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1. Modeling in Finance and Economics  
 
Some economists (Mirowski, 2002) have asserted that the neo-
classical economic model was motivated by Newtonian 
mechanics. This viewpoint encourages confusion. Theoretical 
mechanics is firmly grounded in reproducible empirical 
observations and experiments, and provides a very accurate 
description of macroscopic motions to within high decimal 
precision. In stark contrast, neo-classical economics, or ‘rational 
expectations’ (ratex), is a merely postulated model that cannot 
be used to describe any real market or economy, even to zeroth 
order in perturbation theory. In mechanics we study both 
chaotic and complex dynamics whereas ratex restricts itself to 
equilibrium. Wigner (1967) has isolated the reasons for what he 
called ‘the unreasonable effectiveness of mathematics in 
physics’. In this article we isolate the reason for what Velupillai 
(2005), who was motivated by Wigner (1960), has called the 
ineffectiveness of mathematics in economics. I propose a 



remedy, namely, that economic theory should strive for the 
same degree of empirical success in modeling markets and 
economies as is exhibited by finance theory. 
  

2. Existence Proofs without Dynamics are Dangerously 

Misleading  

 
I begin with a topic of much interest to an economist: existence 
proofs of equilibrium in the absence of dynamics may be 
completely misleading. I provide an example to back up my 
claim.  

 
Consider Osborne’s model of lognormal market prices, used by 
Black and Scholes (1973) to price options based on the 
assumption of Gaussian returns. The stochastic differential 
equation generating the model is 

 
(1) 
 
where r and σp are constants, and dB(t) is the Wiener process. If 

we would take r<0, negative expected gain rate, then the drift 
term would provide us with an example of a restoring force, an 
example of the Invisible Hand (McCauley, 2004). Does the 
Invisible Hand pull the market toward equilibrium? From (1), 
the corresponding Fokker-Planck equation describing the price 
density g(p,t) is 

dp = rpdt + p! pdB(t)



 

 
(2) 
and indeed has a very simple equilibrium solution g(p) with 
fat tails in price p. However, the time dependent solution of 
(2), the lognormal density g(p,t), spreads without limit as t 
increases and does not approach statistical equilibrium at all! 
In particular, the second moment <p2> increases without limit. 
The reason that equilibrium is not approached is that the 
spectrum of the Fokker-Planck operator defined by (2) is 
continuous, not discrete. Imposing finite limits on p, price 
controls, would yield a discrete spectrum so that statistical 
equilibrium would follow asymptotically. We therefore expect 
that market equilibrium and stability are inconsistent with 
deregulation. 
 
Having whetted the reader’s appetite, let me now get down to 
business. 
 
 
3. Invariance Principles and Mathematical Laws of Motion 

 
Data collection and analysis are central to physics. Data 
collection in the attempt to describe the motion of bodies began 
with the ancient astronomers, who used epicycles to describe 
planetary orbits. The mathematical description of empirically 
discovered laws of nature began with Archimedes‘ discovery of 
the conditions for static equilibrium. Galileo and Kepler revived 
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the Archimedian tradition in the seventeenth century and 
provided the empirical discoveries from which Newton was able 
to formulate nature’s dynamics mathematically in a very precise 
and general way (Barbour, 1989). Why have we been able to 
discover strict mathematical laws of inanimate nature, but 
haven’t discovered corresponding mathematical laws of socio-
economic behavior? Wigner (1967) discussed these questions in 
his beautiful essays on symmetry and invariance, where he 
identifies the basis of the seemingly unreasonable effectiveness 
of mathematics in physics.  
 
Following Galileo and Kepler, scientists have discovered 
mathematical laws obeyed by nature via repeatable, identical 
experiments (physics, chemistry, genetics) and repeatable 
observations (astronomy). The foundation for the invariance of 
experimental results performed at different places and times and 
in different states of motion lies in the local symmetry principles 
that form the basis of Newtonian and quantum mechanics, and 
general relativity: the simplest predictions of mathematical laws 
of nature are invariant under translations, rotations, time 
translations, and transformations among Galilean/inertial 
frames. These symmetries produce periodic orbits in integrable 
systems like the Newtonian two-body problem. Laws of nature 
were first discovered by Galileo and Kepler from careful 
observations of very simple orbits of period zero and period 
one.  
 



Given enough symmetry principles obeyed by prices, we 
should in principle be able to discover mathematical laws 
obeyed by markets. We know only one invariance principle for 
markets, and will discuss it below. There’s a fundamental 
difference between economic motions, like price changes (or 
GNP growth), and motions of inanimate bodies described by 
inviolable mathematical laws of nature. 

 
Unlike natural law, we act on human wishes and expectations 
to create all of economic behavior. Without actions determined 
by our brains, wishes, and actions, markets and prices would 
not exist. Nature, e.g., stars, planets, atoms, and DNA are not 
invented and manipulated in that way. Mathematical laws of 
nature are beyond human invention, intervention, and convention. 
Without human agreement and/or regulation, in contrast, 
markets and prices do not exist. Given that human decisions 
and actions create markets and money, and even that self-
fulfilling prophecy is possible, to what extent can we hope to 
discover an even approximately correct dynamics of markets? 
And bear in mind that nonuniqueness due to limited precision 
in data analysis can lead us not to a single model, but at best to 
some nonuniversality class of models. That is still better than 
nonempirical postulation, which exhibits far worse 
nonuniqueness problems.  
 

4. Invariance principles in markets  

 



Let’s start with the dynamics of price p and quantity x of assets 
in some real market or in a hypothetical market model, 
 

 
(3) 
where ε(p,t)=D(p,t)-S(p,t) is the excess demand, and xD=D(p,t) 
and xS=S(p,t) are the demand and supply at price p 
respectively. There is only one dynamically correct definition 

of equilibrium: nothing changes with time. In deterministic 
dynamics, dp/dt=0, or excess demand vanishes.  
 
For a stochastic description of markets, as in parts 2, 5, and 6, 
the condition d<p>/dt=0 is necessary but not sufficient for 
equilibrium, where <…> denotes the average. Also necessary 
for equilibrium is that all moments of the price distribution are 
time independent, which means that the price distribution 
g(p,t) is time invariant.  No other definition of equilibrium is 
consistent with dynamics. Contrary to confusion rampant in the 
economics and finance literature (see, e.g., McAdam and 
Hallett, 2000), a limit cycle is not an equilibrium, nor is a 
strange attractor. Neither a Wiener, lognormal, nor Levy 
stochastic process defines an equilibrium. More than seven 
different misuses of the word “equilibrium” in the economics 
and finance literature are exposed in McCauley (2004).  

 

  

dp

dt
= !(p, t)



In order to arrive at a completely different invariance principle, 
consider next a distribution of markets for a single asset, like 
gold or globalized autos (Ford, Toyota, GM, VW, or BMW, e.g.) 
on the face of the earth. The price density g(p,X,t) depends not 
just on price p and time t, but on location X as well, and g(p,X,t) 
is a conditional probability density for prices, a ‘Green function’ 
in the language of physics. The ‚no-arbitrage‘ principle is 
equivalent to the assumption of translational and rotational 
invariance (McCauley, 2004) of the price density on the earth. 
The absence of arbitrage is a purely geometric principle that 
guarantees nothing other than that the probability distribution 
g(p,t) for the price of the object traded is independent of position 
X. In particular, ‚no-arbitrage‘ has nothing to do whatsoever 
with ‘market equilibrium’. Market equilibrium would be 
equivalent to time translational invariance of the price 
distribution: in equilibrium or in a driven steady state, g(p,t) 
would also be independent of t, would define a statistical 
equilibrium with price density g(p).  

 
Falsifiabilty of a model via empirical data is a scientific 
necessity. The idea of falsifiability is not a new idea. Karl Popper 
only put into words what ‘hard science’ since Galileo has 
practiced. In physics, a new model will not be accepted unless it 
makes falsifiable new predictions. As an example of its 
predictive power, Newtonian mechanics was used to predict the 
existence of an ‘extra’ unobserved planet before Neptune was 
discovered. The SU(3) model in field theory was used to predict 
the Ω- particle before it was observed. The neo-classical model 



was perhaps once an example of science: it made definite 
predictions that have been falsified (Osborne, 1973; McCauley, 
2004). So why is it still taught, since it cannot be used to predict 
or even explain any observable phenomenon correctly? 

 

5. The Invisible Hand is a Falsifiable Proposition 

 
Adam Smith’s Invisible Hand is the idea that supply in a free 
market should tend to rise to meet demand. Neo-classical 
economics refined the idea of the Invisible Hand to mean that 
price changes occur at or near equilibrium, that prices should 
tend to equilibrate so that market stability is implicitly 
assumed. Stable markets could exhibit only small fluctuations 
about statistical equilibrium, or near a steady state. The neo-
classical assumption of stable equilibrium is falsifiable. Price 
changes near equilibrium, under the influence of noise traders, 
could be described mathematically by a stationary process in 
stochastic dynamics, one where the Gibbs entropy of the 
market 
 

  
(4) 
would necessarily become asymptotically constant as t 
increases, achieving an entropy maximum. Both the average 
return and variance/volatility of a stationary process are 
constants. Here, g(p,t) must be understood the correct 

  S(t) = ! g(p, t) ln g(p, t)dp"



empirically deduced price density. Financial markets are 
typically very liquid and in that limit can be approximately 
described by a stochastic differential equation 
 

 
(5) 
where, as we will show below, the p-dependence of the price 
diffusion coefficient p2d(p,t) must be extracted from the 
observed time-dependence of the empirical price density g(p,t). 
Here, the excess demand ε(p,t)=D(p,t)-S(p,t) is described as 

drift plus noise, in agreement with the fact that price changes 
are not deterministic even on the shortest time scales. But let us 
ignore the empirical data for the moment and ask first what 
would be the practical implications of the economists’ 
assumption of market equilibrium. 
 
Stationarity would demand an asymptotically time invariant 
price density g(p). This defines statistical equilibrium. In this 
case, both the mean <rp> and standard deviation 
σ2=<Δp2>=<p2>-<p>2=<(p2d(p,t)> would be constants (<rp>=0 

is necessary if <e>=0). Equilibrium markets would therefore be 
both stationary and nonvolatile.  
 
Why should anyone care about equilibrium? If we could locate 
equilibrium in a real market, then we could define ‘value’ 
unambiguously. ‘Value’ would simply be the equilibrium price 

  

dp

dt
= !(p) = rp +p d(p, t)

dB

dt



p*. In statistical equilibrium we could take the equilibrium 
price p* to be either the average or most probable price, with 
fluctuations about equilibrium described by g(p). This would 
permit the construction of a trading strategy: buy the stock if 
p<p* and sell it if p>p*. One could refine this to argue that one 
should trade outside the range Δp*≈p*±√σ.  Stationary 

stochastic dynamics is ergodic, whereas nonstationary 
dynamics is not. The return to equilibrium demanded by the 

assumption of stationarity guarantees that such buying and 
selling are possible, and to be more precise one could calculate 
the distribution of first passage times.   
 
However, if we study the returns variable x=lnp(t)/po, where 
the returns density is given by f(x,t)=g(p,t)dp/dx=pg(p,t) and 
po is some initial or other reference price, then the observed 
returns variance is given by σ2=<Δx2>=<(x-<x>)2> = Δt2H with 

H=O(1/2). Thererfore, financial markets are nonstationary. 
Another way to say it is that financial markets are unstable, 
they never approach statistical equilibrium. In spite of this 
simple fact, some economists continue to write papers about 
‘stationary financial markets’. Physically, outstanding limit 
orders prevent financial markets from clearing: empirically 
seen, there is no daily clearing price in a financial market.  
 
The lack of equilibrium in market data means that ‘value’ does 
not exist as an unambiguous idea, only price exists uniquely (to 
within arbitrage). Because neither dynamical nor statistical 



equilibrium can be found in real market data, assertions that an 
asset is either undervalued or overvalued are subjective. But 
wishful thinking acted on collectively (self-fulfilling 
expectations widely-held) can lead to big price swings, as in the 
phenomenon of ‘momentum investing’ and the corresponding 
U.S. stock market bubble of from 1994-2001. This psychological 
condition, the inability to know ‘value’, combined with the 
easy availability of money as credit (and especially via 
leveraging) surely contribute to both nonstationarity and 
volatility. One can imagine noise traders changing their minds 
frequently, and so trading frequently, because they’re very 
uncertain of the ‘value’ of a financial holding like a stock, 
currency, or bond. This proposition could be simulated via an 
agent based trading model. An interesting exercise would be to 
introduce a trading model where equilibrium ‘exists’ 
mathematically in the model but is in some sense 
noncomputable (it could simply be NP-complete, not 
necessarily Turing (1936) noncomputable), and see what would 
be the effect on the market. The liquidity bath term 
p√d(p,t)dB(t)/dt in (5), which does not generate a lognormal 
process in p when d(p,t) depends on p, approximates the effect 
of the ‘noise traders’. Successful traders like Warren Buffet 
have zero weight in (5), they do not provide the daily liquidity 
that allows us to trade frequently, even on a time scale of a 
second, with small bid/ask spreads.  
 



In the language of statistical physics, equation (5) with d(p,t) 
chosen correctly to reflect the market data provides us with 
something that may be roughly analogous to a mean field 
approximation to a complex system of interacting agents. Real 
agents have PC’s or Macs, high computational capability, but 
generally can’t do any worthwhile calculations when trading 
because they can’t distinguish knowledge from noise, and can 
only make guesses about future prices in the absence of ‘value’. 
Long Term Capital Management (LTCM) nearly brought down 
the world financial system (Dunbar, 2000) by assuming that 1. 
they could determine value, 2. by taking seriously the 
Modigilani-Miller “theorem” that the debt/equity ratio doesn’t 
matter, and 3. by combining these two assumptions with 
Black’s assumption that there is an equilibrium in the market, 
that ‘price always tends to return to value’.  But what is 
‘volatility’? 
 
The first approximately quantitatively correct description of 
stock market returns was proposed in 1958 by the physicist 
turned finance theorist M.F.M. Osborne (Cootner, 1964), who 
plotted rough price histograms based on Wall St. Journal data 
in order to try to deduce the empirical distribution of stock 
prices. He inferred that stock returns seem to do a random 
walk, so that prices are distributed lognormally. The lognormal 
price distribution is generated by the stochastic differential 
equation (5) with variable local price volatility p2d(p)=(σpp)2, 
where σp is constant. The corresponding returns distribution is 



Gaussian because the stochastic differential equations for 
returns x is given (via Ito calculus) by  
 

 
 
(6) 

Because Osborne‘s stochastic model is Markovian, the Hurst 
exponent H in the variance or ‘average volatility’ σ2 =<(x-<x>)2> 
= Δt2H is H=1/2. We know from empirical data analysis that 
H=O(1/2) (Mantegna and Stanley, 2000), but whether H=.4, .5, 
or .6 is hard to decide empirically. The choice H=1/2 yields 
models obeying the ‚efficient market hypothesis‘, which means 
simply that the market is very hard to beat: for H=1/2 there are 
no long time correlations in the market. There is also evidence 
from stock indices for H≠1/2 (Skjeltorp, 1996). A Hurst exponent 
H≠1/2 implies fractional Brownian motion and yields long-time 
correlations that could, in principle, be exploited for profit.  

 
The Black-Scholes (1973) model of option pricing assumes 
Osborne’s Gaussian returns model. The Black-Scholes model is 
based on only two empirically measurable parameters, σp and 
r, and is falsifiable. In fact, the model has been falsified on 
several grounds. One of them is that when the model is force 
fitted to option prices, the constant σp must be varied as if it 
would depend on the strike price K. This is so-called ‘implied 
volatility’, and indicates that, in order to understand what the 

  dx = (r ! "p

2
/ 2) +" pdB(t)



market is telling us, we should start with the more general 
stochastic differential equation 

! 

dx = (r "D(x,t) /2)dt + D(x,t)dB 

 
(7) 
corresponding (via Ito calculus) to (5), where the diffusion 
coefficient, or ‘local volatility’ D depends on x, and the returns 
diffusion coefficient is D(x,t)=d(p,t). We’ll show in part 6 below 
how an (x,t) dependent diffusion coefficient can be deduced from 
the empirical density of returns f(x,t). We know three important 
empirical facts about financial markets: they’re 
nonstationary/unstable, and they’re volatile. Also, f(x,t) exhibits ‘fat 
tails’, but we’ll discuss the asymptotic behavior of f later. 
 
For any market or economy, the notion of the Invisible Hand is a 
falsifiable proposition: one need only test a set of price or returns 
data or other time series for a given market or economy for 
asymptotic (strong) stationarity, or at least for weak stationarity in 
the form of lack of growth and lack of volatility (McCauley, 2004). 
We’ll explain why the worst problem that one faces is that typical 
nonfinancial markets provide us with such sparse data that reliable 
testing may be difficult or even impossible (the data are too easy to 
fit by many different dynamics models). Because of nonuniqueness 
in extracting models from data, e.g., we expect that GNP and 
business cycle data should be relatively easy to fit by using 
nonstationary, volatile models. To date, there is no convincing 
evidence from empirical data that any known market is 



asymptotically stationary, and market volatility is rather common. 
Instead of approaching equilibrium, we expect that empirical 
returns distributions for nonfinancial markets will broaden without 
limit as time increases. 
 

But how can the empirically observed time series x(t) of a 
particular market be used to infer the underlying dynamics? 
This question is of central importance for economics, because 
economic dynamics have not yet been deduced empirically 
except for financial markets. Instead of trying to argue that the 
falsified ratex model is ideal, but the data are ‘hard to describe’ 
(no physicist will give any weight to such an argument), we 
must ask what the unmassaged market data can teach us. I 
emphasize in advance that our approach to data analysis is not 
at all the method of the econometrician: instead of having 
limited, preconceived models in mind (Granger, 1999), we 
deduce a stochastic model from the data (see McAdam and 
Hallet (2000) for an example of an attempt to force preconceived 
notions on the data). I will outline our program next, where I 
will argue that real market data are not at all hard to fit 
accurately by using dynamical models. To the contrary, market 
data are too easy to fit: lack of uniqueness in empirically based 
modeling is the real problem that we face.  
 

Returning to Wigner’s theme, given the absence of enough 
symmetry principles to pin down inviolable dynamical law in 
finance and economics, what can we do? As Osborne  has shown 
us, the answer is the same as if there would be enough invariance 



principles to pin down real mathematical laws: we can study the 
available data for a specific market and try to extract a 
dynamical model that reproduces that data. In this case, we 
know in advance that we’re modeling data for a particular 
market in a particular era, and that any model is expected to fail 
at some unknown time in the future. Therefore, it’s essential that 
the model has few enough empirically known parameters to be 
falsifiable, otherwise one cannot know when the market has 
shifted in a complex/fundamental way.  

 
Many economists are averse to studying finance, but financial 
markets differ from other markets mainly in that many trades 
are made very frequently, even on a time scale of a second, so 
that very good data are available for the falsifiability of few-
parameter models. For houses or cars, the time scale for a large 
number of trades is much greater so that the data are much 
sparser. Such markets are far less liquid and may vary much 
more from one locale to another. Because of the abundance of 
adequate and reliable data, financial markets provide the best 
testing ground for both new and old ideas. Financial markets 
exhibit the interesting characteristics of economic systems in 
general: growth and ‚the business cycle (see Goodwin (1993) for 
a discussion of these phenomena). When we speak of the 
‚business cycle‘, a topic where both stochastic (Cootner, 1964) 
and nonequilibrium nonlinear deterministic models were 
considered rather early (Velupillai, 1998), we no longer expect to 
discover any either stable or unstable periodicity. We rather 
expect to understand ‘the business cycle’ as volatility combined 



with nonstationarity of the market distribution, where the 
market distribution is simply the collection of histograms 
obtained from real market data. Stationarity is another name for 
time invariance. Nonstationarity means that market entropy (4) 
increases without limit, that the market is far from any 
equilibrium.  Equilibrium and stability do not exist as 
possibilities for financial markets: evidence for vanishing excess 
demand cannot be found in the empirical data. 
 

6. An Empirically Based Model of Financial Markets 

 
In a stochastic description of markets, the excess demand ε(p,t) 
is modeled as drift plus noise  

 

! 

dp = prdt + p" d(p,t)dB(t)  
  
(8) 
where dB is a Wiener process and p2d(p,t) is the price diffusion 
coefficient. The stochastic differential equation for the returns 
variable x=lnp(t)/po is given by 
 

 
(9) 
where the returns diffusion coefficient transforms like a scalar, 
D(x,t)=d(p,t). We can regard the returns diffusion coefficient 
D(x,t) as the ‘local  volatility’ (McCauley, 2004). We will use as 
our independent variable the logarithmic return x, not price p, 

  dx = (r ! D(x, t) / 2)dt+ D(x, t)dB



in modeling because empirical analyses must be carried out 
using returns in order to avoid errors when x is large in 
magnitude (Osborne, 1958; Gunaratne, 1990; Dacorogna, 2001). 
 

In contrast with the usual desire of economists to divide the 
economy into ‘system’ and ‘shocks’, the noise/shock is the main 
part of the stochastic dynamical system (8), otherwise, excess 
demand is neither correctly defined nor described. The noise 
dominates the dynamics: financial markets are mainly noise. The 
noise term in (9) is √D(x,t)dB(t), and this is where the interesting 
market dynamics lie. The Green function of the Fokker-Planck 
equation corresponding to (9) is the market Green function: it 
can be used to calculate all market predictions, including option 
pricing (McCauley, 2004). 
 
To a first approximation, financial data for small to moderate 
returns x are neither approximately Gaussian nor Levy but are 
instead more approximately exponentially distributed (fig. 1) 

 

 
(10) 

 
where the plus-minus subscripts refer to the regions to the 
right and left of the peak of the returns density f, x>δ and x<δ. 
The exponential distribution is generated by a Markovian 
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model with nontrivial local volatility (diffusion coefficient 
D(x,t)) 
  

(11) 
where d+ and d- are constants, and δ depends on Δt and defines 

the peak of the returns density. When ‘Galilean invariance’ 
holds, then δ=rΔt. This local volatility yields a Brownian–like 
average (or global) volatility σ2 ≈ Δt at long times. The average 

volatility, or mean square fluctuation in return x, is given by 
 
 

 
(12) 
where g(x,t;x’t’) is the market Green function (eqn. (10) defines 
the Green function for one particular initial condition). The 
exponential model prices options correctly without the need 
for fudge-factors like ‚implied volatility‘ that characterize 
financial engineering based on trying to force-fit a Gaussian 
returns model to the data (McCauley and Gunaratne, 2003).  
All of the constants in the model are fixed by empirical data, so 
the model is falsifiable. 
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For the benefit of readers who are economists, here’s 
specifically what we did (McCauley, 2004). Gemunu Gunaratne 
first deduced the exponential distribution from financial 
market histograms. I used the known average volatility, σ2≈Δt, 
for Δt larger than about 10 min. of trading, to deduce the time 

dependence of the exponential distribution. From there, we 
asked which diffusion coefficient D(x,t) in the stochastic 
differential equation (9) generates the exponential density with 
the observed time dependence. This is not the same as force-
fitting a preconceived stochastic model to the data. A strong 
test of our dynamical model would be to measure the local 
volatity D(x,t) directly. The main points are very simple but are 
easily misunderstood, because the method of deduction is not 
the usual method in econometrics. 
 

In particular, in a stochastic model (9), dB(t) is a Wiener process 
but the stochastic integral of √D(x,t)dB(t), which appears in the 
solution x(t), is not globally a Wiener process if the diffusion 
coefficient D(x,t) depends on x (models where D depends on t 
alone, and not on x, are trivially equivalent to Wiener processes 
by a time transformation). This is the main point: the form of the 
diffusion coefficient D(x,t) that defines the noise term 
√D(x,t)dB(t) in dynamics must be deduced empirically. The usual 
alternative is instead to assume a stochastic model based on a 
postulated, preconceived form of noise, and then try to force-fit 
the data by a ‘best choice of parameters’. Our program is to 
respect the data and therefore first to discover the form of the 



empirical distribution. Then, we determined the time 
dependence of the distribution’s parameters from the data, and 
used that information to deduce a dynamical model: plugging 
the empirical distribution into a Fokker-Planck equation 
(corresponding to (9)) allows one to solve the ‘inverse problem’ 
to find the diffusion coefficient that generates the observed 
distribution (McCauley and Gunaratne, 2003). Newton solved 
an inverse problem to deduce the inverse square law of gravity 
from Kepler’s elliptic orbits (McCauley, 1997).  

 
In contrast, the usual method of the economist is to assume a 
stochastic model and then try to extract a best fit of parameter 
values for that model from the data. E.g., the Real Business 
Cycle (RBC) model (Chow and Kwan, 1998) assumes a 
particular form for the noise term. In contrast with RBC, we 
deduce the form of the noise term from the observed time 
dependence of the empirical distribution. This is physically 
significant: the noise term reflects what the ‘noise traders’ are 
doing. The noise term that would describe a stochastic model of 
the GNP would reflect the nature of the noise in the economy, 
likewise for a sector in a business cycle model. 
 
The exponential distribution has also been discovered in 
empirical studies of the growth rate of firms (Stanley et al, 1996: 
Bottazi et al, 2001). Those papers also start with empirical 
histograms and then deduce a probability distribution. The 
exponential distribution has fat tails in price, but not in returns. 



The empirical financial distributions have fat tails in returns for 
large returns x. 

 
We’ve discussed volatility in part 4, but the most commonly 
heard criticism of the Gaussian returns model is that the 
empirical density of financial returns has fat tails f(x,t)≈x-µ (fig. 2) 
for large returns x (Dacorogna et al, 2001), where µ is  a 

nonuniversal scaling exponent in the range from about 3.5 to 7, 
it may vary from market to market. Fat tails in historic cotton 
prices were first discovered in Osborne’s era by Mandelbrot 
(Cootner, 1964), following Pareto, but Mandelbrot then assumed 
an infinite variance, to zeroth order, in order to try to apply the 
Levy distributions. Levy distributions generate the smallest tail 
exponents, 1<µ<3, and therefore the fattest tails. 

 
Levy distributions can be used to generate fat tails, but with 
entirely different underlying dynamics than in our Markovian 
model. In the formula 

 
 

 
(13) 
 
for a probability density, symmetric Levy distributions are 
given by α<2 and have infinite mean square fluctuation 
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(infinite volatility). The exponent α describes fat tails for large 
x. The tail exponent is µ=1+α, but α<2 is too small to generate 

financial data. The dynamics of the dynamics of Levy 
distributions especially for α<2 is discussed in Hughs et al 
(1981). For α>2 there is recurrence in the form of long-time 
anticorrelations, whereas for 0<α<2 there is a hierarchy of 

clustering in the time series x(t). In the physics literature, it 
seems not to have been understood that the case where α>2 

cannot be described by a ‘Langevin equation’ (stochastic 
differential equation) in the variables x or p. When α>2 then 

one gets fat tails with fractional Brownian motion, where the 
average volatility is <Δx2>=Δt2/α. The Hurst exponent is 
H=1/α<1/2, so there are infinitely long-time correlations, there 

is no diffusion coefficient D(x,t), and therefore no description of 
the dynamics via a stochastic differential equation or Fokker-
Planck equation in either p or x. Because of the long time 
correlations the efficient market hypothesis (EMH) is violated, 
although the violation will not likely help a small trader to beat 
the market is H close enough to 1/2. To have correlations 
strong enough to beat the market effectively, one needs an 
exponent H considerably different than 1/2.  
 
The efficient market hypothesis (EMH) may obeyed by a good 
model to zeroth order: the EMH simply reflects the fact that the 
market is very hard, but not necessarily impossible, to beat. To 
zeroth order, there are no systematic patterns (correlations) in 
the market.  



 
Here’s something entirely new: we can also generate fat tails 
f(x,t) ≈ x--µ for large x, for all possible exponents µ≥2 (fig. 3), via 
a stochastic differential equation (9) where the tail exponent µ 
is uniquely determined by the nonlinearity parameter ε in the 

returns diffusion coefficient (Alejandro-Quinones et al, 2004) 
 
 

 
(14) 

This is a surprising result. Many papers and some books have 
been written on nonstationary volatile stochastic processes, but 
few examples have been given that combine nonstationarity, 
volatility, and fat tails.  We’ve combined all three. 

 
Next, I will emphasize a point that’s central for extracting 
dynamical models from empirical data. There is nonuniqueness 
in the choice of time dependence of time dependence in 
equations (10) and (11) chosen to fit finance market data (fig. 1). 

Given the known nonuniqueness faced in extracting chaotic 
dynamics from data, this is not a surprise. One attempts to 
extract an infinite precision model from finite precision data. 
Newton didn’t face this problem because of the underyling 
space-time symmetry principles, but if you would try to extract 
Newton’s second law from a chaotic system like the three body 
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problem, then you’d have the same difficulty. In applying the 
new model defined by eqn. (10) to option pricing, we found 
(McCauley and Gunaratne, 2003) that we have the unwarranted 
luck that the nonuniqueness doesn’t matter on time scales much 
less than a hundred years. Normally, one should not expect such 
luck in modeling. Finite precision in empirical data always 
implies nonuniqueness in the inference of an infinite precision 
model. Without the underlying space-time symmetry principles 
used to pin down laws of motion in physics, the nonuniqueness 
can be severe, but the nonuniqueness involved in the 
nonempirical postulation of models is far, far worse. One cannot 
capture the essence of market behavior merely be imagining how 
agents might behave (as in ratex), one must instead ask the 
market directly. 

 
The main aim of economic theory in our era should be to match the 
success of the empirical description of financial markets for at least one 
nonfinancial market. Toward that end, ideas of stability and 
equilibrium in economics should either be verified empirically or 
else completely abandoned as guiding theoretical principles. In 
particular, economics texts should stop teaching ‘rational 
expectations’ as if that model would bear any realistic relation to 
real markets. To continue to teach a completely falsified model is 
to mislead generations of students. Again, Newton’s first law and 
the law of gravity can be verified to high decimal precision in 
experiments on earth and on the moon, but no market has yet 
been found that even approximately reflects ratex.  



 
Note that financial markets have been accurately described by 
very simple stochastic dynamics, so where‘s the complexity? 
Complexity leads us into questions of computational limitations 
or intractability. The highest degree of computational complexity 
is that of a Turing machine (Feynman, 1996; Velupillai, 2000). We 
expect that markets are not merely stochastic (“random”) but are 
also complex. Can the empirically observed time series of a 
complex system be used to infer the underlying dynamics? We 
know now that Newton would have had serious problems were 
it necessary to discover the basic laws of physics by analyzing 
time series for a chaotic system like the 3-body problem, but 
complexity turns out to be much worse that deterministic chaos.  
In what follows, I assume that all functions that we use to define 
a deterministic dynamical model are Turing computable, and 
that computable numbers are used as control parameters and 
initial conditions in the model. By this restriction we avoid the 
trivial noncomputability of the measure one set of numbers that 
can be defined to ‚exist‘ in the continuum, but cannot be 
generated algorithmically. 

 
7. Complexity in Physics, Biology, and Markets 

 

To date, we have no physically or biologically motivated 
definitions of complexity that are mathematically adequate, in 
spite of the fact that cell biology provides us with numerous 
examples of natural complexity. Our everyday computers are 
an example of complexity and can be described dynamically as 



Newtonian electro-mechanical machines. Contrary to 
expectations in some quarters, scaling is not an example of 
complexity, nor is stochastic dynamics (‘randomness’).  Moore 
has discussed the nature of maximal complexity in 
deterministic dynamics.  
 
We can generate maximal computational complexity by using 
simple deterministic dynamics (Moore, 1990, 1991). Low 
dimensional iterated maps that are equivalent to Turing 
machines provide examples. These dynamical systems have no 
attractors, no symbolic dynamics/no generating partition, and 
so exhibit no scaling laws that would inform us of behavior at 
smaller length scales in terms of observed dynamics at larger 
length scales. Instead, ‚surprises‘, new unforeseen behavior, are 
possible at all length scales. By length scales, I think here of the 
hierarchy of coarsegrainings defined by the generating 
partition in a chaotic system (McCauley, 1993), where one looks 
in finer and finer detail at the dynamics, increasing the 
magnification of the microscope, so to speak. Without symbolic 
dynamics and the corresponding generating partition, we have 
no way to deduce a Turing-equivalent dynamical system from 
time series.  This is a serious drawback in anyone’s book. 
 
Mutations of viruses and bacteria to new, unexpected forms 
provide an example of the surprises characteristic of 
complexity.  Such surprises now occur on very short time 



scales, time scales shorter than the time required to discover 
new antibiotics, e.g. 
 
In continuous time dynamics, at the shortest time scales there is 
no way to distinguish complexity from simplicity in 
deterministic dynamics. This assertion can be extended 
analytically to slightly larger time scales. Every deterministic 
dynamical system dp/dt=ε(p), even a chaotic or complex one, 

has a unique, well-defined solution (is globally solvable) so 
long as the velocity field ε(p) satisfies a Lipshitz condition with 
respect to the n variables pi. If, in addition, the velocity field 

ε(p) is analytic in those variables then the power series locally 

defining the time evolution operator U(t)=etL, 
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 (15) 
has a nonvanishing radius of convergence, so that the solution 
of the dynamical system can in principle be defined by power 
series combined with analytic continuation for all finite times 
(Poincaré, 1993). L is the infinitesimal generator of the flow and 
is determined by ε(p). The radius of convergence of (15) is 

typically small and unknown. Unless one can determine the 
singularities of (15) in the complex time plane, one does not 
know when and where to continue analytically. Therefore, in 
practice, we cannot expect to solve nonintegrable dynamical 
systems more than locally, for only very short time intervals. 
This is a restriction on predictability that precedes any 



computability limitations that may arise in deterministic 
dynamics. This limit on predictability is ignored by economists 
who claim that they can make reliable global predictions. 

 
In deterministic iterated maps, the surprises arise internally 
from the system’s dynamics. In order to imagine more clearly 
how  surprises could appear in a finance market in the short 
run, we can consider the market modeled by fluctuating asset 
price (described to zeroth order by (9)) and the liquidity bath, 
which Brownian motion theory assumes to remain unchanged. 
The diffusion term in (9) assumes implicitly that the liquidity 
bath is there, that you can make small trades without affecting 
the market, to zeroth order. The analogy of the liquidity bath 
with the heat bath for a Brownian particle is described in 
McCauley (2004). In a financial market, the occurrence of a 
surprise may cause the liquidity bath to dry up suddenly 
(market crash). In that case, (8) and (9) do not apply: a liquidity 
drought is not a Wiener, lognornal, Levy, exponential, or any 
other continuous time stochastic process. It is more 
approximately the complete absence of the noise traders (meaning 
that D(x,t)≈0). In order to try to include surprises 
mathematically, one could try to model the interacting system 
of agents trying to set prices in the absence of ‘value’, avoiding 
assuming the liquidity bath/Brownian motion approximation 
explicitly and then try to derive (9) from the model under a 
liquidity bath approximation.  
 



Summarizing, for a deterministic dynamical system with 
universal computational capability, nothing can be said in 
advance about the future, either statistically or otherwise: the 
future is computationally undecideable. This maximum degree of 
computational complexity occurs in low dimensional nonintegrable 
conservative Newtonian dynamics. In particular, billiard ball 
dynamics exhibit positive Liapunov exponents and provide us 
with an example of a chaotic system that is mixing (Cvitanovic 
et al’, 2003). But billiard balls can also be used to compute 
reversibly and universally (Fredkin and Toffoli, 1982). Such a 
method of computation would be impractical because the 
positive Liapunov exponents magnify errors in initial 
conditions of the billiard balls, messing up the computation. 
 
Molecular biology is largely about complexity at the molecular 
(DNA-protein) level. E.g., the thick, impressive, and heavy text 
by Alberts et al (2002) is an encyclopedia of cell biology, but 
displays no equations. Again, with no equations as an aid, 
Weinberg (1999) describes the 5-6 independent mutations 
required to produce a metastasizing tumor. All these 
impressive biological phenomena remind us more of the results 
of a complicated computer program than of a dynamical 
system, and have all been discovered reductively by standard 
isolation of cause and effect in controlled, repeatable 
experiments.  
 



Many economists and econophysicists would like to use a 
biological analogy in economics, but the stumbling block is the 
complete absence of a falsifiable dynamical description of 
biological evolution. Instead of simple equations, we have 
simple objects (genes) that behave more like symbols in a 
complicated computer program. Complex adaptable 
mathematical models notwithstanding, there exists no 
mathematical description of evolution that is empirically 
correct at the macroscopic or microscopic level. Schrödinger 
(1944), following the track initiated by Mendel1 that eventually 
led to the identification of the molecular structure of DNA and 
the genetic code, explained quite clearly why evolution can 
only be understood mutation by mutation at the molecular  
level of genes. Mendelism provides us with a clear picture of 
Darwinism at the cellular level. The only precise definition of 
biological evolution relies on mutations, there is no falsifiable 
model of Darwinism at the macroscopic level. That is, we can 
understand how DNA mutates to a new form but we do not 
have a model showing falsifiably how a fish evolves into a bird. 
That’s not to say that it didn’t happen, only that we don‘t have, 
and probably never will have, a model that helps us to picture 
how it happened.  
 
The terms ‘emergence’ and ‘self-organization’ are not precisely 
defined. They mean different things to different people. It’s not 

                                                
1 Mendel was trained in the Galilean method: he studied and taught physics in Vienna. 
He did not get an academic position, and so retreated to Brnn in what is now Slovakia,  
and studied peas.  The idea of a ‘code script’ in chromosomes was suggested by 
Schrödinger (1944). 



clear what writers could have in mind, other than symmetry-
breaking and pattern formation at a bifurcation in nonlinear 
dynamics, when they claim that a system ‘self-organizes’2. 
Some researchers who study complex models mathematically 
expect to discover new, ‚emergent‘ dynamics for complex 
systems, but so far no one has produced an empirically 
relevant or even theoretically clear example. See Lee (2004) for 
a survey of some of the usual ideas of self-organization and 
emergence. Crutchfield and Young (1990), Crutchfield3 (1994) 
and others have partly developed the interesting idea of 
nontrivial computational capability appearing spontaneously 
within a dynamical system due to bifurcations. This doesn’t 
present us with new dynamics, it’s about an increase in 
complexity in already existing dynamics due to a bifurcation. 
Crutchfield assumes a generating partition and symbolic 
dynamics, but Moore has shown that we have to give up those 
ideas for dynamics with Turing-equivalent complexity. 
Another weakness in Crutchfield’s program is his restriction of 
noise to stationary processes. That won’t work for market data, 
or for realistic market models either. Can the program be 
extended and then applied to teach us anything new or useful 
about economic or biologic data?  
 

                                                
2 Hermann Haken (1983), at the Landau-Ginzburg level of nonequilibrium statistical 
physics, provided examples of bifurcations to pattern formation via symmetry breaking. 
All subsequent writers have used ‘self-organized’ as if the term would be self-
explanatory, even when there is no apparent symmetry breaking. Is a deterministic or 
noisy stable equilibrium point or limit cycle (or other invariant set without escape) an 
example of self-organization? If so, then maybe we don’t need the phrase at all. 
3 My Galilean approach is completely contrary to the postmodernist philosophical outlook 
expressed, especially in part I, of Crutchfield’s 1994 paper. 



I now offer an observation to try to clarify ‘emergence’: 
whatever length and time scales one studies, one first needs to 
discover approximately invariant objects before one can hope to 
discover new dynamics. The ‘emergent dynamics’, if such 
dynamics can be discovered, will be the dynamics of those 
objects. Now, what many complexity theorists hope and expect 
is that new dynamical laws beyond physics will somehow 
emerge statistically-observationally, or can be postulated, at 
larger than molecular length and time scales, laws that cannot 
be derived systematically from phenomena at smaller length 
scales. A good example is that many Darwinists would like to 
be able to ignore physics and chemistry altogether and try to 
understand biological evolution macroscopically, 
independently of the mass of details of genetics, which have 
emerged from controlled experiments and data analysis.  
 
Consider specifically cell biology, where the emergent 
invariant objects are genes. Genes constitute a four-letter 
alphabet used to make three letter words. From the perspective 
of quantum physics, genes and the genetic code are a clear 
example of emergent phenomena. With the genetic code, we 
arrive at the basis for computational complexity in biology. 
Both DNA and RNA are known to have nontrivial 
computational capability (Adelman, 1994; Bennett, 1982; 
Lipton, 1989). One can think of the genes as ‚emergent‘ objects 
on long, helical molecules, DNA and RNA. But just because 
genes and the code of life have emerged on an approximately 



one-dimensional tape, we do not yet know any corresponding 
new dynamical equations that describe genetics, cell biology, or 
cancer. So far, one can only use quantum or classical 
mechanics, or chemical kinetics, in various different 
approximations to try to calculate some aspects of cell biology.  
 
My main conclusion is that ‘emergence‘ does not guarantee the 
appearance of new laws of motion. Apparently, invariant objects 
can emerge without the existence of any new laws of motion to 
describe those objects. Genes obey simple rules and form four 
letter words but that, taken alone, doesn’t tell us much about 
the consequences of genetics, which reflect the most important 
possible example in nature of computational complexity: the 
evolution from molecules to cells and human life.  
 
Finally, dreams of holism are pure illusion. Every mathematical 
model that can be written down represents some kind of attempt 
at reductionism. The only question is: does the attempt succeed 
or fail? Here are some examples. The renormalization group 
method in statistical physics, valid at order-disorder 
transitions, reduces phenomena at a critical point 
approximately to symmetry and dimension. Quantum theory, 
the law of nature at very small length scales explains chemistry 
via electrons, protons, atoms and molecules. Cell biology 
successfully reduces observed phenomena to very large, 
complicated molecules, to genes, DNA, proteins, and cells. 
Proponents of self-organized criticality try to reduce the 



important features of nature to the equivalent of sand grains 
and sand piles via the hope for an underlying universality 
principle (Bak, 1996). Network enthusiasts likewise hope to 
reduce many interesting phenomena to nodes and links 
(Barabasi, 2002). The worst weakness in the latter two 
programs is that there are no known universality principles for 
driven-dissipative systems far from thermal equilibrium, 
except at the transition to chaos. 
 
I end by suggesting an biological analogy for economics. The 
creation of new markets depends on new inventions and their 
exploitation for profit. Mathematical invention has been 
described psychologically by Hadamard (1945). Conventional 
ideas of psychology completely fail to describe the solitary 
mental act of invention, whether in mathematical discovery or 
as in the invention of the steam engine or the sequential 
computer. Every breakthrough that leads to a new invention is 
an example of a ‚surprise‘, of something emerging from within 
the system (the system includes human brains and human 
actions) that was not foreseen. A completely new product, like 
the gasoline engine or the PC, is based on an invention. The 
creation of a successful new market, based on a new product, is 
partly analogous to an epidemic: the disease spreads seemingly 
uncontrollably at first, and then eventually meets limited or 
negative growth. The simplest mathematical model of creation 
that I can think of would be described by the growth of a ‚tree‘, 
where new branches (inventions or breakthroughs) appear 



suddenly without warning. This is not like a search tree in a 
known computer program.  Growth of any kind is a form of 
instability, and mathematical trees reflecting instability do 
appear in nature, in the turbulent eddy cascade e.g., but in that 
case the element of ‚surprise‘ is missing.  
 
Summarizing, I've discussed the use of the Galilean method in 
finance and have suggested that it be applied in economics. 
Empirically motivated models are necessary beforehand if 
mathematics is to be made effective in general economics, as it 
has become in finance theory. Worries about complexity are 
premature before adequate empirical market models have been 
deduced. Market time series and histograms are, of course, of 
limited value in predicting the future: they reflect in some 
coarsegrained fashion how we've been behaving economically. 
The future in socio-economic phenomena is to some unknown 
degree undecidable and can't be known in advance, not even 
statistically. Using market statistics as a basis for prediction 
assumes that tomorrow will be statistically like yesterday. If 
we’ve modeled carefully, as in finance, then this assumption 
may not get us into hot water so long as there are no surprises. 
Insurance companies make money by assuming that the future 
will be like the past statistically (they take in to account fat tails 
but hope for stationarity), and lose money when it isn’t. 
 
Of course, one can also make nonempirically based 
mathematical or even nonmathematical models, and assert that 



if we assume this and that, then we expect that thus and such 
will happen. That sort of modeling activity is not necessarily 
completely vacuous, because socio-economic beliefs can be 
made into reality by acting strongly enough on wishes or 
expectations, there are self-fulfilling prophecies that go beyond 
the realm of science: e.g., a model can be enforced or legislated. 
Both communism (implemented via bloody dictatorships) and 
globalization (implemented via massive deregulation and 
privatization, big financial transfers, and supragovernmental4 
edict) provide examples. Neo-classical economics/‘rational 
expectations’ is a mathematized ideology that encourages 
unlimited deregulation. The construction of competing models 
based on real market statistics will be useful for confronting 
the ‘best of all possible worlds’ claims of the ideologues and 
other true believers with the reality of continually evolving 
markets and economies. Instability and surprises are the main 
aspects of market reality in our era.  
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Figure Captions 

 
1. The histogram for the distribution of relative price 

increments for US Bonds for a period of 600 days. The 
horizontal axis is the variable x = ln(p(t+Δt)/p(t)), and the 



vertical axis is the logarithm of the frequency of it’s 
occurrence (Δt=4 hours). The piecewise linearity of the plot 

implies that the distribution of returns x is exponential. 
 

2.Histogram of USD/DM hourly returns, and Gaussian returns 
(dashed line). Figure courtesy of Michel Dacorogna. 

 
3. The exponential distribution F(u)=f(x,t) developes fat tails in   
returns x when a quadratic term O((x-rΔt)/Δt1/2)2) is included in 
the diffusion coefficient D(x,t). Here, u=(x-rΔt)/√Δt. 

 
 
 
 
 
 

 


