5,756 research outputs found

    Deepwater Gulf of Mexico Oil Spill Scenarios Development and Their Associated Risk Assessment

    Get PDF
    World’s growing energy demand has pushed oil companies to explore and produce hydrocarbons in complex and technologically challenging deepwater environments. These difficult and complex operations involve the risk of major accidents as well, demonstrated by disasters such as the explosion and fire on the UK production platform Piper Alpha and capsizing of the Deepwater Horizon rig in the Gulf of Mexico (GoM). Accidents cause death, suffering, pollution of the environment, disruption of business and bad reputation to oil industry. A quantitative risk analysis technique has been used in this study to identify and categorize risk associated with different life phases of a deepwater well. Volume of oil released to the environment is used as a risk indicator. Five oil spill scenarios related to drilling and production life phases of a deepwater well are modeled. Risks associated with drilling an exploratory well in the deepwaters of GoM are analyzed in Scenario-1. A representative well location and corresponding reservoir properties were used to estimate the worst case discharge rates (WCD). Fault tree analysis (FTA) was performed to identify and categorize different hazards. Unexpected pore pressure and delayed response to an emergency situation were identified as two most important parameters contributing to overall risk of the system. In Scenario-2 an underground blowout was modeled by using representative geological settings from Popeye-Genesis field. A shallower low pressure zone is exposed to a deeper high pressure zone during drilling. The time to recharge the shallower zone to its fracture pressure is estimated. The shallower zone will transmit hydrocarbons to sea floor once its fracture pressure is reached. Risks associated with production life phase of a deepwater well are modeled in scenario-3. A representative well location and corresponding reservoir properties were used to estimate the WCD. FTA showed that sand screen and subsea tree control failures were main elements contributing to risk. In scenario-4 risk associated with floating production and offloading (FPSO) system for GoM are quantitatively and qualitatively presented. Scenario-5 deals with oil spill risk associated with severe weather conditions. An example mudslide calculation for SP-70 block of GoM is presented

    A Factor Analysis of the Dimensions of Economic Damages from Tropical Storms and Hurricanes in Louisiana

    Get PDF
    Coastal communities are highly sensitive to disturbances from tropical storms and hurricanes. This is particularly true in Louisiana and along the U.S. Gulf Coast where economies are largely dependent on tourism and natural resource based industry. Since Hurricane Katrina and, more recently, Hurricane Sandy, there has been an increase in concern for how coastal communities will mitigate and respond to the impacts of coastal storms. These concerns are made more acute by the increasing population concentrated along the coast and the risk of more frequent and more severe coastal storms in the future. A commonly advocated-for method of storm damage mitigation is wetland preservation and restoration. This research explores the extent to which wetlands attenuate damages from coastal storms in Louisiana from 1997-2008. Using factor analysis, the relationships between wetlands, storm events and coastal populations are explored. The factor analysis suggests that wetland presence is associated with a reduction in economic damages from coastal storms. The results also demonstrate a distinct negative association between the degree of relative estuarine wetland coverage and the degree of economic risk present, illustrating the trade-off between development and conservation. Additionally, factor scores are computed to examine the extent to which wetlands reduce damages according to storm intensity. Representative storms are presented as case-studies to illustrate the result that wetlands may not be a suitable measure of protection against stronger storms. The value of the storm protection provided by wetlands is discussed in monetary terms and economic considerations are highlighted. Finally, limitations and consideration regarding the specifications of the model are discussed and future research areas are highlighted

    Capacity-building activities related to climate change vulnerability and adaptation assessment and economic valuation for Fiji

    Get PDF
    The Terms of Reference for this work specified three objectives to the Fiji component: Objective 1a: to provide a prototype FIJICLIM model (covered under PICCAP funding) Objective 1b: to provide training and transfer of FIJICLIM Objective 1c: to present and evaluate World Bank study findings and to identify future directions for development and use of FIJICLIM (2-day workshop) Proceedings of the training course and workshop were prepared by the Fiji Department of Environment. The summaries from these proceedings reflect a very high degree of success with the contracted activities

    A comparison between conventional and LANDSAT based hydrologic modeling: The Four Mile Run case study

    Get PDF
    Models designed to support the hydrologic studies associated with urban water resources planning require input parameters that are defined in terms of land cover. Estimating the land cover is a difficult and expensive task when drainage areas larger than a few sq. km are involved. Conventional and LANDSAT based methods for estimating the land cover based input parameters required by hydrologic planning models were compared in a case study of the 50.5 sq. km (19.5 sq. mi) Four Mile Run Watershed in Virginia. Results of the study indicate that the LANDSAT based approach is highly cost effective for planning model studies. The conventional approach to define inputs was based on 1:3600 aerial photos, required 110 man-days and a total cost of 14,000.TheLANDSATbasedapproachrequired6.9mandaysandcost14,000. The LANDSAT based approach required 6.9 man-days and cost 2,350. The conventional and LANDSAT based models gave similar results relative to discharges and estimated annual damages expected from no flood control, channelization, and detention storage alternatives

    Tsunami And Storm Surge Modeling In Bay Of Bengal [GC220.4.B43 C442 2007 f rb].

    Get PDF
    Kemusnahan yang disebabkan oleh Andaman tsunami pada 26 Disember 2004 merupakan masalah utama komuniti di seluruh dunia. Pelbagai usaha telah diambil untuk mengurangkan impak yang disebabkan oleh tsunami yang mungkin berlaku pada masa hadapan. Destruction due to 26 December 2004 Andaman tsunami has become a major concern to the communities around the world. Several efforts have been undertaken to minimize the potential impacts of future tsunamis

    The application of remotely sensed data in support of emergency rehabilitation of wildfire-damage areas

    Get PDF
    The depth, texture, and water holding capacity of the soil before the fire in the Bridge Creek area of Deschutes National Forest (1979) were determined from available aerial photography and LANDSAT MSS digital data. Three days after the fire was out, complete coverage of the burned area was acquired on 35 mm color infrared film from a near vertical or low oblique perspective. These photographs were used in assessing the condition of vegetation, and in predicting the likelihood of survival. Negatives from vertical natural photography obtained during the same flight were used to produce 3R prints from which large scale mosaics of the entire burned area were obtained. LANDSAT MSS data obtained on the day the fire was under control were used to evaluate vegetative vigor (by calculating a band 7/band 5 ratio value for each spectral class) and to determine the boundary between altered and unaltered land

    Geotechnical Aspects of Sub-Sea Tunnelling on the Musaimeer Pumping Station and Outfall Tunnel Project

    Get PDF
    Musaimeer outfall tunnel is one of the longest storm water tunnels in the world with a total length of 10.2 km. The tunnel is connected via a drop shaft to the main pump station. This system will accommodate surface and storm water received from the drainage networks of 270 km2 of urban areas in southern Doha. Though the geological conditions remain similar to those in Qatar Metro projects, in this project, the tunneling faced new challenges because the outfall tunnel alignment is 40 m deep (25m below the water of Gulf plus 15m under the seabed). This project involves the construction of the outfall tunnel with an internal diameter of 3700 mm sloped at 0.05% upward to the riser shaft. The riser shaft, which is located at the end of the outfall tunnel, is connected to a diffuser field located on the seabed. The tunnel will be excavated by Tunnel Boring Machine (TBM) and is expected to encounter possible water inflows at high pressure, complex mixed ground, weaker ground strata prone to cavities or voids and the presence of vertical and lateral fractures connected to the seabed. The geotechnical parameters in sub-sea tunnelling are being assessed through all main project stages a) Evaluation b) Verification and c) Application during the execution of this project which is currently in progress. The tunnel alignment traverses through the Rus formation, Midra shale and Simsima Limestone. The TBM will require periodic atmospheric or hyperbaric interventions at the cutter head for cutter tool maintenance. During this process, the face can be mapped and compared to off-shore borehole logs. Geophysical seismic reflection/refraction and resistivity surveys have been carried out along the tunnel alignment. A non-intrusive radar system facility, installed on the TBM cutter-head, able to probe ahead in real time the ground conditions is also presented. By looking at TBM excavation parameters such as, thrust force, torque, penetration, cutter head rotation speed, correlations can be made to the above surveys and a look ahead plan can be developed to aid TBM operation
    corecore