14,504 research outputs found

    Inverse spectral problems for Dirac operators with summable matrix-valued potentials

    Full text link
    We consider the direct and inverse spectral problems for Dirac operators on (0,1)(0,1) with matrix-valued potentials whose entries belong to Lp(0,1)L_p(0,1), p[1,)p\in[1,\infty). We give a complete description of the spectral data (eigenvalues and suitably introduced norming matrices) for the operators under consideration and suggest a method for reconstructing the potential from the corresponding spectral data.Comment: 32 page

    Adaptive high-order splitting schemes for large-scale differential Riccati equations

    Get PDF
    We consider high-order splitting schemes for large-scale differential Riccati equations. Such equations arise in many different areas and are especially important within the field of optimal control. In the large-scale case, it is critical to employ structural properties of the matrix-valued solution, or the computational cost and storage requirements become infeasible. Our main contribution is therefore to formulate these high-order splitting schemes in a efficient way by utilizing a low-rank factorization. Previous results indicated that this was impossible for methods of order higher than 2, but our new approach overcomes these difficulties. In addition, we demonstrate that the proposed methods contain natural embedded error estimates. These may be used e.g. for time step adaptivity, and our numerical experiments in this direction show promising results.Comment: 23 pages, 7 figure

    Bayesian semi non-negative matrix factorisation

    Get PDF
    Non-negative Matrix Factorisation (NMF) has become a standard method for source identification when data, sources and mixing coefficients are constrained to be positive-valued. The method has recently been extended to allow for negative-valued data and sources in the form of Semi-and Convex-NMF. In this paper, we re-elaborate Semi-NMF within a full Bayesian framework. This provides solid foundations for parameter estimation and, importantly, a principled method to address the problem of choosing the most adequate number of sources to describe the observed data. The proposed Bayesian Semi-NMF is preliminarily evaluated here in a real neuro-oncology problem.Peer ReviewedPostprint (published version

    Analysis of new direct sampling indicators for far-field measurements

    Full text link
    This article focuses on the analysis of three direct sampling indicators which can be used for recovering scatterers from the far-field pattern of time-harmonic acoustic measurements. These methods fall under the category of sampling methods where an indicator function is constructed using the far-field operator. Motivated by some recent work, we study the standard indicator using the far-field operator and two indicators derived from the factorization method. We show the equivalence of two indicators previously studied as well as propose a new indicator based on the Tikhonov regularization applied to the far-field equation for the factorization method. Finally, we give some numerical examples to show how the reconstructions compare to other direct sampling methods

    Learning Output Kernels for Multi-Task Problems

    Full text link
    Simultaneously solving multiple related learning tasks is beneficial under a variety of circumstances, but the prior knowledge necessary to correctly model task relationships is rarely available in practice. In this paper, we develop a novel kernel-based multi-task learning technique that automatically reveals structural inter-task relationships. Building over the framework of output kernel learning (OKL), we introduce a method that jointly learns multiple functions and a low-rank multi-task kernel by solving a non-convex regularization problem. Optimization is carried out via a block coordinate descent strategy, where each subproblem is solved using suitable conjugate gradient (CG) type iterative methods for linear operator equations. The effectiveness of the proposed approach is demonstrated on pharmacological and collaborative filtering data

    ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

    Full text link
    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.Comment: 55 pages, 14 figures, 2 table
    corecore