49,084 research outputs found

    Systems biology in animal sciences

    Get PDF
    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed ā€˜omicsā€™ technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A ā€˜systemā€™ approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with ā€˜system approachesā€™ in animal sciences, providing exciting opportunities to predict and modulate animal traits

    The Rules of Human T Cell Fate in vivo.

    Get PDF
    The processes governing lymphocyte fate (division, differentiation, and death), are typically assumed to be independent of cell age. This assumption has been challenged by a series of elegant studies which clearly show that, for murine cells in vitro, lymphocyte fate is age-dependent and that younger cells (i.e., cells which have recently divided) are less likely to divide or die. Here we investigate whether the same rules determine human T cell fate in vivo. We combined data from in vivo stable isotope labeling in healthy humans with stochastic, agent-based mathematical modeling. We show firstly that the choice of model paradigm has a large impact on parameter estimates obtained using stable isotope labeling i.e., different models fitted to the same data can yield very different estimates of T cell lifespan. Secondly, we found no evidence in humans in vivo to support the model in which younger T cells are less likely to divide or die. This age-dependent model never provided the best description of isotope labeling; this was true for naĆÆve and memory, CD4+ and CD8+ T cells. Furthermore, this age-dependent model also failed to predict an independent data set in which the link between division and death was explored using Annexin V and deuterated glucose. In contrast, the age-independent model provided the best description of both naĆÆve and memory T cell dynamics and was also able to predict the independent dataset

    What Economists can learn from physics and finance

    Get PDF
    Some economists (Mirowski, 2002) have asserted that the neoclassical economic model was motivated by Newtonian mechanics. This viewpoint encourages confusion. Theoretical mechanics is firmly grounded in reproducible empirical observations and experiments, and provides a very accurate description of macroscopic motions to within high decimal precision. In stark contrast, neo-classical economics, or ā€˜rational expectationsā€™ (ratex), is a merely postulated model that cannot be used to describe any real market or economy, even to zeroth order in perturbation theory. In mechanics we study both chaotic and complex dynamics whereas ratex restricts itself to equilibrium. Wigner (1967) has isolated the reasons for what he called ā€˜the unreasonable effectiveness of mathematics in physicsā€™. In this article we isolate the reason for what Velupillai (2005), who was motivated by Wigner (1960), has called the ineffectiveness of mathematics in economics. I propose a remedy, namely, that economic theory should strive for the same degree of empirical success in modeling markets and economies as is exhibited by finance theory.Nonequilibrium; empirically based modelling; stochastic processes; complexity

    Towards dynamical network biomarkers in neuromodulation of episodic migraine

    Get PDF
    Computational methods have complemented experimental and clinical neursciences and led to improvements in our understanding of the nervous systems in health and disease. In parallel, neuromodulation in form of electric and magnetic stimulation is gaining increasing acceptance in chronic and intractable diseases. In this paper, we firstly explore the relevant state of the art in fusion of both developments towards translational computational neuroscience. Then, we propose a strategy to employ the new theoretical concept of dynamical network biomarkers (DNB) in episodic manifestations of chronic disorders. In particular, as a first example, we introduce the use of computational models in migraine and illustrate on the basis of this example the potential of DNB as early-warning signals for neuromodulation in episodic migraine.Comment: 13 pages, 5 figure

    Modelling the Economic Interaction of Agents with Diverse Abilities to Recognise Equilibrium Patterns

    Get PDF
    We model differences among agents in their ability to recognise temporal patterns of prices. Using the concept of DeBruijin sequences in two dynamic models of markets, we demonstrate the existence of equilibria in which prices fluctuate in a pattern that is independent of the fundamentals and that can be recognised only by the more competent agents.DeBruijin, price fluctuations, sunspots, bounded rationality, bounded recall.

    Control of complex networks requires both structure and dynamics

    Get PDF
    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.Comment: 15 pages, 6 figure
    • ā€¦
    corecore