69 research outputs found

    Joint Unitary Triangularization for MIMO Networks

    Full text link
    This work considers communication networks where individual links can be described as MIMO channels. Unlike orthogonal modulation methods (such as the singular-value decomposition), we allow interference between sub-channels, which can be removed by the receivers via successive cancellation. The degrees of freedom earned by this relaxation are used for obtaining a basis which is simultaneously good for more than one link. Specifically, we derive necessary and sufficient conditions for shaping the ratio vector of sub-channel gains of two broadcast-channel receivers. We then apply this to two scenarios: First, in digital multicasting we present a practical capacity-achieving scheme which only uses scalar codes and linear processing. Then, we consider the joint source-channel problem of transmitting a Gaussian source over a two-user MIMO channel, where we show the existence of non-trivial cases, where the optimal distortion pair (which for high signal-to-noise ratios equals the optimal point-to-point distortions of the individual users) may be achieved by employing a hybrid digital-analog scheme over the induced equivalent channel. These scenarios demonstrate the advantage of choosing a modulation basis based upon multiple links in the network, thus we coin the approach "network modulation".Comment: Submitted to IEEE Tran. Signal Processing. Revised versio

    Initial results on an MMSE precoding and equalisation approach to MIMO PLC channels

    Get PDF
    This paper addresses some initial experiments using polynomial matrix decompositions to construct MMSE precoders and equalisers for MIMO power line communications (PLC) channels. The proposed scheme is based on a Wiener formulation based on polynomial matrices, and recent results to design and implement such systems with polynomial matrix tools. Applied to the MIMO PLC channel, the strong spectral dynamics of the PLC system together with the long impulse responses contained in the MIMO system result in problems, such that diagonlisation and spectral majorisation is mostly achieved in bands of high energy, while low-energy bands can resist any diagonalisation efforts. We introduce the subband approach in order to deal with this problem. A representative example using a simulated MIMO PLC channel is presented

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Novel Efficient Precoding Techniques for Multiuser MIMO Systems

    Get PDF
    In Multiuser MIMO (MU-MIMO) systems, precoding is essential to eliminate or minimize the multiuser interference (MUI). However, the design of a suitable precoding algorithm with good overall performance and low computational complexity at the same time is quite challenging, especially with the increase of system dimensions. In this thesis, we explore the art of novel low-complexity high-performance precoding algorithms with both linear and non-linear processing strategies. Block diagonalization (BD)-type based precoding techniques are well-known linear precoding strategies for MU-MIMO systems. By employing BD-type precoding algorithms at the transmit side, the MU-MIMO broadcast channel is decomposed into multiple independent parallel SU-MIMO channels and achieves the maximum diversity order at high data rates. The main computational complexity of BD-type precoding algorithms comes from two singular value decomposition (SVD) operations, which depend on the number of users and the dimensions of each user's channel matrix. In this thesis, two categories of low-complexity precoding algorithms are proposed to reduce the computational complexity and improve the performance of BD-type precoding algorithms. One is based on multiple LQ decompositions and lattice reductions. The other one is based on a channel inversion technique, QR decompositions, and lattice reductions to decouple the MU-MIMO channel into equivalent SU-MIMO channels. Both of the two proposed precoding algorithms can achieve a comparable sum-rate performance as BD-type precoding algorithms, substantial bit error rate (BER) performance gains, and a simplified receiver structure, while requiring a much lower complexity. Tomlinson-Harashima precoding (THP) is a prominent nonlinear processing technique employed at the transmit side and is a dual to the successive interference cancelation (SIC) detection at the receive side. Like SIC detection, the performance of THP strongly depends on the ordering of the precoded symbols. The optimal ordering algorithm, however, is impractical for MU-MIMO systems with multiple receive antennas. We propose a multi-branch THP (MB-THP) scheme and algorithms that employ multiple transmit processing and ordering strategies along with a selection scheme to mitigate interference in MU-MIMO systems. Two types of multi-branch THP (MB-THP) structures are proposed. The first one employs a decentralized strategy with diagonal weighted filters at the receivers of the users and the second uses a diagonal weighted filter at the transmitter. The MB-MMSE-THP algorithms are also derived based on an extended system model with the aid of an LQ decomposition, which is much simpler compared to the conventional MMSE-THP algorithms. Simulation results show that a better BER performance can be achieved by the proposed MB-MMSE-THP precoder with a small computational complexity increase

    Advanced signal processing concepts for multi-dimensional communication systems

    Get PDF
    Die weit verbreitete Nutzung von mobilem Internet und intelligenten Anwendungen hat zu einem explosionsartigen Anstieg des mobilen Datenverkehrs gefĂŒhrt. Mit dem Aufstieg von intelligenten HĂ€usern, intelligenten GebĂ€uden und intelligenten StĂ€dten wĂ€chst diese Nachfrage stĂ€ndig, da zukĂŒnftige Kommunikationssysteme die Integration mehrerer Netzwerke erfordern, die verschiedene Sektoren, DomĂ€nen und Anwendungen bedienen, wie Multimedia, virtuelle oder erweiterte RealitĂ€t, Machine-to-Machine (M2M) -Kommunikation / Internet of Things (IoT), Automobilanwendungen und vieles mehr. Daher werden die Kommunikationssysteme zukĂŒnftig nicht nur eine drahtlose Verbindung ĂŒber Gbps bereitstellen mĂŒssen, sondern auch andere Anforderungen erfĂŒllen mĂŒssen, wie z. B. eine niedrige Latenzzeit und eine massive Maschinentyp-KonnektivitĂ€t, wĂ€hrend die DienstqualitĂ€t sichergestellt wird. Ohne bedeutende technologische Fortschritte zur Erhöhung der SystemkapazitĂ€t wird die bestehende Telekommunikationsinfrastruktur diese mehrdimensionalen Anforderungen nicht unterstĂŒtzen können. Dies stellt eine wichtige Forderung nach geeigneten Wellenformen und Signalverarbeitungslösungen mit verbesserten spektralen Eigenschaften und erhöhter FlexibilitĂ€t dar. Aus der Spektrumsperspektive werden zukĂŒnftige drahtlose Netzwerke erforderlich sein, um mehrere FunkbĂ€nder auszunutzen, wie zum Beispiel niedrigere FrequenzbĂ€nder (typischerweise mit Frequenzen unter 10 GHz), mm-WellenbĂ€nder (einige hundert GHz höchstens) und THz-BĂ€nder. Viele alternative Technologien wie Optical Wireless Communication (OWC), dynamische Funksysteme und zellulares Radar sollten ebenfalls untersucht werden, um ihr wahres Potenzial abzuschĂ€tzen. Insbesondere bietet OWC ein großes, aber noch nicht genutztes optisches Band im sichtbaren Spektrum, das Licht als Mittel zur InformationsĂŒbertragung nutzt. Daher können zukĂŒnftige Kommunikationssysteme als zusammengesetzte Hybridnetzwerke angesehen werden, die aus einer Anzahl von verschiedenen drahtlosen Netzwerken bestehen, die auf Funk und optischem Zugang basieren. Auf der anderen Seite ist es eine große Herausforderung, fortschrittliche Signalverarbeitungslösungen fĂŒr mehrere Bereiche von Kommunikationssystemen zu entwickeln. Diese Arbeit trĂ€gt zu diesem Ziel bei, indem sie Methoden fĂŒr die Suche nach effizienten algebraischen Lösungen fĂŒr verschiedene Anwendungen der digitalen Mehrkanal-Signalverarbeitung demonstriert. Insbesondere tragen wir zu drei verschiedenen Anwendungsgebieten bei, d.h. Wellenformen, optischen drahtlosen Systemen und mehrdimensionaler Signalverarbeitung. GegenwĂ€rtig ist das Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) die weit verbreitete Multitragetechnik fĂŒr die meisten Kommunikationssysteme. Um jedoch die CP-OFDM-Nachteile in Bezug auf eine schlechte spektrale Eingrenzung, Robustheit in hoch asynchronen Umgebungen und UnflexibilitĂ€t der Parameterwahl zu ĂŒberwinden, wurden viele alternative Wellenformen vorgeschlagen. Solche MehrfachtrĂ€gerwellenformen umfassen einen Filter bank Multicarrier (FBMC), ein Generalized Frequency Division Multiplexing (GFDM), einen Universal Filter Multicarrier (UFMC) und ein Unique Word Orthogonal Orthogonal Frequency Division Multiplexing (UW-OFDM). Diese neuen Luftschnittstellenschemata verwenden verschiedene AnsĂ€tze, um einige der inhĂ€renten MĂ€ngel bei CP-OFDM zu ĂŒberwinden. Einige dieser Wellenformen wurden gut untersucht, wĂ€hrend andere sich noch in den Kinderschuhen befinden. Insbesondere die Integration von Multiple-Input-Multiple-Output (MIMO) -Konzepten mit UW-OFDM und UFMC befindet sich noch in einem frĂŒhen Forschungsstadium. Daher schlagen wir im ersten Teil dieser Arbeit neuartige lineare und sukzessive InterferenzunterdrĂŒckungstechniken fĂŒr MIMO UW-OFDM-Systeme vor. Das Design dieser Techniken zielt darauf ab, EmpfĂ€nger mit einer geringen RechenkomplexitĂ€t zu erhalten. Ein weiterer Schwerpunkt ist die Anwendbarkeit von Space-Time Block Codes (STBCs) auf UW-OFDM und UFMC-Wellenformen. Zu diesem Zweck stellen wir neue Techniken zusammen mit Detektionsverfahren vor. Wir vergleichen auch die Leistung dieser Wellenformen mit unseren vorgeschlagenen Techniken mit den anderen Wellenformen des Standes der Technik, die in der Literatur vorgeschlagen wurden. Wir zeigen, dass raumzeitblockierte UW-OFDM-Systeme mit den vorgeschlagenen Methoden nicht nur andere Wellenformen signifikant ĂŒbertreffen, sondern auch zu EmpfĂ€ngern mit geringer RechnerkomplexitĂ€t fĂŒhren. Der zweite Anwendungsbereich umfasst optische Systeme im sichtbaren Band (390-700 nm), die in Plastic Optical Fibers (POFs), Multimode-Fasern oder OWC-Systemen wie der Kommunikation ĂŒber Visible Light Communication (VLC) verwendet werden können. VLC kann Lösungen fĂŒr eine Reihe von Anwendungen anbieten, einschließlich drahtloser lokaler, persönlicher und Körperbereichsnetzwerke (WLAN, WPAN und WBANs), Innenlokalisierung und -navigation, Fahrzeugnetze, U-Bahn- und Unterwassernetze und bietet eine Reihe von Datenraten von wenigen Mbps zu 10 Gbps. VLC nutzt voll sichtbare Light Emitting Diodes (LEDs) fĂŒr den doppelten Zweck der Beleuchtung und Datenkommunikation bei sehr hohen Geschwindigkeiten. Daher verwenden solche Systeme IntensitĂ€tsmodulation und Direct Detection (IM / DD), wodurch gefordert wird, dass das Sendesignal reellwertig und positiv sein sollte. Dies impliziert auch, dass die herkömmlichen Wellenformen, die fĂŒr die Radio Frequency (RF) Kommunikation ausgelegt sind, nicht direkt verwendet werden können. Zum Beispiel muss eine hermetische Symmetrie auf das CP-OFDM angewendet werden, um ein reellwertiges Signal zu erhalten (oft als Discrete Multitone Transmission (DMT) bezeichnet), das im Gegenzug die Bandbreiteneffizienz verringert. DarĂŒber hinaus begrenzt die LED / LED-Treiberkombination die elektrische Bandbreite. Alle diese Faktoren erfordern die Verwendung spektral effizienter Übertragungsverfahren zusammen mit robusten Entzerrungsschemata, um hohe Datenraten zu erzielen. Deshalb schlagen wir im zweiten Teil der Arbeit Übertragungsverfahren vor, die fĂŒr solche optischen Systeme am besten geeignet sind. Insbesondere demonstrieren wir die Leistung der PAM-BlockĂŒbertragung mit Frequenzbereichsausgleich. Wir zeigen, dass dieses Schema nicht nur leistungsstĂ€rker ist, sondern auch alle modernen Verfahren wie CP-DMT-Schemata ĂŒbertrifft. Wir schlagen auch neue UW-DMT-Schemata vor, die vom UW-OFDM-Konzept abgeleitet sind. Diese Schemata zeigen auch ein sehr ĂŒberlegenes BitfehlerverhĂ€ltnis (BER) -Performance gegenĂŒber den herkömmlichen CP-DMT-Schemata. Der dritte Anwendungsbereich konzentriert sich auf mehrdimensionale Signalverarbeitungstechniken. Bei der Verwendung von MIMO, STBCs, Mehrbenutzerverarbeitung und MehrtrĂ€gerwellenformen bei der drahtlosen Kommunikation ist das empfangene Signal mehrdimensional und kann eine multilineare Struktur aufweisen. In diesem Zusammenhang können Signalverarbeitungstechniken, die auf einem Tensor-Modell basieren, gleichzeitig von mehreren Formen von DiversitĂ€t profitieren, um Mehrbenutzer-Signaltrennung / -entzerrung und KanalschĂ€tzung durchzufĂŒhren. Dieser Vorteil ist eine direkte Konsequenz der Eigenschaft der wesentlichen Eindeutigkeit, die fĂŒr matrixbasierte AnsĂ€tze nicht verfĂŒgbar ist. Tensor-Zerlegung wie die Higher Order Singular Value Decomposition (HOSVD) und die Canonical Polyadic Decomposition (CPD) werden weithin zur DurchfĂŒhrung dieser Aufgaben empfohlen. Die Leistung dieser Techniken wird oft mit zeitraubenden Monte-Carlo-Versuchen bewertet. Im letzten Teil der Arbeit fĂŒhren wir eine Störungsanalyse erster Ordnung dieser Tensor-Zerlegungsmethoden durch. Insbesondere fĂŒhren wir eine analytische Performanceanalyse des Semi-algebraischen Frameworks fĂŒr approximative Canonical polyadic decompositions Simultaneous matrix diagonalizations (SECSI) durch. Das SECSI-Framework ist ein effizientes Werkzeug zur Berechnung der CPD eines rauscharmen Tensor mit niedrigem Rang. DarĂŒber hinaus werden die erhaltenen analytischen AusdrĂŒcke in Bezug auf die Momente zweiter Ordnung des Rauschens formuliert, so dass abgesehen von einem Mittelwert von Null keine Annahmen ĂŒber die Rauschstatistik erforderlich sind. Wir zeigen, dass die abgeleiteten analytischen Ergebnisse eine ausgezeichnete Übereinstimmung mit den Monte-Carlo-Simulationen zeigen.The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfil other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with improved spectral characteristics and signal processing solutions with an increased flexibility. Moreover, future wireless networks will be required to exploit several frequency bands, such as lower frequency bands (typically with frequencies below 10 GHz), mm-wave bands (few hundred GHz at the most), and THz bands. Many alternative technologies such as optical wireless communication (OWC), dynamic radio systems, and cellular radar should also be investigated to assess their true potential. Especially, OWC offers large but yet unexploited optical band in the visible spectrum that uses light as a means to carry information. Therefore, future communication systems can be seen as composite hybrid networks that consist of a number of different wireless networks based on radio and optical access. On the other hand, it poses a significant challenge to come up with advanced signal processing solutions in multiple areas of communication systems. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. In particular, we contribute to three different scientific fields, i.e., waveforms, optical wireless systems, and multi-dimensional signal processing. Currently, cyclic preïŹx orthogonal frequency division multiplexing (CP-OFDM) is the widely adopted multicarrier technique for most of the communication systems. However, to overcome the CP-OFDM demerits in terms of poor spectral containment, poor robustness in highly asynchronous environments, and inflexibility of parameter choice, and many alternative waveforms have been proposed. Such multicarrier waveforms include filter bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM), universal filter multicarrier (UFMC), and unique word orthogonal frequency division multiplexing (UW-OFDM). These new air interface schemes take different approaches to overcome some of the inherent deficiencies in CP-OFDM. Some of these waveforms have been well investigated while others are still in its infancy. Specifically, the integration of multiple-input multiple-output (MIMO) concepts with UW-OFDM and UFMC is still at an early stage of research. Therefore, in the first part of this thesis, we propose novel linear and successive interference cancellation techniques for MIMO UW-OFDM systems. The design of these techniques is aimed to result in receivers with a low computational complexity. Another focus area is the applicability of space-time block codes (STBCs) to UW-OFDM and UFMC waveforms. For this purpose, we present novel techniques along with detection procedures. We also compare the performance of these waveforms with our proposed techniques to the other state-of-the-art waveforms that has been proposed in the literature. We demonstrate that space-time block coded UW-OFDM systems with the proposed methods not only outperform other waveforms significantly but also results in receivers with a low computational complexity. The second application area comprises of optical systems in the visible band (390-700 nm) that can be utilized in plastic optical fibers (POFs), multimode fibers or OWC systems such as visible light communication (VLC). VLC can provide solutions for a number of applications including wireless local, personal, and body area networks (WLAN, WPAN, and WBANs), indoor localization and navigation, vehicular networks, underground and underwater networks, oïŹ€ering a range of data rates from a few Mbps to 10 Gbps. VLC takes full advantage of visible light emitting diodes (LEDs) for the dual purpose of illumination and data communications at very high speeds. Because of the incoherent nature of the LED sources, such systems employ intensity modulation and direct detection (IM/DD), thus demanding that the transmit signal should be real-valued and positive. This also implies that the conventional waveforms designed for the radio frequency (RF) communication cannot be directly used. For example, a Hermitian symmetry has to be applied to the CP-OFDM spectrum to obtain a real-valued signal (often referred to as discrete multitone transmission (DMT)) that in return reduces the bandwidth eïŹƒciency. Moreover, the LED/LED driver combination limits the electrical bandwidth. All these factors require the use of spectrally eïŹƒcient transmission schemes along with robust equalization schemes to achieve high data rates. Therefore, in the second part of the thesis, we propose transmission schemes that are best suited for such optical systems. SpeciïŹcally, we demonstrate the performance of PAM block transmission with frequency domain equalization. We show that this scheme is not only more power eïŹƒcient but also outperforms all of the state-of-the-art schemes such as CP-DMT schemes. We also propose novel UW-DMT schemes that are derived from the UW-OFDM concept. These schemes also show a much superior bit error ratio (BER) performance over the conventional CP-DMT schemes. The third application area focuses on multi-dimensional signal processing techniques. With the use of MIMO, STBCs, multi-user processing, and multicarrier waveforms in wireless communications, the received signal is multidimensional in nature and may exhibit a multilinear structure. In this context, signal processing techniques based on a tensor model can simultaneously beneïŹt from multiple forms of diversity to perform multi-user signal separation/equalization and channel estimation. This advantage is a direct consequence of the essential uniqueness property that is not available for matrix based approaches. Tensor decompositions such as the higher order singular value decomposition (HOSVD) and the canonical polyadic decomposition (CPD) are widely recommended for performing these tasks. The performance of these techniques is often evaluated using time consuming Monte-Carlo trials. In the last part of the thesis, we perform a ïŹrst-order perturbation analysis of the truncated HOSVD and the Semi-algebraic framework for approximate Canonical polyadic decompositions via Simultaneous matrix diagonalizations (SECSI). The SECSI framework is an eïŹƒcient tool for the computation of the approximate CPD of a low-rank noise corrupted tensor. Especially, the SECSI framework shows a much improved performance and comparatively low-complexity as compared to the conventional algorithms such as alternative least squares (ALS). Moreover, it also facilitates the implementation on a parallel hardware architecture. The obtained analytical expressions for both algorithms are formulated in terms of the second-order moments of the noise, such that apart from a zero-mean, no assumptions on the noise statistics are required. We demonstrate that the derived analytical results exhibit an excellent match to the Monte-Carlo simulations

    Joint Unitary Triangularization for Gaussian Multi-User MIMO Networks

    Full text link
    The problem of transmitting a common message to multiple users over the Gaussian multiple-input multiple-output broadcast channel is considered, where each user is equipped with an arbitrary number of antennas. A closed-loop scenario is assumed, for which a practical capacity-approaching scheme is developed. By applying judiciously chosen unitary operations at the transmit and receive nodes, the channel matrices are triangularized so that the resulting matrices have equal diagonals, up to a possible multiplicative scalar factor. This, along with the utilization of successive interference cancellation, reduces the coding and decoding tasks to those of coding and decoding over the single-antenna additive white Gaussian noise channel. Over the resulting effective channel, any off-the-shelf code may be used. For the two-user case, it was recently shown that such joint unitary triangularization is always possible. In this paper, it is shown that for more than two users, it is necessary to carry out the unitary linear processing jointly over multiple channel uses, i.e., space-time processing is employed. It is further shown that exact triangularization, where all resulting diagonals are equal, is still not always possible, and appropriate conditions for the existence of such are established for certain cases. When exact triangularization is not possible, an asymptotic construction is proposed, that achieves the desired property of equal diagonals up to edge effects that can be made arbitrarily small, at the price of processing a sufficiently large number of channel uses together.Comment: Extended version of published paper in IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2662-2692, May 201

    doi:10.1155/2011/614571 Research Article MMSE Beamforming for SC-FDMA Transmission over

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider transmit beamforming for single-carrier frequency-division multiple access (SC-FDMA) transmission over frequency-selective multiple-input multiple-output (MIMO) channels. The beamforming filters are optimized for minimization of the sum of the mean-squared errors (MSEs) of the transmitted data streams after MIMO minimum mean-squared error linear equalization (MMSE-LE), and for minimization of the product of the MSEs after MIMO MMSE decision-feedback equalization (MMSE-DFE), respectively. We prove that for SC-FDMA transmission in both cases eigenbeamforming, diagonalizing the overall channel, together with a nonuniform power distribution is the optimum beamforming strategy. The optimum power allocation derived for MMSE-LE is similar in spirit to classical results for the optimum continuous-time transmit filter for linear modulation formats obtained by Berger/Tufts and Yang/Roy, whereas for MMSE-DFE the capacity achieving waterfilling strategy well known from conventional single-carrier transmission schemes is obtained. Moreover, we present a modification of the beamformer design to mitigate an increase of the peak-to-average power ratio (PAPR) which is in general associated with beamforming. Simulation results demonstrate the high performance of the proposed beamforming algorithms. 1
    • 

    corecore