429 research outputs found

    Computational Optimization Techniques for Graph Partitioning

    Get PDF
    Partitioning graphs into two or more subgraphs is a fundamental operation in computer science, with applications in large-scale graph analytics, distributed and parallel data processing, and fill-reducing orderings in sparse matrix algorithms. Computing balanced and minimally connected subgraphs is a common pre-processing step in these areas, and must therefore be done quickly and efficiently. Since graph partitioning is NP-hard, heuristics must be used. These heuristics must balance the need to produce high quality partitions with that of providing practical performance. Traditional methods of partitioning graphs rely heavily on combinatorics, but recent developments in continuous optimization formulations have led to the development of hybrid methods that combine the best of both approaches. This work describes numerical optimization formulations for two classes of graph partitioning problems, edge cuts and vertex separators. Optimization-based formulations for each of these problems are described, and hybrid algorithms combining these optimization-based approaches with traditional combinatoric methods are presented. Efficient implementations and computational results for these algorithms are presented in a C++ graph partitioning library competitive with the state of the art. Additionally, an optimization-based approach to hypergraph partitioning is proposed

    Approximability and proof complexity

    Full text link
    This work is concerned with the proof-complexity of certifying that optimization problems do \emph{not} have good solutions. Specifically we consider bounded-degree "Sum of Squares" (SOS) proofs, a powerful algebraic proof system introduced in 1999 by Grigoriev and Vorobjov. Work of Shor, Lasserre, and Parrilo shows that this proof system is automatizable using semidefinite programming (SDP), meaning that any nn-variable degree-dd proof can be found in time nO(d)n^{O(d)}. Furthermore, the SDP is dual to the well-known Lasserre SDP hierarchy, meaning that the "d/2d/2-round Lasserre value" of an optimization problem is equal to the best bound provable using a degree-dd SOS proof. These ideas were exploited in a recent paper by Barak et al.\ (STOC 2012) which shows that the known "hard instances" for the Unique-Games problem are in fact solved close to optimally by a constant level of the Lasserre SDP hierarchy. We continue the study of the power of SOS proofs in the context of difficult optimization problems. In particular, we show that the Balanced-Separator integrality gap instances proposed by Devanur et al.\ can have their optimal value certified by a degree-4 SOS proof. The key ingredient is an SOS proof of the KKL Theorem. We also investigate the extent to which the Khot--Vishnoi Max-Cut integrality gap instances can have their optimum value certified by an SOS proof. We show they can be certified to within a factor .952 (>.878> .878) using a constant-degree proof. These investigations also raise an interesting mathematical question: is there a constant-degree SOS proof of the Central Limit Theorem?Comment: 34 page

    Detecting semantic groups in MIP models

    Get PDF

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Models and algorithms for decomposition problems

    Get PDF
    This thesis deals with the decomposition both as a solution method and as a problem itself. A decomposition approach can be very effective for mathematical problems presenting a specific structure in which the associated matrix of coefficients is sparse and it is diagonalizable in blocks. But, this kind of structure may not be evident from the most natural formulation of the problem. Thus, its coefficient matrix may be preprocessed by solving a structure detection problem in order to understand if a decomposition method can successfully be applied. So, this thesis deals with the k-Vertex Cut problem, that is the problem of finding the minimum subset of nodes whose removal disconnects a graph into at least k components, and it models relevant applications in matrix decomposition for solving systems of equations by parallel computing. The capacitated k-Vertex Separator problem, instead, asks to find a subset of vertices of minimum cardinality the deletion of which disconnects a given graph in at most k shores and the size of each shore must not be larger than a given capacity value. Also this problem is of great importance for matrix decomposition algorithms. This thesis also addresses the Chance-Constrained Mathematical Program that represents a significant example in which decomposition techniques can be successfully applied. This is a class of stochastic optimization problems in which the feasible region depends on the realization of a random variable and the solution must optimize a given objective function while belonging to the feasible region with a probability that must be above a given value. In this thesis, a decomposition approach for this problem is introduced. The thesis also addresses the Fractional Knapsack Problem with Penalties, a variant of the knapsack problem in which items can be split at the expense of a penalty depending on the fractional quantity

    Maximum matching width: new characterizations and a fast algorithm for dominating set

    Get PDF
    We give alternative definitions for maximum matching width, e.g. a graph GG has mmw(G)k\operatorname{mmw}(G) \leq k if and only if it is a subgraph of a chordal graph HH and for every maximal clique XX of HH there exists A,B,CXA,B,C \subseteq X with ABC=XA \cup B \cup C=X and A,B,Ck|A|,|B|,|C| \leq k such that any subset of XX that is a minimal separator of HH is a subset of either A,BA, B or CC. Treewidth and branchwidth have alternative definitions through intersections of subtrees, where treewidth focuses on nodes and branchwidth focuses on edges. We show that mm-width combines both aspects, focusing on nodes and on edges. Based on this we prove that given a graph GG and a branch decomposition of mm-width kk we can solve Dominating Set in time O(8k)O^*({8^k}), thereby beating O(3tw(G))O^*(3^{\operatorname{tw}(G)}) whenever tw(G)>log38×k1.893k\operatorname{tw}(G) > \log_3{8} \times k \approx 1.893 k. Note that mmw(G)tw(G)+13mmw(G)\operatorname{mmw}(G) \leq \operatorname{tw}(G)+1 \leq 3 \operatorname{mmw}(G) and these inequalities are tight. Given only the graph GG and using the best known algorithms to find decompositions, maximum matching width will be better for solving Dominating Set whenever tw(G)>1.549×mmw(G)\operatorname{tw}(G) > 1.549 \times \operatorname{mmw}(G)

    Casting Light on the Hidden Bilevel Combinatorial Structure of the Capacitated Vertex Separator Problem

    Get PDF
    Given an undirected graph, we study the capacitated vertex separator problem that asks to find a subset of vertices of minimum cardinality, the removal of which induces a graph having a bounded number of pairwise disconnected shores (subsets of vertices) of limited cardinality. The problem is of great importance in the analysis and protection of communication or social networks against possible viral attacks and for matrix decomposition algorithms. In this article, we provide a new bilevel interpretation of the problem and model it as a two-player Stackelberg game in which the leader interdicts the vertices (i.e., decides on the subset of vertices to remove), and the follower solves a combinatorial optimization problem on the resulting graph. This approach allows us to develop a computational framework based on an integer programming formulation in the natural space of the variables. Thanks to this bilevel interpretation, we derive three different families of strengthening inequalities and show that they can be separated in polynomial time. We also show how to extend these results to a min-max version of the problem. Our extensive computational study conducted on available benchmark instances from the literature reveals that our new exact method is competitive against the state-of-the-art algorithms for the capacitated vertex separator problem and is able to improve the best-known results for several difficult classes of instances. The ideas exploited in our framework can also be extended to other vertex/edge deletion/ insertion problems or graph partitioning problems by modeling them as two-player Stackel- berg games and solving them through bilevel optimization
    corecore