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LINEAR ORDINARY DIFFERENTIAL EQUATIONS:
REVISITING THE IMPULSIVE RESPONSE METHOD
USING FACTORIZATION

Abstract. We present an approach to the impulsive response methodlfamg linear ordi-
nary differential equations based on the factorizatiorhefdifferential operator. In the case
of constant coefficients this approach avoids the followimgre advanced methods: distri-
bution theory, Laplace transform, linear systems, the ggitleeory of linear equations with
variable coefficients and variation of parameters. The chsariable coefficients is dealt
with using the result of Mammana about the factorization ofa linear ordinary differen-
tial operator into a product of first-order (complex) fastoas well as a recent generalization
of this result to the case of complex-valued coefficients.

1. Introduction

The aim of this paper is to revisit the impulsive responsehmetfor solving linear
ordinary differential equations using the factorizatidrite differential operator into
first-order factors.

Our purpose is two fold. On the one hand, we illustrate theaathges of this
approach for finding a particular solution of the non-hommagris equation as a gen-
eralized convolution integral. This is of course elemeniarthe case of constant
coefficients. However, the approach by factorization dagssaem to be well known
in the case of variable coefficients, where an old result offiieana comes into play.

On the other hand, we obtain a representative formula fosdhetions of the
homogeneous equation with variable coefficients in ternteoivatives of the impul-
sive response kernel. This formula generalizes a well-knfaemula for the case of
constant coefficients (see [9, p. 139], or [4, formula (26373]).

Let us give a brief overview of the main results of this pafgupposd. is a
linear ordinary differential operator factored in the form

& L= (g 109) (g o)) = (g o0

wheredy,...,0n are suitable functions defined on a common intetvdlhen one can
solve the non-homogeneous equation

2 Ly = f(x),

with f € CO(1), in the following way. Define the impulsive response kemglelt) =
Oa;--an(Xt) ON1 x | recursively as follows: fon =1 set

ga(xt) = et arar
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forn> 2 set .
Goy-ay (1) = | G0 (%) oy, 1 (81) s

Then the function

X

@) v = [ gx0fmd  (oxel)

X
is the unique solution of (2) with the initial conditions

y(X0) =Y (X0) = -+ =y " Y(x0) = 0.

This can be proved by induction an using only Fubini’'s theorem for interchanging
the order of integration in a double integral, and the fomanfialr solving first-order
linear equations.

By induction one can also prove that, for ang I, the functionx — g(x,t) is
the unique solution of the homogeneous equdtips: 0 with the initial conditions

(4) ylt)=0, foro<j<n-2,  y"H)=1

Moreover, under suitable regularity assumptions on thetfansa; (1 < j <n), one
can prove that the general solution of the homogeneousieguzdn be written as a
linear combination of partial derivatives of the kergék,t) with respect to the variable
t, namely
n—1

©) V%) = YK+ C1 52 (K0) + o1 TP (),
for anyt € 1. In other words, then functionsx — %g(x,t) (0<j<n-1)forma
fundamental system of solutions of the homogeneous equiati@nyt € |I. The proof
is again by induction on.

Consider a linear constant-coefficient differential oparaf ordem, written in
the usual form

d\" d\"?! d
L= (&> +a (&) + o Jran—la(ﬁLana
whereay, ..., a, € C. Then we can factdr in the form (1)
d d d
= () () (™)
whereAq, Az, ..., Ay € C are the roots of the characteristic polynomial. The kergel i

computed to bg(x,t) = g(x—t), whereg(x) = g(x,0) is the impulsive response, i.e.,
the function defined recursively ti (x) = € (A € C), and

X
Ohg-An(X) :/o Oy (X—1) Oy, (D) DL

This is the unique solution dfy = 0 with the initial conditions (4) at= 0.
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Consider finally a linear ordinary differential operatothwariable coefficients

L= <§X)n+a1<x> (&) a0 e,

whereay,...,a, are real- or complex-valued continuous functions on annatd .

In the real case, Mammana [7, 8] proved thatan always be factored in the form
(1), with (generally) complex-valued functions such thaij € ci-l(1,c)(1<j<
n). Recently, the result of Mammana was generalized to the chsomplex-valued
coefficients [1]. We can then apply the previous resultsi®dieneral case as well.

In this paper we present the material outlined above in theviing order. We
first discuss, in Section 2, the case of constant coefficiémthis case the factorization
method avoids the use of more sophisticated methods, suli$talution theory, and is
accessible to anyone with a basic knowledge of calculusiaadd algebra. Moreover,
this method provides an elementary proof of existence,uerigss and extendability
of the solutions of the initial value problem (homogeneousat).

In Section 3 we consider the case of variable coefficientsfirdtebriefly review
the result of Mammana and its recent generalization to tmepéex case. Then we
prove (3) and (5). The required regularity on the coeffigentn order for the result
(5) to hold is _

ajeC™i7l() 1<j<n-1), aeCo).
We also give the general relation between the coefficignits (5) and the initial data
bj = yl)(t). Finally, we give another proof of (5) using the relationvse¢n the kernel
g and any fixed fundamental system of solutions of the homameequation.

2. The case of constant coefficients

Consider a linear constant-coefficient non-homogeneoustim of ordein
(6) Ly=y" +ary™ Y +agy™? + - +an-1y +any = f(x),

whereay, ..., a, are real or complex constants, ah a real- or complex-valued con-
tinuous function in an interval The following result is well known (see the references
below for proofs involving different methods).

THEOREM 1. Let g be the solution of the homogeneous equatios Dysatis-
fying the initial conditions

(7) y(0) =Y (0)=---y"2(0) =0, y"H(0)=1
Then the function
® v = ["gx-0f®dt  Go.xe

X0

solveq(6) with the initial conditions

y(X0) =Y (Xo) = -+ = y" Y (x0) = 0.
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This may be verified by differentiation under the integrghsiising the formula

d rx X9
©) &/XO F(x,t)dt:F(x,x)+/)<0 a—l):((x,t)dt.

However, this proof is not constructive, and the origin afnfiala (8) remains rather
obscure fom > 2. Constructive proofs are possible, based on one of thevioih
more advanced approaches: (i) distribution theory (seBi@position 14 p. 138, and
formula (111,2;70) p. 139)]); (ii) the Laplace transforme@ [4, formula (28) p. 82]);
(iii) linear systems (see [3, chapter 3]).

One can also use the general theory of linear equations \aitiable coeffi-
cients and the method of variation of parameters ([2], aivap)t However within this
approach, the occurrence of the particular solution as aatotion integral (i.e., for-
mula (8)) is rather indirect, and appears only at the endethtleory (see [2, formula
(10.3) p. 86, and exercise 4 p. 89)).

We present a constructive yet elementary proof based omtherization of the
differential operatot into first-order factors, namely

d\" d\"? d
L:(&) +a1(&) +o a1 +an

d d d
(10) —(&—}\l) (&—AZ)"'(&—}\n)y
whereh, A2, ..., Ay € C are the roots of the characteristic polynomial

PAA) =A"+a A"t fa, A +an

(not necessarily distinct, each counted with its multipfic This proof also provides
a recursive formula for calculating the functign Moreover, it provides existence,
unigueness and extendability of the solutions of the ihitidue problem with trivial
initial conditions at some point. The other ingredientste proof are the theorem of
Fubini, the formula for solving first-order linear equatoand induction.

THEOREM 2. Let A1,A2,...,An be n complex numbers (not necessarily all
distinct), let L be the differential operator (10), and leefC®(1), | an interval. Then
the initial value problem

Ly=f(x)
() { Y(e) =Y (Xo) =+ = Y™ V(xg) =0

has a unique solution, defined on the whole of |, and given bydta (8), where
g = 0\,.-\, is the function defined recursively as follows: forr we set g(x) = e
(A €C), forn> 2 we set

(12) B2 = [ B XDy, O

The function g, ..., is the unique solution of the homogeneous problers Dywith the
initial conditions(7).
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Proof. We proceed by induction am The theorem holds far= 1. Indeed the solution
of the first-order problem

y —Ay=f(x)
y(%) =0

(with A € C) is unique and given by
X
y(x) = / U () dt.
X0

Assuming the theorem holds far- 1, let us prove it fon. Consider then the problem
(11) with L given by (10). Lettingh= (%( — )\n) y, it is easy to check that the function
h solves the problem

(%(_}\1) (%—Az) (%—Anl)h: f(x)
h(xo) = ' (x9) = --- = h("=2)(xg) = 0.

(The initial conditions follow fromh =y — A,y by computingt’, h”, ..., h("2 and
settingx = Xp.) By the inductive hypothesis, we have

(13) h(x) = / S (- Df(t)dt.
Xo
Sincey solves
Y = Any =h(x)
y(x0) =0,

we have

y(x) = /x: e Yn(t)dt.

Substituting (13) into this formula, we obtain
X t
y(x) = / o, (x—1) ( / gM...)\nl(ts)f(s)ds> dt
) )

_ /X:(/ngxn(x—t)gh._.xn1(t—s)dt) f(s)ds
_ /X:(/OXngn(x—s—t)gxl...Anl(t)dt) f(s)ds
= /X:gh...xn(xfs)f(s)ds

We have interchanged the order of integration in the sedaaddubstitutetd with t + s
in the third, and used (12) in the last. A similar proof by intian shows thag, ...\,
is the unique solution dfy = 0 with the initial conditions (7). O
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If we take in particulaff = 0, we get that the only solution of the homogeneous
problemLy = 0 with all vanishing initial data at = Xg is the zero functiony = 0. By
linearity, this implies the uniqueness of the initial vapreblem (homogeneous or not)
with arbitrary initial data.

The functiong = g,,...5, is called thempulsive responsef the differential op-
eratorL. It can be computed in terms of the exponentil% by the recursive formula
(12). For example fon = 2, we haveg(x) = [J€2*-VeMtdt, and we obtain:

(i) if A1 # A2 (& A=a2—4a, #0) then

a0 = 5= (-

(i) if A1 =A2 (& A=0)then
g(x) = xe'1x,
If L has real coefficients anfil< 0, thenA1 > = a i with o, € R, B # 0, and we get

(14) g(x) = % e sin(Bx).

For generia, if Aj # Aj fori # j (all distinct roots), one gets
g(x) = C1M* 4 @2+ - Cre™,

where

1 .
Ci=——— 1<j<n).
D i (N =) ( )
If A1 =A2=---= A, then

7; n—1 _A1x
g(x)f(n_l)!x X,

In the general case one can prove by inductiok timat if A1, ..., Ak are thedis-
tinctroots ofp(A), of multiplicitiesmy, ..., m, then there exist polynomial, . .. , Gy,
of degreesm — 1,...,mx— 1, such that

k
g(x) = ZlGJ(X)eMX-
J:

A recursive formula for calculating the polynomidls for k roots in terms of those
for k— 1 roots can easily be derived. For example for two distinctsai,Ap, of
multiplicities mp, mp, we find

Mol M-Iyt mp—r —2 X
Gi(x) = 20 % ( ' m—1 > (A — Ag)mutmp—r—1’
e ! 1—A2)

andGg is obtained fronG; by interchanging\1 <> A2 andmy < .
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Alternatively, one can use the formula for the polynomi@lsbased on the
partial fraction expansion of/p(A) (see [4, formula (21) p. 81], or [9, pp. 141-142]).

The functiong also provides a simple formula for the general solution ef th
homogeneous equation. Indeed, one can easily prove bytindwnn that the general
solution ofLy = 0 can be written as

n-1

(15) yx) =S ¢igP(x)  (¢eC).
JZOJ i

In other words, then functionsg,d’,g”,...,g"" Y are linearly independent solutions
of the homogeneous equation and form a basis of the vectoe gifdts solutions (a
fundamental system of solutions). lfhas real coefficients theg is real, and the
general real solution dfy = 0 is given by (15) witicj € R.

The relationship between the coefficienisin (15) and the initial data at the
pointx = 0, bj = y1)(0) (0 < j <n-—1), is given by

Co = bpi+taby o+ +an_2bi+an_1bo
¢t = bpotaby s+ +an_sbi+an_2bo
(16) :
Ch-3 = by+aibs+ahg
Ch2 = bi+aibg
Cnfl - bo

This formula s easily proved from (15) by computiyigy”, ..., y("V and taking«=0.
One gets a linear system that can be solved recursively &(fjB).

If we impose the initial conditions at any poixg we can use, in place of (15),
the translated formula

n—-1

(17) yx) =S cjg¥ (x—xo).
,Zo i

This follows from the fact that has constant coefficients and is therefore invariant
under translations, i.eL(Ty,Y) = Tx(Ly), wheretyy(X) = y(Xx—Xo). The relation
between the coefficients andbj = yI) (xo) is then the same as before.

3. The case of variable coefficients
Consider the linear non-homogeneous differential eqnatf@rdern
(18)  Ly=y"+a()y" V+a()y" P+t an- 19y +an(x)y = f(),

where a,...,ap, f are real- or complex-valued continuous functions in anrirad .
The following result generalizes Theorem 1.
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THEOREM3. Foranyx € I, let X— gy, (X) be the solution (which exists, unique
and defined on the whole of 1) of the homogeneous equatiea Qyvith the initial
conditions

y(x0) =Y (x0) = =y"P(x0) =0, y"V(x0)=1
Define
g:1x1—=C, g(xt)=a((x (xtel).
Then the function y
Y= [ gx0tOdt 0. xel)

X
solveq(18) with the initial conditions
Y(x0) =Y (x0) = =y" V(x0) =0

The proof by direct verification (using (9)) is similar to thef Theorem 1. The
analogue of (7) is given by the conditions (valid for any1)

(19) l(a%)jg(x,t)] =0 for 0<j<n-2 l(a%)nlg(x,t)] =1.

X=t X=t

We will now give a constructive proof of this result analogda the one given
in the case of constant coefficients.

Suppose first tha; are real-valued. It was proved in [7] (far= 2) and in [8]
(general case) that a linear ordinary differential operato

(20) L= <dix)n+al<x> (dix) n1+~~~+anl<x>dix+an<x>,

with continuous real-valued coefficieras € C°(1), can always be decomposed as a
product (composition) of first-order operators

(21) L= <%(0(1(x)> <%( az(x)) <%(orn(x)> )

where the functionsiy,...,a, are in general complex-valued and continuous in the
entire interval, and such thadij € CI=1(1,C) (1 < j < n). (See [8, Teorema generale
p. 207].)

A local factorization of the form (21) was already known (see, fatamce,
[6, p. 121]). The new point established in [7, 8] is that one alvays find aglobal
decomposition of the form (21) (i.e., valid on the whole df thtervall) if one allows
the aj to be complex-valued. The proof is based on the existencefofidgamental
system whose complete chain of Wronskians is never zeroore specifically, let
2,2,...,Z, be a fundamental system of solutions of the homogeneousiequgi = 0
(L given by (20)) with the property that the sequence of Wramskieterminants
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2

Al
2 7

Wo=1 W =21, Wo =

y eee oy Wj=

(71 (- (i-1)
(with 1 < j < n) never vanishes on the interndal A generic fundamental system does
not have this property. Recall that . . ., z, are linearly independent solutionslof= 0
if and only if their Wronskianw, is nonzero at some point of in which casew, is
nowhere zero oh. However, the lower-dimensional Wronskiamg j < n, can vanish
in 1. Mammana proves that a fundamental system wittx) # 0, for allx € | and for
all j, always exists, wittz; (generally) complex-valued. The functioas in (21) are
then the logarithmic derivative of ratios of Wronskiansmedy

d Wn—j+1

ai=—Io
= ax 9 W |

(1<j<n).

For example take = 2, and lety, y» be two linearly independent real solutions
of Ly =y’ +a1(X)y +az(X)y = 0 (a1, real-valued). Consider the complex-valued
function .

Y1 +iys

y1+iy2

This is well defined and continuous In Indeed if we had/1(xo) = y2(xp) = 0 for
somexg € I, then the Wronskian ofy,y» would vanish aky. Moreoverf satisfies the
Riccati equation in the interval

B=

(22) B +p°+aip+ax=0.

It is then easy to check that

(23) L<%()2+al%(+az<%(+ﬁ+al) <%(B).

In general iff satisfies (22) then (23) holds, and conversely. In turn theguivalent

to the existence of a solutianof Ly = 0 that vanishes nowhere in The relationship
betweern and is then = a’ /a anda = e/ PdX, There always exists suctcamplex-
valuedsolution, namelya = y; + iy2 as above. On the other hand, in general, there
is no real-valued solution with this property. Indeed, théstence of a real-valued
solutiona with a(x) # 0, for allx € 1, is equivalent (fot open or compact) to the fact
thatL is disconjugate o, i.e., every (non trivial) real solution dfy = 0 has at most
one zero in (see [5, Corollary 6.1 p. 351]). In that case we get a factbion of the
form (23) with real factors. In any case,fifis a complex function satisfying (22), we
get

IMB(X) = ImPB(xo) e Fo@RBMFTaOIA ),
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Thus the imaginary part @ either vanishes identically on or it is always nonzero
there. In the second case, the general solutidtyef 0 can be written in the form [7]

y(x) = €1 (¢ cosw(x) + c2SiNw(X)) (c1,c2 €R),

where " «
Nx) = / ReB(t)dt, (x) = / Im B(t) dt.
) Xo
The functionw is strictly monotone in. Moreover, the kerna(x, Xo) is given by

B T
g(X,%o) ImB(xo)en Sino(x).
This is similar to the constant-coefficient case with commenjugate roots op(A)
(cf. (14)).

Now let us go back td_ given by (20), and suppose the coefficieafsare
complex-valued. It was proved in [1] that any linear ordindifferential operator
(20) with aj € C°(I,C) admits a factorization of the form (21), with; € CI=(I,C)
(1 < j <n). Again the proof consists in establishing the existenca afndamental
system with a nowhere-vanishing complete chain of Wromskia

The following result generalizes Theorem 2 and implies Taepn3. It also
provides a recursive formula for calculatigdf the factorization (21) ot is known.

THEOREM4. Let a1,07,...,0, be nfunctions such thatj € ijl(l,(C) (for
1< j <n),and letL be the differential operat¢21). Then the initial value problem

{ Ly = f(x)

Y(x0) =Y (x0) = -+ =y D (x0) =0

has a unique solution, defined on the whole of I, and given &yaimula
X

(24) v = [ gkttt

where g= gq;,..a, IS the function on k | defined recursively as follows: for 1 we
set
ga (X, 1) = eftxor(s)ds,

for n > 2 we set

X
@5) Goy-n (1) = | Goy(%.9) Gy 4 (1) IS

The function %= gq, .., (X,t) is, for any te |, the unique solution of the homogeneous
problem Ly= 0 with the initial conditiong19).

Proof. The proof by induction om is entirely analogous to that of Theorem 2. The
result holds fom = 1 since the unique solution of

{ y —ax)y=f(x)
Y(X0) =0
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y(x):/X:efiX“@de(t)dt:/X:gq(x,t)f(t)dt.

Assuming the theorem holds far— 1, one finds that the functioh = (%( — an(x)) y
is given by

h(x):/X:gql...qnfl(x,t)f(t)dt.

Thus
X
y(x) = / an (X, 1)h(t) dt
%o
X t
= [ ganxt) ( / gal-..qnl(t,S)f(s)ds) dt
X0 Xo
X X
= / (/ gan(x,t)gal...an1(t,3)dt) f(S)dS
X0 S
X
= / gal---an(X,S)f(S)dS
%o
The last part is proved again by induction in a similar way. O

The functiong(x,t) may be called thémpulsive response kernef L. If g is
known, then one can also find the general solution of the hemegus equation as
follows. Observe that in the case of constant coefficienthave

(26) g(x,t) =g(x—t),

whereg(x) = g(x,0) is the impulsive response. This identity follows from thean-
ance under translations of the differential operator

In the general case this invariance breaks down. The d'mé@j;? (j=1)no
longer satisfy the homogeneous equation, and (15) doesematrglize in its present
form. Consider, however, the translated formula (17) artitadhat, using (26), we
can rewrite the derivativg!)(x —t) as a partial derivative of the kerng(x,t) with
respect to the second variabjenamely

Dix—t)= (1) =2
g (x—1) = (-1 55 (x).
In this form, formula (17) does indeed generalize to the ads@riable coefficients,
under suitable assumptions of regularity on the functgnd < j <n).

THEOREMS. Letthe coefficients of L i20)satisfy g € C"171(1,C) (1< j <
n—1), a, € C%(1,C). Then the general solution of the homogeneous equatiea Ly
can be written in the form

(27) yx) =S (-1 ==
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for any te I. In other words, the n functions

0 . anfl
(28) X gx ), ~ S0, s (-1 (1)

are a fundamental system of solutions o&LQ for any te I.

Proof. LetL be factored according to (21). By equating (20) to (21), it ba verified
that the conditiongj € C"~1~1 (1 < j <n—1),a, € C°, imply

(29) aneC™t a;jeC™? vj=1,...,n-1

For example fon = 2 we have

E—or E—0( = g2—0(+0()£+0(0(—or’
dx H)\dx %) \dx (a1 xRy

Equating this to(%()2 +ard +a gives

a; = —(01+0az)
az = 01102 — Ob.

If aj,a € C°, then we getr, € C! from the second equation and < C° from the
first. Forn = 3 we obtain

ap = — (a1 +az+03)
a = 0102 + 0103+ 0203 — O — 2015
az = —010203 + 0105 + 0205 + aza, — af.

If a; € C! anday,az € C, then we getiz € C? from the third equationy, € C! from
the second, and; € C! from the first. In general, the coefficieat contains the term
0(5“1) (1< j <n). Thusa, € C%impliesa, € C"1, andaj € C"~ I~ timpliesa; € C"~2
(1< j <n-1). We also observe that under the conditions (29) the kegnek, (x,t)
hasn — 1 partial derivatives with respect to In fact from (25) one easily proves by
induction onn that for alln > 2,

0
(30) Egal...an(x,t) = —Qayan (X t) — A1(t) Gy (X, 1)

Taking more derivatives with respectt@nd iterating, shows that forO k < n—1,
(%)kggl_,_qn(x,t) is a linear combination of

(32) o 1--an (% 1)s Qo 1-an(X1), -y Gagoan (X, 1),

with coefficients depending only drand involving the derivatives of the functioas.
The least regular coefficient is that @f, _q,(X,t), it containsa* Y so it is of class
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Cc" k-1 if (29) holds. It follows that(%)”*lgo(l_,_Oln exists continuous oh x I, and
Moreovemq,. o, € C"1(I x 1) if (29) holds. For example fan = 2,3,4 we get

0
agulaz(xat) = _gaz(xvt) _al(t)galdz(xat)7

0\ 2
(5) Gasoana () = Gay(t) + (01 +02) (1) Gazaa (%)
+ (G% - all) (t) 9010(20(3 (Xat)v

<%) 3gc‘lo‘20‘30(4 (1)

—Gay (X,t) — (01 + a2+ 03) (t) Gaga, (X 1)
+ (20 + ah — a105 — 0F — a3) (t) Gapazas (X:t)

=+ (3(]]_0(/1 — C(/l, — C(?) (t) g(]1(12(13(14(xvt)'

It is also clear that the partial derivativgs= (%)"gal,_un (0 <k <n-1) solve the
homogeneous equatidty = 0 in the variablex. (Just permute the derivatives with
respect tak in (20) with those with respect to This is permissible as one can prove
from (30) and (29) that the mixed derivativ(a(%)j(%)"g(](l_,_o(n exist continuous on

I x| forall j,kwith0< j <n, 0<k<n-—1. Alternatively, observe that the operator
L in (21) annihilates each term in (31), as easily seen.)

We will now prove the following result: ldt be given by (21) witho; complex-
valued and satisfying (29). Then the general solutiohyo£ O is given by (27). This
clearly implies the theorem.

We proceed by induction am Forn = 1 the solution of(%( — O((X)) y=0is
y(x) =cel @95 _cq (xt) (c=y(t)eC, telfixed).
Suppose the result holds for- 1. Lettingh = (%( — cxn(x)) yin Ly =0 gives

<%( or1(X)> (%( O(nl(X)> h=0.

By the inductive hypothesis, we have
n-2 K 0 k
h(x) = kzodk(—l) <a> Ouy-ap_ g (X1) (dk € C).
Sincey solvesy’ — any = h, we get
n-2 K X a k
©2) Y=g+ 5 b1 [ Gl (5 ) G a(s0s
K= t t

wherec = y(t). From (25) one easily proves by induction the following fertes for
the kernely = gq,. o, (analogous to (19)):

a k a n—-1
(33) [ - g(x,t)] =0 for 0<k<n- 2, [ _ g(x,t)] _ (71)n71.

t=x
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Using these (witm — 1 in place ofn) we also find from (25)

a\k a\k
(ﬁ) Oay---an /gan XS)(at) Ou;..a,4(St)ds  for 0<k<n-2.

We can then rewrite (32) as

n-2 0 k
= t (D% ( = ) Goy an(x:1).
Y00 = G c1) + 5 (-1 (51 ) G antc)

To complete the proof we need to show that the tegm(x,t) can be written as a

k
linear combination of denvatweéat) Ou;..an(X1) (0 <k < n—1), with coefficients
depending only ot. This follows from the formula

(34) (—1)"1gg,(x,t) = (:t+0(n 1(t)> ~ <gt+cx1( )> Joyan(X 1), VN>2,

which is easily proved by induction an or equivalently, by iterating (30) rewritten as

d
(g 1)) Bov-ax) = G- 1)
This concludes the proof of the theorem. O

Itis possible to solve for the coefficientgii (27) in terms of the initial data at
the pointx=t, bj = yi)(t) (0< j <n—1). The resultis as follows:

(35) s = f(—l)ki(k)cf(" Dty  (0<j<n-1),

where the functions — ¢;(x) are given by (16) witta; (x) in place ofa;, namely
1

—j-
Cj(x) = ZD ar(X)bn_r—j-1 (p=1, 0<j<n-1).

Formula (35) can be proved by induction onthough it is most easily proved using
distribution theory or variation of parameters (see beldvar example fon= 2,34,
we get

n=2 = { g(l)i g;;" ay(t)bo
{ €o = b +au(t)by + (a2(t) — & (t))bo
(36) n=3 = €1 =bi+ai(t)bg
€2 = bo,
Co = ba+ay(t)bz + (az(t)—ay (t))ba + (as(t) —a5(t)+a4 (t))bo
CL=bo+ al(t)b1+ (8.2('[ 2a1( ))bo
& =bi+ai(t)by
€3 = bp.

n=4 =
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Note that the derivatives of theg start appearing in the, as soon as > 3. Also note
that the conditionaj € C" =1 (1< j <n—1),a, € C%in Theorem 5 are the minimal
ones under which formula (35) makes sense. If we require ttoager conditions
a; €C" I (1< j<n), thenaj € C"1 (Vj =1,...,n), and the kerneliy, ...a, (X t) has
n partial derivatives with respect tqrather tham — 1). Moreovemyy,..q, € C"(I x 1),
andgq, .q, Satisfies the following adjoint equation in the variable

(g on0) (g +oma0) - (G + a0 ) gop-anlxt) =0,

with the initial conditions (33). (Just app(yd% +0p(t)) to both sides of (34).)

REMARK 1. In order to make contact with the variation of parametezthud,
we observe the following relation between the kergelnd any given fundamental
system of solutions of the homogeneous equatiow;, . . ., n:

B7) g t) =y1(}) (W) Han+Y200(W(t) Han+++Ya()W () Han,

whereW(t) is the Wronskian matrix o, ..., yn, andW(t)~! is the inverse ofV(t).

To prove (37) we just expargl -,t) in terms of they; and determine the coefficients by
imposing the initial conditions (19). Recall thawift) = detw(t), then(W(t)~1)j, =

w;j (t)/w(t) (1 < j <n), wherewj(t) is the determinant obtained frowit) by replacing

the j-th column by Q0,...,0,1. Thus (24)—(37) agrees with [2, eq. (6.2) p. 123], where
the variation of constants method was used, or with [3, ed5{6. 87], where linear
systems were used instead. (See also [2, exercise 6 p. h@3B,groblem 21 p. 101].)

Using (37) we can give another proof of Theorem 5 as followarHer to show
that the functions in (28) are linearly independent fortadl I, it is enough to verify
that their Wronskian determinant

g —dg atzg . (*1)”*10{1719
0x9 —0x0t0 axatzg e (,1)nflaxatnflg
W =1 : . : (xt)
a)r(lilg 762716tg a)r(]*latzg e (71)“7162—16{’]—19

is different from zero at some poirte |, for example ak =t. (We are using here the
notationd, = 0/0z.)
We first rewrite (37) in the following form (see [2, exercisg6125]):

ya(t) ya(t) yn(t)
yi(t) Ya(t) Yn(t)
)= — : : :
0= (-2) 0y (0-2) (n-2)
yi () oy, Tt yn (1)
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Using this, the formula/ (t) = —ay (t)w(t) ([2, p- 115]), and the rule for differentiating
a determinant (cf. [2, p. 114]), it is easy to prove that att the Wronskian matrix
W(Xat)lk: (fl)ka){(){‘g(x,t) (OS ],kS nfl)

has zero entries above the anti-diagonal, and all entriehisrdiagonal equal to 1.
Thus

0 0O 01
0 0O 1
W(t,t): Lo : :(71)n(nfl)/2'
0 01
0 1
1

The entries below the anti-diagonal Wi(t,t) can be computed by the same
method. In general, these entries involve the derivatiVéiseocoefficientsyj, and can
be used to obtain (35). Indeed, by computyrg”, ..., y"" from (27) and imposing
the initial conditions ak =t, bj = yl)(t) (0 < j < n—1), we obtain the linear system

€ bo
- €1 b,
wen | o= .
Ch-1 bn—1

Formula (35) is obtained then by inverting the mathixt, t):

& bo
¢ - . by
. =W(t,t) .
6n71 bnfl

For example fon = 2,3,4, we get the following formulas foN/(t,t) and its inverse,
thus proving (36):

wo-(3 L) e (40 5),

0O O 1 a—a a 1
W(t,t) = ( 0 1 —ay )(t), W(t,t)"1= ( a 1 0 )(t),
1

—a; al-apta



Linear ordinary differential equations 335

0O O 0 1
- 10 O 1 —a
Weh=| g ;4 _a & — 8y 24, (1),
1 —a a-apta), 2may—az—a+a,—3aja—a]
az—a, +/a’1’ a—a a 1
~ -1 ap —2a; a1 1 O
Wit,t) L= a ]
1 0 0 O
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