167 research outputs found

    An Operation Research Approach to the Economic Optimization of Kraft Pulping

    Get PDF
    The first attempt to apply operations research to the kraft industry came in 1959 by C.W. Carroll at the Institute of Paper Chemistry. Carroll developed a pulping rate expression and incorporated engineering balances to complete his mathematical model. Carroll then developed an optimization technique to optimize kraft mill economic performance. This work develops the mathematical model utilizing a different pulping rate expression and further develops certain areas (e.g. recovery boiler, lime kiln, and washer models) utilizing regression equations obtained from literature and material and energy balances in an approach much like that of Boyle and Tobias. An attempt was made to incorporate automatic step size reduction into Carroll\u27s optimization method (Created Response Surface Technique). A comparison of a three-dimensional optimization output with that of Carroll\u27s user-response program is included. Results of the optimization comparison indicated that it is possible to incorporate automatic step size reduction and obtain better accuracy than Carroll reported. However, results indicate that it may be desirable to use the CRST to get close to the optimum and then use another technique to pinpoint the final optimum. Comments on the Industrial Applicability of this approach are included

    Integrated batch process development based on mixed-logic dynamic optimization

    Get PDF
    Specialty chemicals industry relies on batch manufacturing, since it requires the frequent adaptation of production systems to market fluctuations. To be first in the market, batch industry requires decision-support systems for the rapid development and implementation of chemical processes. Moreover, the processes should be competitive to ensure their long-term viability. General-purpose and flexible plants and the consideration of physicochemical insights to define an efficient operation are also cornerstones for the success of specialty chemical industries. Precisely, this thesis tackles the systematic development of batch processes that are efficient, economically competitive, and environmentally friendly, to assist their agile introduction into production systems in grassroots and retrofit scenarios. Synthesis of conceptual processing schemes and plant allocation subproblems are solved simultaneously, taking into account the plant design. With this purpose, an optimization-based approach is proposed, where all structural alternatives are represented in a State-Equipment Network (SEN) superstructure, following formulated into a Mixed-Logic Dynamic Optimization (MLDO) problem which is later solved to minimize an objective function. Essentially, the strength of the proposed methodology lies in the modeling strategy which combines the different kinds of decisions of the integrated problem in a unique optimization model. Accordingly, it considers: (i) synthesis and allocation alternatives combination, (ii) dynamic process performance models and dynamic control variable profiles, (iii) discrete events associated to transitions of batch phases and operations, (iv) quantitative and qualitative information, (v) material transference synchronization to ensure batch integrity between unit procedures, and (vi) batch and semicontinuous processing elements. Different strategies can be used to solve the resulting MLDO problem. A deterministic direct-simultaneous approach is first proposed. The mixed-logic problem is reformulated into a mixed-integer one, which is fully-discretized to provide a Mixed-Integer Non-Linear Programming (MINLP) that is optimized using conventional solvers. Then, a Differential Genetic Algorithm (DGA) and a hybrid approach are presented. The purpose of these evolutionary strategies is to pose solution alternatives that keep solution goodness while seek for the improvement of computational efficiency to handle industrial-size problems. The optimization-based approach is applied in retrofit scenarios to solve the simultaneous process synthesis and plant allocation, taking into account the physical restrictions of existing plant elements. The production of specialty chemicals based on a competitive reactions system in an existing reactor network is first defined through process development and improvement according to different economic scenarios, decision criteria, and plant modifications. Additionally, a photo-Fenton process is optimized to eliminate an emergent wastewater pollutant in a given pilot plant, pursuing the minimization of processing time and cost. Batch process development in grassroots scenarios is also proven to be a problem of utmost importance to deal with uncertainty in future markets. Seeking for plant flexibility in several demand scenarios, the expected profit is maximized through a two-stage stochastic formulation that includes simultaneous plant design, process synthesis, and plant allocation decisions. A heuristic solution algorithm is used to handle the problem complexity. A grassroots plant design is defined to implement the previous competitive reaction system, where decisions like the feed-forward trajectories or operating modes allow the adaptation of master recipes to different demands. Finally, an acrylic fiber production example is presented to illustrate process development decisions like the selection of tasks, technological alternatives, chemicals, and solvent reuse.La indústria de productes químics especials es basa en la fabricació discontinua, ja que permet adaptar de forma freqüent els sistemes de producció en funció de les fluctuacions de mercat. Per ser líder al sector, són necessàries eines de suport a la decisió que ajudin a l’àgil desenvolupament i implementació de nous processos. A més, aquests han de ser competitius per garantir la seva viabilitat a llarg termini. Altres peces clau per una operació eficient són l’ús de plantes flexibles així com l’estudi dels fenòmens fisicoquímics. Aquesta tesis aborda justament el desenvolupament sistemàtic de processos químics discontinus que siguin eficients, econòmicament competitius i ecològics, per contribuir a la seva ràpida introducció en els sistemes de producció, tant en escenaris de plantes existents com des de les bases. En concret, es planteja la resolució simultània de la síntesi conceptual d’esquemes de procés i l’assignació d’equips, tenint en compte el disseny de la planta. Amb aquest objectiu, es proposa una metodologia de solució basada en optimització, on les alternatives estructurals es representen en una Xarxa d’Estats i Equips (SEN per les sigles en anglès) que es formula mitjançant un problema d’Optimització Dinàmica Mixta-Lògica (MLDO per les sigles en anglès) que es resol minimitzant una funció objectiu. La solidesa de la metodologia proposada rau en la estratègia de modelat del problema MLDO, que integra els diferents tipus de decisions en un sol model d’optimització. En concret, es consideren: (i) la combinació d’alternatives de síntesi i assignació d’equips, (ii) models de procés i trajectòries de control dinàmics, (iii) esdeveniments discrets associats al canvi de fase i operació, (iv) informació quantitativa i qualitativa, (v) sincronització de transferències de material en tasques consecutives, i (vi) elements de processat discontinus i semi-continus. Existeixen diverses estratègies per resoldre el problema MLDO resultant. En aquesta tesi es proposa en primer lloc un mètode determinístic directe-simultani, on el model mixt-lògic es transforma en un mixt-enter. Aquest es discretitza al seu torn de forma completa per obtenir un problema de Programació No-Lineal Mixta-Entera (MINLP per les sigles en anglès) el qual es pot resoldre utilitzant algoritmes d’optimització convencionals. A més, es presenten un Algoritme Genètic Diferencial (DGA per les sigles en anglès) i un mètode híbrid. Totes dues estratègies esdevenen alternatives de cerca amb l’objectiu de mantenir la bondat de la solució i millorar l’eficàcia de computació per tractar problemes de dimensió industrial. La metodologia de solució proposada s’aplica al desenvolupament de processos discontinus en escenaris de plantes existents, tenint en compte les restriccions físiques dels equips. Un primer exemple aborda la manufactura de productes químics basada en un sistema de reaccions competitives. Concretament, es desenvolupa i millora el procés de producció implementat en una xarxa de reactors considerant diferents escenaris econòmics, criteris de decisió, i modificacions de planta. En un segon exemple, s’optimitza el procés foto-Fenton per ser executat en una planta pilot per eliminar contaminants emergents. Buscant integrar el desenvolupament de procés i el disseny de plantes flexibles en escenaris de base, es presenta una formulació estocàstica en dues etapes per a optimitzar el benefici esperat d’acord a diversos escenaris de demanda. Per gestionar la complexitat d’aquest problema es proposa la utilització d’una heurística. Com a exemple, es planteja el disseny d’una planta de base on implementar l’anterior sistema de reaccions competitives. Decisions com les trajectòries dinàmiques de control o la configuració d’equips permeten adaptar la recepta màster en funció de la demanda. Un darrer exemple defineix el procés de producció de fibra acrílica, il·lustrant decisions com la selecció de tasques, tecnologia, reactius o reutilització de dissolvents.La industria productos químicos especiales se basa en la fabricación discontinua, la cual permite la adaptación frecuente de los sistemas de producción en función de las fluctuaciones de mercado. Para ser líder en el sector, son necesarias herramientas de soporte a la decisión que contribuyan al ágil desarrollo e implementación de nuevos procesos. Además, éstos deben ser competitivos para garantizar su viabilidad a largo plazo. Otras piezas clave para una operación eficiente son la utilización de plantas flexibles y el estudio de los fenómenos fisicoquímicos. Esta tesis aborda justamente el desarrollo sistemático de procesos químicos discontinuos que sean eficientes, económicamente competitivos y ecológicos, para contribuir a su rápida introducción en los sistemas de producción, ya sea en escenarios de plantas existentes o desde las bases. En particular, se plantea la resoluciónsimultánea de la síntesis conceptual de esquemas de proceso y la asignación de equipos, teniendo en cuenta además el diseño de planta.Con este fin, se propone una metodología de solución basada en optimización, donde todas las alternativas estructurales se representan en una Red de Estados y Equipos (SENpor sus siglas en inglés) que se formula mediante un problema de Optimización Dinámica Mixta-Lógica (MLDO por sus siglas en inglés) que se resuelve minimizando una función objetivo. La solidez de la metodología propuesta reside en la estrategia de modelado delproblema MLDO, que integra los diferentes tipos de decisiones en un solo modelo de optimización. En concreto, se consideran: (i) la combinación de alternativas de síntesis y asignación de equipos, (ii) modelos de proceso y trayectorias de control dinámicos, (iii)eventos discretos asociados al cambio de fase y operación, (iv) información cuantitativa y cualitativa, (v) sincronización de la transferencia de material en tareas consecutivas, y(vi) elementos de procesado discontinuos y semicontinuos.Existen diversas estrategias para resolver el problema MLDO resultante. En esta tesis se propone en primer lugar un método determinístico directo-simultáneo, donde el problema mixto-lógico se reformula en un mixto-entero. A su vez, éste se discretiza de formacompleta para obtener un problema de Programación No-Lineal Mixta-Entera (MINLP por sus siglas en inglés) el cual se puede resolver mediante algoritmos de optimización convencionales. Además, se presentan un Algoritmo Genético Diferencial (DGA por sussiglas en inglés) y un método híbrido. Ambas estrategias se plantean como alternativas de búsqueda con objeto de mantener la bondad de la solución y mejorar la eficacia de computación para tratar problemas de dimensión industrial.La metodología de solución propuesta se aplica al desarrollo de procesos discontinuos en escenarios con plantas existentes, teniendo en cuenta las restricciones físicas de los equipos. Un primer ejemplo aborda la fabricación de productos químicos basada en un sistema de reacciones competitivas. En concreto, se desarrolla y mejora el proceso de producción a implementar en una red de reactores considerando diferentes escenarios económicos, criterios de decisión, y modificaciones de planta. En un segundo ejemplo,se optimiza el proceso foto-Fenton a ser ejecutado en una planta piloto para eliminar contaminantes emergentes.Persiguiendo la integración del desarrollo de proceso con el diseño de plantas flexi-bles en escenarios base, se presenta asimismo una formulación estocástica en dos etapas para optimizar el beneficio esperado de acuerdo a varios escenarios de demanda. Paramanejar la complejidad de dicho problema se propone la utilización de una heurística.Como ejemplo, se plantea el diseño de una planta de base para implementar el anterior sistema de reacciones competitivas, donde decisiones como las trayectorias dinámicas de control o la configuración de equipos permiten adaptar la receta máster en función de lademandas. Por último, se presenta un ejemplo donde se define el proceso de producción de fibra acrílica, ilustrando decisiones como la selección de tareas, alternativas tecnológicas, reactivos químicos o la reutilización de disolventes.Postprint (published version

    Process Integration of Absorption Heat Pumps

    Get PDF
    RÉSUMÉ Dans un contexte global, il est essentiel de réduire la consommation de combustibles fossiles afin de diminuer l’impact des activités humaines sur l’environnement. Le milieu industriel consommant beaucoup d’énergie, la réduction de son utilisation dans ce secteur est indispensable. Différentes options sont possibles pour réduire l’utilisation de l’énergie en milieu industriel. Les mesures proposées incluent l’intégration de pompes à chaleur, la cogénération de puissance et de chaleur, l’utilisation de différents combustibles, des opérations unitaires plus efficaces et l’augmentation de la récupération de l’énergie par échange de chaleur. Les pompes à chaleur (PC) sont des technologies de conversion de l’énergie qui sont utilisées pour augmenter la qualité de l’énergie en augmentant la température à laquelle celle-ci est disponible. Les pompes à chaleur à absorption (PACA) émergent comme une alternative potentielle aux pompes à chaleur à recompression de vapeur (PCRV) qui sont plus courantes. Elles sont mues thermiquement et lorsque qu’elles sont judicieusement positionnées dans un procédé industriel, elles peuvent être exploitées sans pratiquement acheter d’énergie. L’analyse de pincement est une technique utilisée pour maximiser la récupération de la chaleur interne dans un procédé. La thermodynamique de l’analyse de pincement dicte une règle fondamentale: il ne doit y avoir aucun transfert de chaleur de part et d’autre du point de pincement. Si cela se produit, le procédé subira une double pénalité, soit l’accroissement simultané des demandes en refroidissement et en chauffage. D’autre part, une pompe à chaleur doit transférer la chaleur d’un côté à l’autre du point de pincement : elle doit être intégrée de manière à ce que la source de chaleur soit située où se trouve un excès d’énergie, c’est-à-dire sous le pincement, et le puits de chaleur soit situé où il y a un besoin en énergie, c’est-à-dire au-dessus du pincement. La méthodologie d’intégration de certains types de PC, tels la PCRV ou les pompes à chaleur à compression alimentées électriquement est bien définie dans la littérature. Par contre, l’intégration d’une configuration plus complexe combinant des PACAs et des transformateurs de chaleur à absorption n’a pas été étudiée en profondeur.----------ABSTRACT In a global context, it is essential to reduce the consumption of fossil-based energy in order to decrease the environmental impact of human activities. Industry’s share of the total energy consumption is very large, and thus reduction of energy use is highly motivated in this sector. A number of different options are possible to reduce industrial energy use. Proposed measures include e.g. heat pumping, combined heat and power generation, fuel switching, more efficient unit operations, and increased heat recovery by heat exchange. Heat pumps are energy conversion devices that are used to upgrade the quality of heat by raising the temperature at which it is available. Absorption heat pumps (AHP) are emerging as a potential alternative to the more common vapour recompression heat pumps (VRHP). They are thermally driven and when judiciously positioned into an industrial process, they can be operated with practically no purchased power. Pinch Analysis is a technique used to maximize internal heat recovery within a process. The thermodynamics of Pinch Analysis dictates a fundamental rule: there must not be transfer of heat from above to below the pinch point. If this happens, the process suffers a double penalty: the simultaneous increase of the cooling and heating requirements of the process. On the other hand, an HP must transfer heat in the opposite direction from below to above the pinch point; so it should be integrated in such a way that the heat source is situated where there is an excess of heat, i.e. below the pinch, and the heat sink where there is a need for heat, i.e. above the pinch The methodology of integration of traditional heat pumps such as vapour recompression heat pumps or electrically driven compression heat pumps is well known and discussed in the literatures. However integration of more complex configurations like absorption heat pumps and absorption heat transformers in a process has not been thoroughly investigated

    VOC Control in Kraft Mills - Final Report: Task A and Task B

    Full text link

    Optimization of environmentally friendly solar assisted absorption cooling systems

    Get PDF
    La optimización de los sistemas de conversión de energía gana cada vez más importancia debido a su impacto ambiental y los limitados recursos de combustibles fósiles. Entre estos sistemas los de refrigeración tienen una contribución creciente en el consumo total de energía y en las emisiones de CO2. Los sistemas de absorción operados con energía solar son una de las alternativas más sostenibles frente a los sistemas de refrigeración convencionales. Por lo tanto, este trabajo se centra en su mejora siguiendo los métodos de optimización termo-económica y de programación matemática. El análisis exergético y la optimización termo-económica basada en el método estructural se han realizado para distintas configuraciones de ciclos de refrigeración por absorción con las mezclas de trabajo agua-LiBr y amoniaco-agua. En la sección de programación matemática se incluye la optimización multi-objetivo (frontera de Pareto), la optimización bajo incertidumbre de los precios de la energía, el uso de varios indicadores de impacto ambiental y el efecto del impuesto sobre las emisiones de CO2. Los resultados demuestran que se pueden obtener reducciones importantes del impacto ambiental frente a los sistemas convencionales. Los sistemas de refrigeración solar no sólo son atractivos para reducir el impacto ambiental, sino también pueden ser económicamente competitivos. Su implantación dependerá, en gran medida, del impuesto sobre las emisiones de CO2 y del coste de la energía.Optimizations of energy conversion systems become more important because of their environmental impact and the limitations of the fossil fuel resources. Among these systems cooling and refrigeration machines have an increasing share in the total energy consumption and contribution to CO2 emissions. Solar assisted absorption cooling systems are sustainable alternatives compared to the conventional cooling systems. Hence, this work is focused on improving the sustainability of cooling systems following the thermoeconomic optimization and mathematical programming approaches. In the first approach the energy, exergy and structural analysis are performed for different configurations of water/LiBr and ammonia/water absorption cooling cycles. In the second approach multi-objective optimization (Pareto frontier), optimization under uncertainty of energy prices, different environmental impact indicators, and the effect of CO2 emissions tax to reduce the global warming are discussed. The results of the multi-objective optimization show that a significant environmental impact reduction can be obtained. Results indicate that these systems are attractive not only to reduce the environmental impact but also in incurring the economic benefits. However, its practical impact largely depends on the CO2 emissions tax and the increase in the energy price

    Decision support strategies for the efficient implementation of circular economy principles in process systems

    Get PDF
    Economic growth at any expense is no longer an option. Awareness of the growing human footprint is crucial to face the problems that the impoverishment of ecosystems is causing and will cause in the future. One of the key challenges to address it is moving toward approaches to manage resources in a more sustainable way. In this light, circular economy stands as a promising strategy to improve the lifetime of resources by closing material and energy loops. The Process Systems Engineering (PSE) community has been developing methods and tools for increasing efficiency in process systems since the late 1980s. These methods and tools allow the development of more sustainable products, processes, and supply chains. However, applying these tools to circular economy requires special considerations when evaluating the introduction of waste-to-resource technologies. This Thesis aims at providing a set of models and tools to support in the decision-making process of closing material cycles in process systems through the implementation of waste-to-resource technologies from the circular economy perspective. The first part provides an overview of approaches to sustainability, presents the optimization challenges that circular economy and industrial symbiosis pose to PSE, and introduces the methodological and industrial scope of the Thesis. Part two aims at assessing the environmental and economic reward that may be attained through the application of circular economy principles in the chemical industry. With this purpose, a systematic procedure based on Life Cycle Assessment (LCA), economic performance and Technology Readiness Level (TRL) is proposed to characterize technologies and facilitate the comparison of traditional and novel technologies. The third part describes groundwork tasks for optimization models. A methodology is presented for the systematic generation of a list of potential waste-to-resource technologies based on an ontological framework to structure the information. In addition, this part also presents a targeting approach developed to include waste transformation and resource outsourcing, so a new dimension of potential destinations for waste are explored for the extension of material recovery. Finally, part four includes the development of decision-making models at the strategic and tactical hierarchical levels. At the network level, a framework is presented for the screening of waste-to-resource technologies in the design of process networks. The most promising processing network for waste recovery is identified by selecting the most favorable waste transformation processes among a list of potential alternatives. After the network selection, an optimization model is built for the detailed synthesis of individual processes selected in the resulting network. The developed methodologies have been validated and illustrated through their application to a case study under different viewpoints in the process industry, in particular to the chemical recycling of plastic waste. Despite the low Technology Readiness Level of some chemical recycling technologies, the results of this Thesis reveal pyrolysis as a promising technology to close the loop in the polymer sector. Overall, all these positive outcomes prove the advantages of developing tools to systematically integrate waste-to-resource processes into the life cycle of materials. The adaptation to this change of perspective of the well-established methods developed by the PSE community offers a wide range of opportunities to foster circular economy and industrial symbiosis. This Thesis aims to be a step forward towards a future with more economically efficient and environmentally friendly life cycles of materials.El crecimiento económico a cualquier precio ha dejado de ser una opción viable. Tener conciencia sobre nuestra creciente huella ambiental es clave para afrontar los problemas que el empobrecimiento de los ecosistemas está causando y causará en el futuro. Uno de los desafíos clave para abordarlo es avanzar hacia técnicas que permitan una gestión de recursos más sostenible. En esta línea, la economía circular es una estrategia con gran potencial para mejorar la vida útil de los recursos mediante el cierre de ciclos de materiales y energía. Desde finales de los años ochenta, la investigación en Ingeniería de Procesos y Sistemas (PSE) ha permitido generar métodos y herramientas para el desarrollo sostenible de productos, procesos y cadenas de suministro. Sin embargo, su aplicación en economía circular requiere consideraciones especiales al evaluar la introducción de nuevas tecnologías para el reciclaje de materiales. Esta Tesis tiene como objetivo proporcionar un conjunto de modelos y herramientas para apoyar el proceso de toma de decisiones sobre el aprovechamiento de materiales a través de la lente de la economía circular mediante la implementación de tecnologías de conversión de residuos en recursos. La primera parte presenta una visión general de los enfoques de sostenibilidad, lista los desafíos que la economía circular y la simbiosis industrial plantean en PSE, e introduce el alcance metodológico e industrial de la Tesis. La segunda parte tiene como objetivo evaluar los beneficios ambientales y económicos que se pueden obtener mediante la aplicación de los principios de la economía circular en la industria química. Con este propósito, se desarrolla un método sistemático basado en el análisis del ciclo de vida, el rendimiento económico y el nivel de madurez tecnológica para caracterizar las tecnologías de recuperación y facilitar la comparación entre técnicas tradicionales y en desarrollo. La tercera parte describe las tareas previas al desarrollo de los modelos de optimización. Se presenta una metodología para la generación sistemática de una lista de posibles tecnologías de conversión de residuos en recursos utilizando en un marco ontológico para estructurar la información. Además, se expone un método para acotar la transformación de residuos y la externalización de recursos, que permite explorar una nueva dimensión de destinos potenciales para los residuos, extendiendo así el grado de recuperación de materiales. Por último, la cuarta parte incluye el desarrollo de modelos de toma de decisiones a nivel estratégico y táctico. A nivel estratégico, se presenta un marco para la detección de tecnologías de reciclaje de residuos en el diseño de redes de procesos. Tras sintetizar la red, a nivel táctico se construye un modelo de optimización para el diseño detallado de los procesos individuales seleccionados en el mismo. Las metodologías desarrolladas han sido ilustradas y validadas a través de su aplicación en un caso de estudio con diferentes perspectivas sobre el reciclaje químico de residuos plásticos. A pesar del bajo nivel de madurez tecnológica de los procesos de reciclaje químico, los resultados de esta Tesis permiten identificar el gran potencial económico y ambiental de la pirolisis de residuos plásticos para cerrar su ciclo de materiales. En conjunto, los resultados demuestran las ventajas de desarrollar herramientas para integrar sistemáticamente los procesos de reciclaje de residuos en el ciclo de vida de los materiales. La adaptación a las necesidades de este cambio de perspectiva de métodos bien establecidos en la comunidad PSE ofrece grandes oportunidades para fomentar la economía circular y la simbiosis industrial. Esta tesis pretende ser un paso adelante hacia un futuro con ciclos de vida de materiales económica y ambientalmente más eficientes

    Submerged anaerobic membrane bioreactors for Kraft evaporator condensate treatment : feasibility and membrane fouling studies

    Get PDF
    In this study, the primary goal was to develop better treatment technologies for energy recovery from Kraft evaporator condensate (EC) using thermophilic and mesophilic submerged anaerobic membrane bioreactors (SAnMBRs). Specific objectives were to study the feasibility of using submerged AnMBRs for Kraft evaporator condensate treatment, to quantify the chemical oxygen demand (COD) removal efficiency and biogas production (chemical composition and rate), to characterize sludge properties, including particle size and extracellular polymeric substances (EPS), and to understand and control membrane fouling. The feasibility of using a submerged anaerobic membrane bioreactor (AnMBR) for Kraft evaporator condensate treatment was studied at 3 7°C over a period of 7 months. Under the various tested organic loading rates, a high, stable chemical oxygen demand (COD) removal efficiency was achieved for three stages of influent CODs. The permeate was of high quality, and the resulting biogas, composed of 85% methane, was of excellent fuel quality. It was found that the bubbling of recycled biogas was effective for in-situ membrane cleaning, depending on the recycle flow rate of produced biogas. Toxic feed shocking, due to total reduced sulfur (TRS) compounds and a high pH (due to pH probe failure) resulted in deflocculation, which led to an increase in membrane filtration resistance caused by fine floes
    corecore