), 2(v))x = c1c2 # 0O, contradictory to the assumption that N is isotropic. [J

Proposition 4.3. Let N be a Lagrangian chain-group on V to K and let a be a general eulerian chain of N
and let b be a chain supplementary to a.

(1) Forevery v € V, there exists a unique chain f, € N satisfying the following two conditions.
(i) (a(v), (W) =1,
(ii) (a(w), fy(w))x = O0forallw € V \ {v}.
Moreover, {f, : v € V}isabasis of N. This basis is called the fundamental basis of N with respect to a.
(2) If (, ) is symmetric and either the characteristic of F is not 2 or f,(v) = b(v) forallv € V, then
M = ({fi(), b(j))g : i,j € V) is a skew-symmetric matrix such that (M, a, b) is a general matrix
representation of N.
(3) If(, Y is skew-symmetric, M = ({(fi(j), b(j))x : i,j € V) isasymmetric matrix such that (M, a, b)
is a general matrix representation of N.

Proof. Existence in (1): For each x € V, let g, be a chain on V to K such that gy(x) = a(x) and
g&(y) = 0forally € V\ {x}. Let W be a chain-group spanned by {gy : x € V}. It is clear that
dim(W) = |V|.Let N+ W = {f +g : f € N, g € W}.Since ais eulerian, NN W = {0} and therefore
dim(N + W) = dim(N) + dim(W) = 2|V|, because N is Lagrangian. We conclude that N +W = K".
Let hy, be a chain on V to K such that (a(v), h,(v))x = 1and h,(w) = Oforallw € V'\ {v}. We express
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hy = f, + g for some f, € Nand g € W. Then (a(v), f,(v))x = (a(v), hy(v))x — (a(v),g(v))x =1
and (a(w), fy(w))g = (a(w), hy(w))x — (a(w), g(w))x = Oforallw € V' \ {v}.

Uniqueness in (1): Suppose that there are two chains f, andf‘f in N satisfying two conditions (i), (ii)
in(1).Then(a(v), f,(v) — f;(v)), = 0.ByLemma 3.2, thereexistsc € Fsuchthatf,(v)—f,(v) = ca(v).
Letf = f, — f, € N.Then (a(w), f(w))x = 0 for allw € V. Since a is eulerian, f = 0 and therefore
fv :f‘;

Beingabasisin(1): Weclaimthat{f, : v € V}islinearly independent. Suppose that >, cy cwfw = 0
for some ¢y, € F.Thenc, = > ey Cw (a(v), fw(v))x = O0forallv e V.

Constructing a matrix for (2) and (3): Let i, j € V. By (ii) and Lemma 3.2, there exists m;; € F such
that f;(j) = mya(j) ifi # jand f;(i) —b(i) = mya(i). Then, (f;(j), b(j))x = myjforalli, j € V.Therefore
M= (my:i,jeV).

Since N is isotropic,

(. fi) = 2 (i), W) =0

veV
and we deduce that (f;(i), f(i)), + (fi(), fi(G)), = 0ifi % jand (fi(i), fi(i))x = 0. This implies that
m;; (b(i), a(i))x + mj {a(j), b(j))x = Oforalli,j e V.

If (, )i is skew-symmetric, then (b(i), a(i))x = —1 and therefore m;; = mj;.

If (, )i is symmetric, then (b(i), a(i))x = 1 and so mj; = —my;. This also imply that m;; = 0 if
the characteristic of [ is not 2. If the characteristic of [ is 2, then we assumed that f;(i) = b(i) and
therefore m;; = 0. Note that (fi(i), fi(i))y = 0 and therefore the chain b with b(i) = f;(i) foralli € V
is supplementary to a.

It is easy to observe that (M, a, b) is a general matrix representation of N because a, b are supple-
mentary and f;(j) = ma(j) 4 b(j) ifi =j € V and f;(j) = ma(j) ifi #j. O

Proposition 4.4. Let (M, a, b) be a special matrix representation of a Lagrangian chain-group N on V to

K = F2. Suppose that d’ is a chain such that d’ (v) € {:I:(g)) , :I:(?) } forallv € V. Then ' is special eulerian

if and only if M[Y] is nonsingular for Y = {x € V : d’(x) # +a(x)}.

Proof. Let M = (my : i,j € V). Letfi € N be a chain such that f;(j) = mya(j) ifj # i and
fi(i) = mya(i) + b().

We first prove that if M[Y] is nonsingular, then f is special eulerian. Suppose that there is a chain
f € N such that (f(x), d’(x)), = 0 for all x € V. We may express f as a linear combination X ;cy ¢if;
with some ¢; € F.Ifj ¢ Y, then a'(j) = =a(j) and (f(j), a(j))x = ¢; (b(j), a(j))x = 0 and therefore
cg=0forallj ¢ Y.

Ifj € Y, then d’(j) = +b(j) and so

G, bk = Zcimij (a(), b())x = Zcimij =0.
iey iey
Since M[Y] is invertible, the only solution {c; : i € Y} satisfying the above linear equation is zero. So
¢; = Oforalli € V and therefore f = 0, meaning that a’ is special eulerian.
Conversely suppose that M[Y] is singular. Then there is a linear combination of rows in M[Y] whose
sum is zero. Thus there is a nonzero linear combination ¢y cif; such that

<Z cifi(x), b(x)> =0forallx €Y.
K

ieY

Clearly (X jcy cifi(x), a(x)), = Oforall x ¢ Y. Since at least one ¢; is nonzero, > cy Cif; is nonzero.
Therefore a’ can not be special eulerian. [
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For a subset Y of V, let Iy be a V x V indicator diagonal matrix such that each diagonal entry
corresponding to Y is —1 and all other diagonal entries are 1.

Proposition 4.5. Suppose that (M, a, b) is a special matrix representation of a Lagrangian chain-group
NonVtoK = F2 Let Y C V. Assume that M[Y] is nonsingular.

(1) If{, ) is symmetric, then (M x Y, d’, b') is another special matrix representation of N where M * Y
is skew-symmetric and

d) = [a<v) fvey,

b(v) otherwise,

b(v) ifvéy,
N LR T
a(v) otherwise.
(2) If (, ) is skew-symmetric, then (Iy(M * Y), d’, b') is another special matrix representation of N
where Iy (M % Y) is symmetric and

d) = |a(v) fvey, bv) vy,

b(v) otherwise, —a(v) otherwise.

b'(v) = [
Proof. Let M = (m;; : i,j € V).Foreachi € V,letf; € N be a chain such that f;(j) = mya(j) ifj # i
and f;(i) = mya(j) + b(j) if j = i. Since (M, a, b) is a special matrix representation of N, {f; : i € V}is
a fundamental basis of N.

Proposition 4.4 implies that a’ is eulerian. According to Proposition 4.3, we should be able to con-
struct a special matrix representation with respect to the eulerian chain a’. To do so, we first construct
the fundamental basis {g, : v € V} of N with respect to d’.

Suppose that for eachx € V, gx = X ;cy cxifi for some ¢y € F. By definition, (' (x), gx(x)), = 1and

(d' (), g () = Oforallj # x. Then

/s . _ ieV Cximij (b(])v a(j))K ’ lf] € Y)
[ (), &), = L 4y
Suppose thatx € Y. Ifj € Y, then

" camy (bG), )y = {1 =1,

= 0 ifx #j.
Let (ml’-j 2 i,j € Y) = (M[Y])~". Then cy is given by the row of x in (M[Y])~!; in other words, if
x,i € Y, then ¢y = my; if (, )i is symmetric and ¢, = —m); otherwise. Ifx € Y andi ¢ Y, then
Cxi = 0.
Ifx ¢ Y,thenclearly cyx = 1andcy; = Oforalli € V\(YU{x}).Ifj € Y,then > ;cy cxim; (b(j), a(j))x
+ iy (b(j), a(j))x = 0 and therefore > ;cy cimjj = —my;. For each k in Y, we have ¢y =
iy Cxi Zjey MMy, = Djey My Yiey GiMyj = — Xjey My My and therefore for x ¢ Y andi € Y,
/
Ci = — Zjey My,

We determined the fundamental basis {g, : x € V} with respect to a’. We now wish to compute
the matrix according to Proposition 4.3. Let us compute (gx (), b’ (¥))-
Ifx,y € Y, then

/

. , _ , __ |my, if(, )k is symmetric,
<Z cifi(v), b (y)> = Gy <b(y), b (y)>K =Gy = [—m/ if {, )g is skew-symmetric.
ieY K Xy ’

Ifx e Yandy ¢ Y, then

<Z aifi(y). b’(v)> =2 Gy (a(y), b))k =
K

[Z,‘ey mymyy.  if (, ) is symmetric,
ieY ieY

— ey m;im,-y. if (, )i is skew-symmetric.
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Ifx ¢ Yandy € Y, then

<Zcxm) +AO), b/(y>> =Gy = — D mym,.
K

iey jey
Ifx ¢ Yandy ¢ Y, then

<Z aifi¥) + ), bl(y)> = - z mxjmj/',‘miy + My
iey K ijey

If (, )x is symmetric and the characteristic of F is 2, then we need to ensure that M has no nonzero
diagonal entries by verifying the additional assumption in (2) of Proposition 4.3 asking that b’ (x) =
gy(x) for all x € V.Itis enough to show that

<gx(X), b/(x)>K =O0forallx eV,

because, if so, then (a'(x), b'(x)), = 1 = (d'(x), g&(x)) implies that gy(x) = b’(x). Since M[Y] is
skew-symmetric, so is its inverse and therefore mj,, = 0 for all x € Y. Furthermore, for eachi,j € Y
and x € V \ Y, we have mxjm]’-im,-x = —mxfmlfjmjx because M and (M[Y])™! are skew-symmetric
and therefore 3; jcy mxjm]/-l-mix = 0. Thus g«(x) = b'(x) forall x € V if {, )i is symmetric and the
characteristic of F is 2.

We conclude that the matrix ({g;(j), b’(i))K 2 i,j € V)isindeed M % Y if (, )k is symmetric or
(Iy)(M % Y) if (, )i is skew-symmetric. This concludes the proof. [

A matrix M is called a fundamental matrix of a Lagrangian chain-group N if (M, a, b) is a special
matrix representation of N for some chains a and b. We aim to characterize when two matrices M and
M’ are fundamental matrices of the same Lagrangian chain-group.

Theorem 4.6. Let M and M’ be V x V skew-symmetric or symmetric matrices over F. The following are
equivalent.

(i) There is a Lagrangian chain-group N such that both (M, a, b) and (M’, d’, b") are special matrix
representations of N for some chains a, a’, b, b'.
(ii) ThereisY C V such that M[Y] is nonsingular and

;DM *Y)D if(, ) is symmetric,
DIy(M % Y)D if (, )i is skew-symmetric

for some diagonal matrix D whose diagonal entries are £1.

Proof. To prove (i) from (ii), we use Proposition 4.5. Let a(v) = ((1]) and b(v) = (?) forallv € V. Let

N be the Lagrangian chain-group with the special matrix representation (M, a, b). Let Mg = M * Y
if (, )x is symmetric and My = Iy(M x Y) if (, ) is skew-symmetric. By Proposition 4.5, there are
chains ag, by so that (Mo, ag, bg) is a special matrix representation of N. Let Z be a subset of V such
thatl; = D.Foreachv € V, let

iy |—ao(v) ifvez, , | —=bo(v) ifveZ,
a(v)_{ao(v) ifvégz, b(v)_[bo(v) ifv ¢z

Then d’, b’ are supplementary and (M’, d’, b’) is a special matrix representation of N because M’ =
DMD.

Now let us assume (i) and prove (ii). Let Y = {x € V : d’(x) # Za(x)}. Since @’ is a special
eulerian chain of N, M[Y] is nonsingular by Proposition 4.4. By replacing M with M x Y if (, )i is
symmetric, or Iy (M * Y) if {, ) is skew-symmetric, we may assume that Y = (. Thus @’ (x) = +a(x)
and b'(x) = *b(x) forallx € V.LetZ = {x € V : d’(x) = —a(x)} and D = I. Since (¢’ (x), b’ (x)),, =
1, b'(x) = —b(x) if and only if x € Z. Then (DMD, d’, b’) is a special matrix representation of N,
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pivot
M —— MxY

negating some negating some
rows and columns rows and columns

pivot

M —— M xY

Fig. 1. Commuting pivots and negations.

because the fundamental basis generated by (DMD, a’, b’) spans the same subspace N spanned by the
fundamental basis generated by (M, a, b). We now have two special matrix representations (M’, a’, b’)
and (DMD, d’, b'). By Proposition 4.3, M’ = DMD because of the uniqueness of the fundamental basis
with respect to a’. This concludes the proof. [

Negating a row or a column of a matrix is to multiply —1 to each of its entries. Obviously a matrix
obtained by negating some rows and columns of a V x V matrix M is of the form IxMIy for some
X,Y C V. We now prove that the order of applying pivots and negations can be reversed.

Lemma 4.7. Let M be aV x V matrix and let Y be a subset of V such that M[Y] is nonsingular. Let M’ be
a matrix obtained from M by negativing some rows and columns. Then M’ Y can be obtained from M * Y
by negating some rows and columns. (See Fig. 1.)

Proof. More generally we write M and M’ as follows:

Y V\Y Y V\Y
uoY A B w =Y JAK  JBL
=viy \c D ) =v\vy \uck upL )’

for some nonsingular diagonal matrices J, K, L, U. Then

A1 A"'B
M ES Y = )
—CA'D—cA"'B

W ey — K~ 1A711 KA~ 1yBL
—UCKK~'A~1J~1 UDL — UCKK—'A~J~JBL

(kT AaTyT KN ATBL
\u(=cay ' up—ca'BL)

This lemma follows because we can set J, K, L, U to be diagonal matrices with 1 on the diagonal
entries and then M’ * Y can be obtained from M % Y by negating some rows and columns. [

4.3. Minors

Suppose that (M, a, b) is a special matrix representation of a Lagrangian chain-group N. We will
find special matrix representations of minors of N.

Lemma 4.8. Let (M, a, b) be a special matrix representation of a Lagrangian chain-group N on V to
K=F.letveVandT =V \ {v}. Suppose that a(v) = :I:((l)).
(1) The triple (M[T], a - T, b - T) is a special matrix representation of N \\ {v}.
(2) Thereis Y C V such that M[Y] is nonsingular and (M'[T], @’ - T, b’ - T) is a special matrix repre-
sentation of N J/ {v}, where
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;M *Y if (, ) is symmetric,
(Iy)(M xY) if(, )k is skew-symmetric,

and a’ and b’ are given by Proposition 4.5.

Proof. LetM = (mj; : i,j € V)andforeachi € V,letf; € NbeachainasitisdefinedinProposition4.1.

(1): Weknow that f;-T € N\ {v} foralli # v.Since ais eulerian, v* ¢ N and therefore {f;-T : i € T}
is linearly independent. Then {f; - T : i € T}is abasis of N\\ {v}, because dim(N\ {v}) = |T| = |V|—1.
Now it is easy to verify that (M[T], a- T, b - T) is a special matrix representation of N \\ {v}.

(2): If my, = my; = 0foralli € V, then we may simply replace a(v) with :I:(?) and b(v) with

+ ((l)) without changing the Lagrangian chain-group N. In this case, we simply apply (1) to deduce that

Y = () works.
Otherwise, there exists Y C V such that v € Y and M[Y] is nonsingular because M is skew-
symmetric or symmetric. We apply M * Y to get (M’, d’, b’) as an alternative special matrix represen-

tation of N by Proposition 4.5. Then a’(v) = :I:((l]) and then we apply (1) to (M’, d’, b'). O

Theorem 4.9. Fori = 1, 2, let M; be a fundamental matrix of a Lagrangian chain-group N; on V; to
K = F2. If Ny is simply isomorphic to a minor of Ny, then M is isomorphic to a principal submatrix of a
matrix obtained from M, by taking a pivot and negating some rows and columns.

Proof. Since K is shared by Ny and N2, My and M, are skew-symmetric if (, ) is symmetric and
symmetric if (, ) is skew-symmetric.

We may assume that Ny is a minor of N, and V; € V5. Then by Lemmas 4.7 and 4.8, Ny has a
fundamental matrix M’ that is a principal submatrix of a matrix obtained from M by taking a pivot
and negativing some rows if necessary. Then both M’ and M; are fundamental matrices of N;. By
Theorem 4.6, there is a method to get M; from M’ by applying a pivot and negating some rows and
columns if necessary. O

4.4. Representable delta-matroids
Theorem 2.1 implies the following proposition.

Proposition 4.10. Let A, B be skew-symmetric or symmetric matrices over a field F. If A is a principal
submatrix of a matrix obtained from B by taking a pivot and negating some rows and columns, then the
delta-matroid M(A) is a minor of M(B).

Bouchet [4] showed that there is a natural way to construct a delta-matroid from an isotropic
chain-group.

Theorem 4.11 (Bouchet [4]). Let N be an isotropic chain-groups N on 'V to K. Let a and b be supplementary
chains on V to K. Let

F = {X C V :there is no nonzero chain f € N such that (f(x), a(x))x = Oforallx € V\ X
and (f(x),b(x))x = 0forallx € X.}

Then, M = (V, F) is a delta-matroid.

The triple (N, a, b) given as above is called the chain-group representation of the delta-matroid M.
In addition, ifa(v), b(v) € {:i:((l)), + (?)}, then (N, a, b) is called the special chain-group representation
of M.

We remind you that a delta-matroid M is representable over a field F if M = M(A)AY for some
skew-symmetric or symmetric V x V matrix A over [ and a subset Y of V where M(A) = (V, F) where
F ={Y : A[Y]is nonsingular}.
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Suppose that N is a Lagrangian chain-group represented by a special matrix representation (M, a, b).
Then (N, a, b) induces a delta-matroid M by the above theorem. Proposition 4.4 characterizes all the
special eulerian chains in terms of the singularity of M[Y] and special eulerian chains coincide with
the feasible sets of M given by Theorem 4.11. In other words, Y is feasible in M if and only if a chain
' is special eulerian in N when a(v) = ¢’ (v) ifv € Yand d'(v) = b(v) ifv ¢ Y.

Then twisting operations MAY on delta-matroids can be simulated by swapping supplementary
chains a(x) and b(x) for x € Y in the chain-group representation as it is in Proposition 4.5. Thus we
can alternatively define representable delta-matroids as follows.

Theorem 4.12. A delta-matroid on V is representable over a field [ if and only if it admits a special chain-
group representation (N, a, b) for a Lagrangian chain-group N on V to K = F? and special supplementary
chains a, b on V to K where (, ) is either skew-symmetric or symmetric.

4.5. Connectivity

When the rank-width of matrices is defined, the function rank M[X, V \ X] is used to describe how
complex the connection between X and V \ X is. In this subsection, we express rank M[X, V \ X] in
terms of a Lagrangian chain-group represented by M.

Theorem 4.13. Let M be a skew-symmetric or symmetric V x V matrix over a field F. Let N be a Lagrangian
chain-group on V to K = F2 such that (M, a, b) is a matrix representation of N with supplementary chains
aandbonV to K. Then,

rank M[X, V \ X] = An(X) = |[X| — dim(N x X).
Proof. Let M = (mj; : i,j € V). As we described in Proposition 4.1, we let f;(j) = m;a(j) ifj € V \ {i}
and f;(i) = my; + b(i). We know that {f; : i € V}isafundamental basis of N. LetA = M[X, V \ X]. We
have rank A = rank A’ = |X| — nullity(A"), where the nullity of A’ is dim({x € FX : Alx = 0}), that is
equal to dim({x € FX : x'A = 0}).

Let ¢ : IV — N be a linear transformation with ¢(p) = > vev P(V)fy. Then, ¢ is an isomorphism
and therefore we have the following:

dim(N x X) = dim({y € N : y(j) = 0forallj € V \ X})
=dim(p " '({y € N: y(j) = 0forallj € V \ X}))
= dim({x € F' : D>_x()f;(j) = 0forallj € V \ X})

ieVv

= dim({x € F¥ : Zx(i)m,-j =0forallj e V\X})
ieX

=dim({x € F¥ : xX'’A = 0})

= nullity (A").
We deduce that rankA = |X| — dim(N x X). O

The above theorem gives the following corollaries.

Corollary 4.14. Let [ be a field and let N be a Lagrangian chain-group on V to K = F2. If My and M, are
two fundamental matrices of N, then rank M1 [X, V \ X] = rank M[X, V \ X] forall X C V.

Corollary 4.15. Let M be a skew-symmetric or symmetric V x V matrix over a field F. Let N be a Lagrangian
chain-group on V to K = F? such that (N, a, b) is a matrix representation of N. Then the rank-width of M
is equal to the branch-width of N.
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5. Generalization of Tutte’s linking theorem

We prove an analogue of Tutte’s linking theorem [23] for Lagrangian chain-groups. Tutte’s linking
theorem is a generalization of Menger’s theorem of graphs to matroids. Robertson and Seymour [14]
uses Menger’s theorem extensively for proving well-quasi-ordering of graphs of bounded tree-width.
When generalizing this result to matroids, Geelen et al. [8] used Tutte’s linking theorem for matroids.
To further generalize this to Lagrangian chain-groups, we will need a generalization of Tutte’s linking
theorem for Lagrangian chain-groups.

A crucial step for proving this is to ensure that the connectivity function behaves nicely on one of
two minors N \\ {v} and N / {v} of a Lagrangian chain-group N. The following inequality was observed
by Bixby [1] for matroids.

Proposition 5.1. Let v € V. Let N be a chain-group on V to K = F> and let X, Y C V \ {v}. Then,
AN X)) + Anyy (V) = AnXNY) +AnX U Y U {v)) — 1.
We first prove the following lemma for the above proposition.

Lemma 5.2. Letv € V. Let N be a chain-group on V to K = F% and let X, Y C V \ {v}. Then,

dim(N x (XNY))+dim(N x (XUYU{v})) >dim((N\ {v}) x X) +dim((N / {v}) x Y).
Moreover, the equality does not hold if v € N or v, € N.
Proof. We may assume that V. = X U Y U {v}. Let

Ny = {f EN: <f(v), (}))>K =0,f(x) =0forallx e V\ X\ {v}} ,

Ny ={feN:(fw), (?))K =0,f(x) =0forallx e V\ Y\ {v}}.

We use the fact that dim(Ny 4+ N3) + dim(N; N Ny) = dim(N;) + dim(N>). It is easy to see that if
f € N1 N Ny, then f(v) = 0 and therefore (N1 " N3) - (X NY) =N x (XNY)anddim(N; N Ny) =
dim(N x (X N'Y)). Moreover, Ny + N, C N and therefore dim(N) > dim(N; + N-). It is clear
that dim(N \\ {v} x X) < dimN; and dim(N / {v} x X) < dim N,. Therefore we conclude that
dim(N x (XNY))+dimN > dim(N \\ {v} x X) +dim(N / {v} x Y).

If v € N, then dim(N \\ {v} x X) < dim N; and therefore the equality does not hold. Similarly if
vy € N, then the equality does not hold as well. [

Proof of Proposition 5.1. Since N and N* have the same connectivity function A and N* \ {v} =
(N\ {(vH+ N+ J{v}=INy {v)*, (Lemma 3.9), we may assume that dim N — dim(N \{v}) € {0, 1}
(Proposition 3.6) by replacing N by N if necessary. Let X' = V \ X \ {vjand Y = V \ Y \ {v}. We
recall that
28X NY) =dimN — dim(N x (XNY)) —dim(N x X' UY U {v})),
2A8(XUY U {v}) =dimN — dim(N x XU Y U {v})) —dim(N x (X' NY")),
2N\ v} X) = dim(N \\ {v}) — dim(N \\ {v} x X) —dim(N \| {v} x X",
2Ny (Y) = dim(N / {v}) — dim(N / {v} x Y) — dim(N / {v} x Y').
It is easy to deduce this lemma from Lemma 5.2 if
2dimN — dim(N \\ {v}) —dim(N / {v}) < 2. (1)

Therefore we may assume that (1) is false. Since we have assumed that dimN — dim(N \ {v})
€ {0, 1}, we conclude that dimN — dim(N / {v}) > 2. By Proposition 3.6, we have v, € N.
Then the equality in the inequality of Lemma 5.2 does not hold. So, we conclude that



S.-i. Oum / Linear Algebra and its Applications 436 (2012) 2008-2036 2025

dim(N x (XNY))+dim(N x (XUYU{v})) > dim(N\ {v} x X) +dim(N // {v} x Y) + 1 and the same

inequality for X" and Y’. Then, Any (v} (X) + Anjy(Y) = AnX NY) +AnXUY U {v}) —3/2+1. O
We are now ready to prove an analogue of Tutte’s linking theorem for Lagrangian chain-groups.

Theorem 5.3. Let V be a finite set and X, Y be disjoint subsets of V. Let N be a Lagrangian chain-group on
V to K. The following two conditions are equivalent:

(i) AN(Z) = k for all sets Z such thatX € Z C V \ Y,
(ii) there is a minor M of N on X U Y such that Ay (X) > k.

In other words,
min{An(Z) : X € Z CV\ Y} =max{AnyuywX) :UUW =V \ (XUY), UNW = @}.

Proof. By Theorem 3.13, (ii) implies (i). Now let us assume (i) and show (ii). We proceed by induction
on|V\ (XUY).IfV = XUY,thenitis trivial. So we may assume that |V \ (XUY)| > 1. Since Ay(X)
are integers for all X € V by Lemma 3.10, we may assume that k is an integer.

Letv € V\ (XUY).Suppose that (ii) is false. Then there is no minor M of N\\ {v} or N / {v} onXUY
having Ay (X) > k. By the induction hypothesis, we conclude that there are sets X; and X, such that
XCXi SCVAY\{vEX S X; CVA\Y\ {v}, Any(y(Xq) < k,and Ayj(v)(X2) < k. By Lemma 3.10,
AN\ (v} (X1) and Ay y(v) (X2) are integers. Therefore Any(v)(X1) < k — 1and Ay py(X2) < k — 1. By
Proposition 5.1,

AN X1 + ANy (X2) > AnXT NXo) + AnX1 UXp U {v]) — 1.
This is a contradiction because Ay (X1 N X3) > kand An(X; UXo U {v}) > k. O
Corollary 5.4. Let N be a Lagrangian chain-groupon Vto K andlet X C Y C V. IfAN(Z) > An(X) for

all Z satisfying X € Z C Y, then there exist disjoint subsets C and D of Y \ X such that CUD =Y \ X and
NxX=NxY/)C\D.

Proof. ForallCand DifCUD =Y \XandCND =@, thenN x X C N x Y / C\ D.So it is enough
to show that there exists a partition (C, D) of Y \ X such that
dim(N x X) > dim(N x Y y C\ D).

By Theorem 5.3, thereisaminorM = N /C\Dof Non XU (V\ Y) such that Ap;(X) > An(X).It follows
that |X|—dim(N/C\DxX) > |X|—dim(N xX).Now we use the fact that N /C\DxX = NxY/C\D. O

6. Well-quasi-ordering of Lagrangian chain-groups

In this section, we prove that Lagrangian chain-groups of bounded branch-width are well-quasi-
ordered under taking a minor. Here we state its simplified form.

Theorem 6.1 (Simplified). Let F be a finite field and let k be a constant. Every infinite sequence N1, N, . . .
of Lagrangian chain-groups over F having branch-width at most k has a pair i < j such that Nj is simply
isomorphic to a minor of Nj.

This simplified version is enough to obtain results in Sections 7 and 8. One may first read corollaries
in later sections and return to this section.

6.1. Boundaried chain-groups

For an isotropic chain-group N on V to K = F2, we write Nt /N for a vector space over [ containing
vectors of the form a 4+ N where a € N such that
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(i) a+N=b+ Nifandonlyifa—b € N,
(ii) (@+N) + (b+N) = (a+b) +N,
(ili) c(a4+ N) =ca+ Nforc € F.

An ordered basis of a vector space is a sequence of vectors in the vector space such that the vectors
in the sequence form a basis of the vector space. An ordered basis of NJ-/N is called a boundary of N.
An isotropic chain-group N on V to K with a boundary B is called a boundaried chain-group on V to K,
denoted by (V, N, B).

By the theorem in the linear algebra, we know that

IB| = dim(N") — dim(N) = 2(|V| — dim N).

We define contractions and deletions of boundaries B of an isotropic chain-group N on V to K. Let
B={b1+N,by+N, ..., by -+ N}beaboundary of N. For a subset X of V,if |V \ X| — dim(N \\ X) =
|V| — dim N, then we define B \\ X as a sequence

by - (VAX)+N\X, by - (VAX)+N\X,...,b, - (V\X)+ N\ X}

where bj+N = b;+N and(bg(v), (é))}( = Oforallv € X.Similarlyif [V\X|—dim(N /X) = |V|—dimN,
then we define B / X as a sequence

(bl - (VAX)+N /X, by - (VAX)+N/X,....b,, - (V\X)+ N/ X}

where b; + N = b} + N and (b/(v), 0 = O for all v € X. We prove that B \\ X and B / X are
! ! ik
well-defined.

Lemma 6.2. LetN be anisotropic chain-group onV toK. Let X be asubset of V. Ifdim N—dim(N\X) = |X]|
andf € N-L, then there exists a chaing € N+ such thatf — g € Nand <g(x), ((l))>1< =0forallx € X.

Proof. We proceed by induction on |X|. If X = , then it is trivial. Let us assume that X is nonempty.
Notice that N € N+ because N is isotropic. We may assume that thereis v € X such that <f(v), (é)) #*
0, because otherwise we can take g = f.

Thenv* ¢ N.Since |V\X|—dim(N\X) = |V|—dim N, we have |V|—1—dim(N\{v}) = |V|—dim N
(Corollary 3.7) and therefore v* ¢ Nt by Proposition 3.6.

Thus there exists a chain h € N such that (h, v*) = <h(v), ((1)) >1< # 0. By multiplying a nonzero
constant to h, we may assume that

o (), =0

Letf' = f —h € N*.Then <f’(v), (3))>K = 0 and therefore f'- (V \ {v}) € Nt \ {v} = (N\ {v))*.By
using the induction hypothesis based on the fact that dim(N \\ {v}) —dim(N\ X) = |X|— 1, we deduce
that there exists a chaing’ € (N \\ {v})* suchthatf’ - (V\ {v}) —g € N\ {v} and <g’(x), (flJ)>1< =0
forallx € X \ {v}. Let g be a chain in Nt such thatg - (V \ {v}) = ¢’ and <g(v), (é))K =0.

We know that <f/(v) —g(v), ((]))>K = 0.Since (f' —g) - (V\ {v}) € N\ {v} and v* ¢ N, we deduce

thatf' — g € N.Thusf — g = f' — g + h € N. Moreover for all x € X, <g(x), (2))>1< =0. 0O

K

Lemma 6.3. Let N be an isotropic chain-group on V to K. Let X be a subset of V. Let f be a chain in Nt
such that(f(x), (5)){( = 0ifx € Xand f(x) = 0ifx € V\ X.Ifdim N — dim(N \ X) = |X|, thenf € N.
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Proof. We proceed by induction on |X|. We may assume that X is nonempty. Letv € X.By Corollary 3.7,
dim(N \\ {v}) = dimN — 1 and dim(N \\ {v}) — dim(N \\ X) = |X| — 1. Proposition 3.6 implies that
either v € N or v* ¢ N-L.

By Theorem 3.9, - (V\ {v}) € (N\\ {v})". By the induction hypothesis, f - (V \ {v}) € N\ {v}. There

isachainf’ € N such thatf'(x) = f(x) forallx € V \ {v} and <f’(v), ((l))>1< = 0.Thenf — f’ = cv* for

some ¢ € F by Lemma 3.2. Because N is isotropic, f — f' € Nt
Ifv* € N, thenf = f + cv* € N.Ifv* ¢ N, then ¢ = 0 and therefore f € N. O

Proposition 6.4. Let N be an isotropic chain-group on V to K with a boundary B. Let X be a subset of V. If
[V\ X| — dim(N \\ X) = |V| — dim N, then B \\ X is well-defined and it is a boundary of N \\ X. Similarly
if [V\X| —dim(N / X) = |V| — dim N, then B // X is well-defined and it is a boundary of N jJ X.

Proof. By symmetry it is enough to show for B\ X.Let B = {b; + N, by + N, ..., by + N}.

By Lemma 6.2, there exists a chain b; € N* such that b; + N = b, + N and <bf (), (é) >1< = Oforall
x e X.

Suppose that there are chains ¢; and d; in N+ such that bi+N = ¢i+N = d;+N and <ci x), (g)) >1< =
<d,-(x), (é))K = Oforallx € X.Sincec; —d; € N and <ci(x) —di(x), (é))K = Oforallx € X, we deduce
that (¢; — d;) - (V \ X) € N \\ X and therefore

G-(VAX)+N\X=di-(V\X)+N\X.
Hence B \\ X is well-defined.

Now we claim that B \\ X is a boundary of N \\ X. Since dim((N Y\ X)J-/(N \ X)) = 2|V \X| —
2dim(N \\ X) = 2|V| —2dimN = dimNJ-/N = |B| = |B\\ X], it is enough to show that B \\ X is
linearly independent in (N \ X)J-/N \\ X. We may assume that <bi x), (é) >1< = Oforallx € X. Let
fi=bi-(V\X) € Nt \\ X. We claim that {ff + N\ X : i = 1,2, ..., m} is linearly independent.
Suppose that > ; a;(fi + N \\ X) = 0 for some constants a; € F. This means >_{" ; a;f; € N\ X. Let f
be a chainin N such thatf - (V \ X) = >, aif; and <f(x), ((]))>1< = 0forallx € X.Letb = X[ ; a;b;.
Clearly b € N+

We consider the chain b — f. Since N is isotropic, f € N-+ and so b —fe N-+. Moreover b—-f)-
(V\X) =0and <b(x) —f(x), (8))}( = Oforall x € X. By Lemma 6.3, we deduce thatb — f € N and

therefore b = (b — f) + f € N. Since B is a basis ofNJ-/N, a; = 0 for all i. We conclude that B \\ X is
linearly independent. O

A boundaried chain-group (V’, N’, B') is a minor of another boundaried chain-group (V, N, B) if
|V'| —dimN' = |V| — dimN
and there exist disjoint subsets X and Y of V such that V/ = V\ (XU Y),N = N\ X /Y, and
B =B\X/Y.
Proposition 6.5. Aminorofaminorofaboundaried chain-group is a minor of the boundaried chain-group.
Proof. Let (Vy, Ng, Bg), (V1, N1, B1), (V2, N3, By) be boundaried chain-groups. Suppose that fori €
{0, 1}, (Vix1, Nit1, Bix1) is a minor of (V;, N;, B;) as follows:
Nit1 = Ni\Xi / Yi, Bix1 =Bi\ Xi / Yi.

It is easy to deduce that |Vy| — dim Ny = |Vo| — dim Ny and N, = No \ (Xo U X7) / (Yo U Y7).

We claim that By = By \\ (Xo U X1) / (Yo U Y7). By Corollary 3.7, we deduce that |V \ (Xo U X1)|
—dimNp \\ Xo UX7) = |Vo| —dim Ny = |V2]| —dim N3 and so it is possible to delete Xy U X7 from Vy
and then contract Yo U Y. From the definition, it is easy to show that B\, (Xo UX;7) / (YoUY7) = B,. O
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6.2. Sums of boundaried chain-groups

Two boundaried chain-groups over the same field are disjoint if their ground sets are disjoint. In
this subsection, we define sums of disjoint boundaried chain-groups and their connection types.

A boundaried chain-group (V, N, B) over a field F is a sum of disjoint boundaried chain-groups
(V4, N1, B1) and (V3, N, By) over F if

N1:NXV],N2:NXV2, andV:V1UV2.

For a chain f on V; to K and a chain g on V; to K, we denote f & g for a chain on V; U V5 to K
such that (f ® g) - Vi = fand (f & g) - Vo, = g. The connection type of the sum is a sequence
(Co, i1, - . ., Cig)) of sets of sequences in FB1 x FlB2l such that, for B = {b; +N, by +N, ..., bjg +N},

By = {b] +N1,b5+N1,-.-,b|131| + Ni},and B, = {b? + Na, b3 + N, .--,b‘ZBZ‘ + Na},

|B1] By |
Co=1(xy) e Bl x Bl (inb}) @ (Zwa) € N] ,
i=1 i=1

and fors € {1,2, ..., |B|},

1B | 1By |
G =1 y) e @Bl x ¢lbl. (inb}) ® (Zyjb]?) —bs € N] .
i=1 =1

Proposition 6.6. The connection type is well-defined.

—_

Proof. It is enough to show that the choices of b, bl-l, and bi2 do not affect Cs fors € {0, 1, 2, ..., |B|}.
Suppose that b; + N = d; + N, b,-] + Ny = dl-] + N, and bl-2 + N, = di2 + N,. Then for every
(x,y) € FIB1l [FlBZl,

[B1] |Bz|

S 0! —d) @ 3y - @) e
i=1 j=1

because (bi1 — d}) ®0eNand0 P (bj2 — d]-2) € N. Moreover if s # 0, then bs — ds € N. Hence C; is
well-defined. O

Proposition 6.7. The connection type uniquely determines the sum of two disjoint boundaried chain-
groups.

Proof. Suppose that both (V, N, B) and (V, N, B’) are sums of disjoint boundaried chain-groups
(V1, N1, B1), (V2, No, By) over a field F with the same connection type (Co, Cy, ..., Cjp)).
We first claim that N = N’. By symmetry, it is enough to show that N € N’. Let a € N. Since

a € N+ and (N x V1)L =Nt V1 by Theorem 3.4, we deduce thata - V1 € (N x Vl)l and similarly
a-V, € (N x V)T Therefore there exists (x, y) € FIP1l x B2l such that

|B1| B2 | 5

f:inb,-l —a-V; €Ny and g:Zyjbj —a-Vy €Ny
i=1 j=1

Sincef @0 € Nand0 @ g € N, we have f @ g € N. We deduce that ZIBH‘ x,b1 ® Zlel‘ y] =

a+ (f ®g) € N.Therefore (x,y) € Cp.S0,a+ (f ®g) € N as well. Since f ®0,0D g € N’ we have
a € N'. We conclude that N € N'.
Now we show that B = B'. Let bs + N be the sth element of B where b; € N». Let b, + N be

the sth element of B’ with b, € N*. Since bs - Vi € (N x Vq)* and bs - V; € (N x V,)*, there is
x,y) € FB1l % FlB2l such that
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|B1] B>
f=72xbl —bs-Vy €Ny and g= >y} —bs- V5 € Ny.
i=1 j=1
Sincef ©0,0® g € N,wehavef & g € N. Therefore Z‘ 1! xlb1 ® Z‘B yjb2 — bs € N. This implies

that (x, y) € C; and therefore Z,lzlll xib! ® Z'lel yjb? — b, € N' = N.Thus,bs + N = b, + N. O

In the next proposition, we prove that minors of a sum of disjoint boundaried chain-groups are
sums of minors of the boundaried chain-groups with the same connection type.

Proposition 6.8. Suppose that a boundaried chain-group (V, N, B) is a sum of disjoint boundaried chain-
groups (Vq, N1, By), (Vo, N, By) over afield F. Let (Cg, Cy, .. ., Cjp|) be the connection type of the sum. If

Vi \ (XUY)| —dim(N; \ X / ¥) = |V;| — dim N,
and

V2 \ (ZUW)| — dim(N2 \ Z / W) = |V3| — dim Na,
then (V\ (XUYUZUW), N\ (XUZ) /(YUW), B\ (XUZ) J (YUW)) is a well-defined minor of (V, N, B).
Moreoveritisasumof (V1 \ (XUY), Ny\X /Y,Bi\X/Y)and (Vo \ ZUW), No\Z JW,B,\Z )W)
with the connection type (Co, C1, ..., Cip)).

Proof. We proceed by inductionon [XUYUZUW|[.IfXUY UZUW = {, then it s trivial.
Suppose that [XUYUZUW| = 1. By symmetry, we may assume thatY =Z = W = (). Letv € X.
Since |Vq \ {v}| — dim(N7 \\ {v}) = |V;| — dim Ny, either v* € Ny or v* ¢ NlL by Proposition 3.6. Since
N; = N x V;, we deduce that either v* € N or v* ¢ N, Thus, |V \ {v}| —dim(N\ {v}) = |V| —dimN
and so (V \ {v}, N\ {v}, B\ {v}) is a minor of (V, N, B).
To show that (V \ {v}, N\ {v}, B\ {v})isasumof (V1 \ {v}, N7\ {v}, B\ {v}) and (V3, N,, By), it
is enough to show that

N x Vi \ {v} =N\ {v} x (Vi \ {v}), (2)

N x Vo =N\ {v} x V5. (3)

[tiseasy tosee (2)and N x Vo, € N\ {v} x V5. We claim that N \\ {v} x V, € N x V5. Suppose that

fisachainin N\ {v} x V5. There exists a chain f’ in N such that f' - V5, = f, (f’(v), (é)>K = 0, and
f/(x) =0forallx e V\ (V, U{v}) =Vq\ {v}.

Iff’(v) # 0,thenf’-V; = cv* foranonzeroc € Fby Lemma 3.2.Since Nf‘ = NV, (Theorem 3.4),

we deduce v¥ = ¢~1f" - V; € Ni-. Therefore v¥ € N; and so v¥ € N. We may assume that f'(v) = 0
by adding a multiple of v* to f’. This implies that f € N x V5. We conclude (3).
Let (Cy, Cy, - .-, Cjp)) be the connection type of the sum of (Vi \ {v}, N1 \ {v},B1 \ {v}) and

(V2, Np, By).Let B= {by + N, by + N, ..., b + N}, By = {b} + Ny, b) + Ny, "'vb|131\ + Np}, and
B, = {b%—i—Nz, b§~|—N2, R b|232| + N, }. We may assume that(bi(v), ((l))>K = 0and <b,1 (v), (é))K =0
by Lemma 6.2.

We claim that C; = C; foralls € {0, 1, ..., |B|}. Let g be a chain in Nt such thatg = 0ifs = O or
g = b otherwise. If (x, y) € Cs, then

|B1] |B2|
(inb} ® Zyjbjz) —geN. (4)
i=1 =
Since <b,1 v), ((1))>1 = 0and <g(v) ( )) = 0, we conclude that

|B1] [Ba|
(sz -\ {vh e Zy]bz) —g-(V\{v) e N\ {v}, (5)

and therefore (x, y) € C..
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Conversely suppose that (x,y) € C.. Then (5) is true. By Lemma 6.3, we deduce (4). Therefore
(x,y) € Gs.

To complete the inductive proof, we now assume that [X UY U Z U W| > 1.1f X is nonempty, let
v € X.Let X’ = X\ {v}. Then, by Corollary 3.7 we have |V; \ {v}| — dimNj \ {v} = |Vq] — dim Ny.
So (V1 \ {v}, N\ {v},B\ {v}) is the sum of (V; \ {v}, N1 \ {v}, By \ {v}) and (V>, Na, By) with
the connection type (Co, C1, . .., Cjp). We deduce our claim by applying the induction hypothesis to
(V1 \ {v}, N7\ {v}, By \ {v}) and (V,, N3, B,). Similarly if one of Y or Z or W is nonempty, we deduce
our claim. O

6.3. Linked branch-decompositions

Suppose (T, £) is a branch-decomposition of a Lagrangian chain-group N on V to K = F2. For two
edges f and g of T, let F be the set of elements in V corresponding to the leaves in the component of T \ f
not containing g and let G be the set of elements in V corresponding to the leaves in the component
of T \ g not containing f. Let P be the unique path from e to f in T. We say that f and g are linked if the
minimum width of the edges on P is equal to minrcxcv\¢ An (X). We say that a branch-decomposition
(T, £) is linked if every pair of edges in T is linked.

The following lemma is shown by Geelen et al. [8,9]. We state it in terms of Lagrangian chain-groups,
because the connectivity function of chain-groups are symmetric submodular (Theorem 3.12).

Lemma 6.9 (Geelen et al. [8,9, Theorem 2.1]). A chain-group of branch-width n has a linked branch-
decomposition of width n.

Having a linked branch-decomposition will be very useful for proving well-quasi-ordering because
it allows Tutte’s linking theorem to be used. It was the first step to prove well-quasi-ordering of
matroids of bounded branch-width by Geelen et al. [8]. An analogous theorem by Thomas [17] was
used to prove well-quasi-ordering of graphs of bounded tree-width in [14].

6.4. Lemma on cubic trees

We use “lemma on trees,” proved by Robertson and Seymour [14]. It has been used by Robertson
and Seymour to prove that a set of graphs of bounded tree-width is well-quasi-ordered by the graph
minor relation. It has been also used by Geelen et al. [8] to prove that a set of matroids representable
over a fixed finite field and having bounded branch-width is well-quasi-ordered by the matroid minor
relation. We need a special case of “lemma on trees,” in which a given forest is cubic, which was also
useful for branch-decompositions of matroids in [8].

The following definitions are in [8]. A rooted tree is a finite directed tree where all but one of the
vertices have indegree 1. A rooted forest is a collection of countably many vertex disjoint rooted trees.
Its vertices with indegree 0 are called roots and those with outdegree 0 are called leaves. Edges leaving
a root are root edges and those entering a leaf are leaf edges.

An n-edge labeling of a graph F is a map from the set of edges of F to the set {0, 1, ..., n}. Let A be
an n-edge labeling of a rooted forest F and let e and f be edges in F. We say that e is A-linked to f if F
contains a directed path P starting with e and ending with f such that A(g) > A(e) = A(f) for every
edgegonP.

A binary forest is a rooted orientation of a cubic forest with a distinction between left and right
outgoing edges. More precisely, we call a triple (F, [, r) a binary forest if F is a rooted forest where roots
have outdegree 1 and [ and r are functions defined on non-leaf edges of F, such that the head of each
non-leaf edge e of F has exactly two outgoing edges, namely [(e) and r(e).

Lemma 6.10 (Geelen et al. [8, (3.2)]). Let (F, I, r) be an infinite binary forest with an n-edge labeling A.
Moreover, let < be a quasi-order on the set of edges of F with no infinite strictly descending sequences, stch
that e < f whenever f is A-linked to e. If the set of leaf edges of F is well-quasi-ordered by < but the set of
root edges of F is not, then F contains an infinite sequence (eg, €1, . . .) of non-leaf edges such that
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(i) {eo, €1, ...} is an antichain with respect to <,
(i) I(eo) < I(e1) <l(ex) <---,
(iii) r(eg) <r(e1) <r(ex) <---.

6.5. Main theorem

We are now ready to prove our main theorem. To make it more useful, we label each element of the
ground set by a well-quasi-ordered set Q with an ordering < and enforce the minor relation to follow
the ordering <. More precisely, for a chain-group N on V to K, a Q-labeling is a mapping from V to Q.
A Q-labeled chain-group is a chain-group equipped with a Q-labeling. A Q-labeled chain-group N’ on
V' to K with a Q-labeling 1 is a Q-minor of a Q-labeled chain-group N with a Q-labeling w if N is a
minor of N and 1/ (v) < u(v) forallv € V',

Theorem 6.1 (Labeled version). Let Q be a well-quasi-ordered set with an ordering <. Let k be a constant.
Let F be a finite field. Let N1, N>, . . . be an infinite sequence of Q-labeled Lagrangian chain-groups over F
having branch-width at most k. Then there existi < j such that N is simply isomorphic to a Q-minor of N;.

Proof. We may assume that all bilinear forms (, ) for all Ni’s are the same bilinear form, that is either
skew-symmetric or symmetric by taking a subsequence. Let V; be the ground set of Nj. Let 4 : V; — Q
be the Q-labeling of N;. We may assume that |V;| > 1 for all i. By Lemma 6.9, there is a linked branch-
decomposition (T;, £;) of N; of width at most k for eachi. Let T be a forest such that the ith component
is T;. To make T a binary forest, for each T;, we create a vertex r; of degree 1, called a root, create a vertex
of degree 3 by subdividing an edge of T; and making it adjacent to r;, and direct every edge of T; so that
each leaf has a directed path from the root r;.

We now define a k-edge labeling A of T, necessary for Lemma 6.10. For each edge e of T;, let X, be
the set of leaves of T; having a directed path from e. Let A, = Li_l (Xe). We let A(e) = An;(Ae).

We want to associate each edge e of T; with a Q-labeled boundaried chain-group P, = (A, N; X
Ae, Be) with a Q-labeling p. = wila, and some boundary B, satisfying the following property:

if f is A-linked to e, then Pe is a Q-minor of Py. (6)

We note that jii|4, is a function on A, such that uila, (x) = pi(x) forallx € A..

We claim that we can assign B, to satisfy (6). We prove it by induction on the length of the directed
path from the root edge of T; to an edge e of T;. If no other edge is A-linked to e, then let B, be an arbitrary
boundary of N; X A,. If f, other than e, is A-linked to e, then choose f such that the distance between
e and f is minimal. We claim that we can obtain B, from By by Corollary 5.4 (Tutte’s linking theorem)
as follows; since T; is a linked branch-decomposition, forall Z, if A, € Z C Ay, then Ay, (Z) > Ap;(Ae).
By Corollary 5.4, there exist disjoint subsets C and D of Af \ Ae such that N x Ae = N x Af / C\\ D.
Since |Ae| — dim N; x Ae = |Af| — dim N; X Ay, Be = By // C\\ D is well-defined. This proves the claim.

Fore, f € E(T), we write e < f when a Q-labeled boundaried chain-group P, is simply isomorphic
to a Q-minor of Py. Clearly < has no infinitely strictly descending sequences, because there are finitely
many boundaried chain-groups on bounded number of elements up to simple isomorphisms and
furthermore Q is well-quasi-ordered. By construction, if f is A-linked to e, then e < f.

The leaf edges of T are well-quasi-ordered because there are only finite many distinct boundaried
chain-groups on one element up to simple isomorphisms and Q is well-quasi-ordered.

Suppose that the root edges are not well-quasi-ordered by the relation <.By Lemma 6.10, T contains
an infinite sequence ey, e1, ... of non-leaf edges such that

(i) {eo, €1, ...} is an antichain with respect to <,
(i) I(eg) = l(e1) < ---,
(iii) r(eg) < r(e1) <---.

Since A(e;) < k for all i, we may assume that A(e;) is a constant for all i, by taking a subsequence.
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The boundaried chain-group P, is the sum of Py, and Pr(,). The number of possible distinct
connection types for this sum is finite, because F is finite and k is fixed, Therefore, we may assume that
the connection types for all sums for all e; are same for all i, by taking a subsequence.

Since I(eg) < I(eq), there exists a simple isomorphism s; from Aj(e,) to a subset of Aj,). Similarly,
there exists a simple isomorphism s, from A (,) to a subset of Ay(e,) in r(eg) < r(e1). Let s be a
function on Agy = Ajey) U Ar(ey) such that s(v) = s;(v) if v € Ajey) and s(v) = s,(v) otherwise. By
Proposition 6.8, P, is simply isomorphic to a Q-minor of P,, with the simple isomorphism s. Since
I(eo) < I(e1) and r(eg) < r(eq), we deduce that P, is simply isomorphic to a Q-minor of P,, and
therefore ey < e;. This contradicts to (i). Hence we conclude that the root edges are well-quasi-
ordered by <. So there exist i < j such that N; is simply isomorphic to a Q-minor of N;. [

7. Well-quasi-ordering of skew-symmetric or symmetric matrices

In this section, we will prove the following main theorem for skew-symmetric or symmetric ma-
trices from Theorem 6.1.

Theorem 7.1. Let [ be a finite field and let k be a constant. Every infinite sequence My, M>, . . . of skew-
symmetric or symmetric matrices over F of rank-width at most k has a pairi < j such that M; is isomorphic
to a principal submatrix of (M;/A) for some nonsingular principal submatrix A of M;.

To move from the principal pivot operation given by Theorem 4.9 to a Schur complement, we need a
finer control how we obtain a matrix representation under taking a minor of a Lagrangian chain-group.

Lemma 7.2. Let My, My be skew-symmetric or symmetric matrices over a field F. Fori = 1, 2, let N be a
Lagrangian chain-group with a special matrix representation (M;, a;, b;) where a;(v) = ((1)) bi(v) = ((1))
forallv.If Ny = Ny J X\ Y, then My is a principal submatrix of the Schur complement (M, /A) of some
nonsingular principal submatrix A in M.

Proof. Fori = 1, 2, let V; be the ground set of N;. We may assume that X is a minimal set having some
Y such that Ny = N3 / X \\ Y. We may assume X # (J, because otherwise we apply Lemma 4.8. Note
that the Schur complement of a ¢ x () submatrix in M, is M> itself.

Suppose that M,[X] is singular. Let ay be a chain on V, to K = F? such that ax(v) = ((1]) if

v ¢ X and ax(v) = (?) if v € X. By Proposition 4.4, d’ is not an eulerian chain of N,. Therefore

there exists a nonzero chain f € N such that (f(v), ax(v))y = Oforallv € Vo. Thenf -V; =0
because f - V; € Ny and a; is an eulerian chain of Ny = N / X \\ Y. There exists w € X such that

f(w) # 0 because ay is an eulerian chain of N,. For every chain g € N, if <g(v), (3))>1< = 0 for

v € Y and <g(v), (?))K = Oforv € X, then g(w) = cgf(w) for some c; € F by Lemma 3.2 and
therefore g - Vi = (g — ¢gf) - Vi € No J/ (X \ {w}) \ (Y U {w}). This implies that N, / X \ Y C
Ny X\ {wh) \ (Y U {w}). Since dim(Nz / X\ Y) = dim(Nz / (X \ {w}) \ (Y U {w})) = [V;], we
have No / X\ Y = Ny / (X \ {w}) \ (Y U {w}), contradictory to the assumption that X is minimal.
This proves that M,[X] is nonsingular.

By Proposition 4.5, (M’, d’, b') is another special matrix representation of Ny where M’ = M x* X if
(, ) issymmetricor M’ = Ix(MxX) if {, ) is skew-symmetricand @', b’ are given in Proposition 4.5.
We observe thata’ - V; = a; and b’ - Vi = b;. We apply Lemma 4.8 to deduce that (M'[V4], ay, by) is
a matrix representation of Ny. This implies that M'[V;] = M. Let A = M;[X]. Notice that M'[V;] =
(M3 /A)[V1]. This proves the lemma. [

Proof of Theorem 7.1. By taking an infinite subsequence, we may assume that all of the matrices in
the sequence are skew-symmetric or symmetric. Let K = F? and assume {, ) is a bilinear form that
is symmetric if the matrices are skew-symmetric and skew-symmetric if the matrices are symmet-
ric. Let N; be the Lagrangian chain-group represented by a matrix representation (M;, a;, b;) where
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ai(x) = (é) bi(x) = (?) for all x. Then by Theorem 6.1, there are i < j such that N; is simply isomorphic
to a minor of N;. By Lemma 7.2, we deduce the conclusion. [J

Now let us consider the notion of delta-matroids, a generalization of matroids. Delta-matroids lack
the notion of the connectivity and hence it is not clear how to define the branch-width naturally for
delta-matroids. We define the branch-width of a F-representable delta-matroid as the minimum rank-
width of all skew-symmetric or symmetric matrices over [F representing the delta-matroid. Then we
can deduce the following theorem from Theorem 4.12 and Proposition 4.10.

Theorem 7.3. Let [ be a finite field and k be a constant. Every infinite sequence My, Mo, ... of -
representable delta-matroids of branch-width at most k has a pair i < j such that M; is isomorphic to a
minor of M,;.

Proof. Let M1, M>, ... be an infinite sequence of skew-symmetric or symmetric matrices over [F such
that the rank-width of M; is equal to the branch-width of M; and M; = M(M;) AX;. We may assume
that X; = ¢ for all i. By Theorem 7.1, there are i < j such that M; is isomorphic to a principal submatrix
of the Schur complement of a nonsingular principal submatrix in M;. This implies that M; is a minor
of M; as a delta-matroid. [J

In particular, when F = GF(2), then binary skew-symmetric matrices correspond to adjacency
matrices of simple graphs. Then taking a pivot on such matrices is equivalent to taking a sequence of
graph pivots on the corresponding graphs. We say that a simple graph H is a pivot-minor of a simple
graph G if H is obtained from G by applying pivots and deleting vertices. As a matter of a fact, a pivot-
minor of a simple graph corresponds to a minor of an even binary delta-matroid. The rank-width of a
simple graph is defined to be the rank-width of its adjacency matrix over F. Then Theorem 7.1 or 7.3
implies the following corollary, originally proved by Oum [11].

Corollary 7.4 (Oum [11]). Let k be a constant. Every infinite sequence Gy, Go, ... of simple graphs of
rank-width at most k has a pair i < j such that G; is isomorphic to a pivot-minor of G;.

8. Corollaries to matroids and graphs

In this section, we will show how Theorem 6.1 implies the theorem by Geelen et al. [8] on well-
quasi-ordering of F-representable matroids of bounded branch-width for a finite field F as well as the
theorem by Robertson and Seymour [14] on well-quasi-ordering of graphs of bounded tree-width.

We will briefly review the notion of matroids in the first subsection. In the second subsection,
we will discuss how Tutte chain-groups are related to representable matroids and Lagrangian chain-
groups. In the last subsection, we deduce the theorem of Geelen et al. [8] on matroids which in turn
implies the theorem of Robertson and Seymour [14] on graphs.

8.1. Matroids

Let us review matroid theory briefly. For more on matroid theory, we refer readers to the book by
Oxley [13].

A matroid M = (E, r) is a pair formed by a finite set E of elements and a rank functionr : 28 — 7
satisfying the following axioms:

(i) 0 <r(X) < |X|forallX C E.
(i) If X € Y C E, thenr(X) < r(Y).
(iii) ForallX,Y CE,;r(X) +r(Y) > r(XNY)+r(XUY).

A subset X of E is called independent if r(X) = |X|. A base is a maximally independent set. We write
E(M) = E. For simplicity, we write r (M) for r(E(M)).For Y C E(M), M\ Y is the matroid (E(M)\ Y, ')
where ' (X) = r(X).For Y C E(M), M/Y is the matroid (E(M) \ Y, ') where ' (X) = r(XUY) —r(Y).
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IfY = {e}, we denote M \ e = M \ {e} and M/e = M/{e}. It is routine to prove that M \ Y and M/Y
are matroids. Matroids of the form M \ X/Y are called a minor of the matroid M.

Given afield F and a set of vectors in ™', we can construct a matroid by letting r (X) be the dimension
of the vector space spanned by vectors in X. If a matroid permits this construction, then we say that
the matroid is F-representable or representable over F.

The connectivity function of a matroid M = (E,r) is Ay(X) = r(X) + r(E\ X) —r(E) + 1. A
branch-decomposition of a matroid M = (E, r) is a pair (T, £) of a subcubic tree T and a bijection
L : E — {t: tisaleaf of T}. For each edge e = uv of the tree T, the connected components of T \ e
induce a partition (X, Ye) of the leaves of T and we call Ap(£~1(X.)) the width of e. The width of a
branch-decomposition (T, £) is the maximum width of all edges of T. The branch-width bw(M) of a
matroid M = (E, r) is the minimum width of all its branch-decompositions. (If [E| < 1, then we define
that bw(M) = 1.)

8.2. Tutte chain-groups

We review Tutte chain-groups [24]. For a finite set V and a field F, a chain on V to F is a mapping
f :V — F.The sum f 4+ g of two chains f, g is the chain on V satisfying

f+2)x =f(x) +gx) forallx € V.
If fis a chainon V to Fand A € F, the product Af is a chain on V such that
A)(x) = Af(x) forallx € V.

It is easy to see that the set of all chains on V to F, denoted by FV, is a vector space. A Tutte chain-group
on V to F is a subspace of FV. The support of a chain f on V to Fis {x € V : f(x) # 0}.

Theorem 8.1 (Tutte [22]). Let N be a Tutte chain-group on a finite set V to a field F. The minimal nonempty
supports of N form the circuits of a F-representable matroid M{N} on V, whose rank is equal to |V| —dim N.
Moreover every F-representable matroid M admits a Tutte chain-group N such that M = M{N}.

Let S be a subset of V. For a chain f on V to F, we denote f - S for a chain on S to F such that
(f -S)(v) = f(v) forall v € S. For a Tutte chain-group NonV toF, weletN -S = {f - S : f € N},
NxS={f-S:feN,f(v)=0forallv ¢ S},and N+ = {g: gisachainonV toF, Svevf(v)glv) =
Oforallf € N}.

A minor of a Tutte chain-group N on V to F is a Tutte chain-group of the form (N x S) - T where
T C S C V.Bydefinition, itis easy to see that M{N}\X = M{N x (V\X)}and M{N}/X = M{N-(V\X)}.
So the notion of representable matroid minors is equivalent to the notion of Tutte chain-group minors.

Tutte [25, Theorem VIIL.7] showed the following theorem. The proof is basically equivalent to the
proof of Theorem 3.4.

Lemea 8.2 (Tutte [25, Theorem VIIL.7]). IfN is a Tutte chain-grouponV to Fand X C V, then (N ~X)L =
N— x X.

We now relate Tutte chain-groups to Lagrangian chain-groups. For a chain f on V to F, let f*, f, be
chains on V to K = F? such that f*(v) = (f((;’)) €K, fi(v) = (’8,)) € K for every v € V. For a Tutte

chain-group N on V to [, we let N be a Tutte chain-group on V to K such that N = {f* + g, : f €
N, g € N-}. Assume that (, ) is symmetric.

Lemma 8.3. IfN is a Tutte chain-group on V to F, then N is a Lagrangian chain-group on V to K = F>.

Proof. By definition, forallf € Nandg € N+, (f*, f*) = (g4, &) = 0and (f*, gx) = > ,cv f(V)g(V)
= 0. Thus, N is isotropic. Moreover, dim N 4+ dim N+ = dim F¥ = |V| and therefore dimN = |V/|.
(Note that N is isomorphic to N @ N- as a vector space.) So N is a Lagrangian chain-group. O
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Lemma 8.4. Let Ny, N, be Tutte chain-groups on V1, V3 (respectively) to F. Then Ny is a minor of N, as a
Tutte chain-group if and only if Ny is a minor of N, as a Lagrangian chain-group.

Proof. Let N be a Tutte chain-group on V to F and let S be a subset of V. It is enough to show that
NS=N/(V\S)andN xS =N\ (V\S).

Let us first show that N S=N/(V\S).Since dimN-S = dimN / (V\S) = |S| by Lemma 8.3,
it is enough to show thatN - S CNJ(V\S). Suppose thatf € N-Sandg € (N - S)L.By Lemma 8.2,
(N-S)t =N+ xs. Sotherearef geNsuchthatf-S=f,g-S=gandg(v) = Oforallv e V\S.
Now it is clear that f* + g, = (f* +g*) SeN/(V\S).

Now it remains to show that N x § = N\\ (V\S).Letf eEN N xS,ge (Nx S)l =NL.s.A

similar argument shows that f* + g, € N\ S and therefore N xS C N\ (V\ S). This proves our
claim because these two Lagrangian chain-groups have the same dimension. [

Now let us show that for a Tutte chain-group N on V to F, the branch-width of a matroid M{N} is
exactly one more than the branch-width of the Lagrangian chain-group N. It is enough to show the
following lemma.

Lemma 8.5. Let N be a Tutte chain-group on V to . Let X be a subset of V. Then,
miny(X) = Ag(X) + 1.

Proof. Recall that the connectivity function of a matroid is Apny(X) = r(X) +r(V\ X) —r(V) +1
and the connectivity function of a Lagrangian chain-group is Aj(X) = |X| — dim(N x X). Let Y =
V \ X. Let r be the rank function of the matroid M{N}. Then r(X) is equal to the rank of the matroid
M{N} \ Y = M{N x X}. So by Theorem 8.1, r(X) = |X| — dim(N x X). Therefore

AMNy(X) = dimN — dim(N x X) — dim(N x Y) + 1.

From our construction, Aj(X) = |X| — dim(N x X) = [X| — (dim(N x X) + dim(N1 x X)) =
|X] —dimN x X — dim(N~X)l = |X| —dimN x X — (|]X| —dimN - X) =dimN - X — dimN x X.
It is enough to show that dimN = dimN x Y +dimN - X.LetL : N — N - X be a surjective linear
transformation such that L(f) = f - X. Then dimker L = dim({f € N : f - X = 0}) = dim(N x Y).
Thus,dimN - X =dimN — dimN x Y. O

8.3. Application to matroids
We are now ready to deduce the following theorem by Geelen et al. [8] from Theorem 6.1.

Theorem 8.6 (Geelen et al. [8]). Let k be a constant and let F be a finite field. If M1, Ma, . . . is an infinite
sequence of F-representable matroids having branch-width at most k, then there exist i and j withi < j
such that M; is isomorphic to a minor of M;.

To deduce this theorem, we use Tutte chain-groups.

Proof. Let N; be the Tutte chain-group on E(M;) to [ such that M{N;} = M;. By Lemma 8.5, the branch-

width of the Lagrangian chain-group N, is at most k — 1. By Theorem 6.1, there are i < j such that

N, is simply isomorphic to a minor of N] This implies that M; = M{N;} is isomorphic to a minor of
= M({N;} by Lemma 8.4. O

Geelen et al. [8] showed that Theorem 8.6 implies the following theorem. (We omit the definition
of tree-width.) Thus our theorem also implies the following theorem of Robertson and Seymour.

Theorem 8.7 (Robertson and Seymour [14]). Let k be a constant. Every infinite sequence Gy, Go, . .. of
graphs having tree-width at most k has a pair i < j such that G; is isomorphic to a minor of G;.
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8.4. Alternative approach to matroids via matrices

For an m x n matrix A, let us define the branch-width of A to be the branch-width of the matroid
represented by (] A), where [ is the m x midentity matrix. Theorem 7.1 implies the following corollary,
which then implies Theorem 8.6 easily.

Corollary 8.8. Let [ be a finite field and let k be a constant. Every infinite sequence My, M>, . . . of matrices
over [ of branch-width at most k has a pairi < j such that M; can be obtained from a submatrix of (M;/A)
by permuting rows and columns separately for some nonsingular submatrix A of M;.

Proof. Let M{ = ( 72/,; 1\(/)1,- ) By Higman'’s lemma [6, Lemma 12.1.3], we may assume M; does not admit

Nt
is obtained from N or —N* by permuting columns and rows separately. Since rank-width of M is at most
k — 1, there exists an infinite subsequence My, , My , M, . . . such that M, is isomorphic to a principal
submatrix of (Ml/<f+1 /A}) for some nonsingular principal submatrix A} of M,QM by Theorem 7.1. Let A;
be a nonsingular submatrix of My,,, such that A} = ( 7(;4 '2)” ) Now it is easy to deduce the conclusion
1
with (i, j) = (k1, k2), (k2, k3), or (kq, k3). O

the form ( 3 ’é ) after permuting rows and columns separately. So, if M/ is isomorphic to ( 0 1(\)1 ) then M;
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