35 research outputs found

    Interactive effect of beta-adrenergic stimulation and mechanical stretch on low-frequency oscillations of ventricular action potential duration in humans

    Get PDF
    Ventricular repolarization dynamics are crucial to arrhythmogenesis. Low-frequency oscillations of repolarization have recently been reported in humans and the magnitude of these oscillations proposed to be a strong predictor of sudden cardiac death. Available evidence suggests a role of the sympathetic nervous system. We have used biophysically detailed models integrating ventricular electrophysiology, calcium dynamics, mechanics and β-adrenergic signaling to investigate the underlying mechanisms. The main results were: (1) Phasic beta-adrenergic stimulation (β-AS) at a Mayer wave frequency between 0.03 and 0.15Hz resulted in a gradual decrease of action potential (AP) duration (APD) with concomitant small APD oscillations. (2) After 3-4minutes of phasic β-AS, the mean APD adapted and oscillations of APD became apparent. (3) Phasic changes in haemodynamic loading at the same Mayer wave frequency (a known accompaniment of enhanced sympathetic nerve activity), simulated as variations in the sarcomere length, also induced APD oscillations. (4) The effect of phasic β-AS and haemodynamic loading on the magnitude of APD oscillations was synergistic. (5) The presence of calcium overload and reduced repolarization reserve further enhanced the magnitude of APD oscillations and was accompanied by afterdepolarizations and/or spontaneous APs. In conclusion, low-frequency oscillations of repolarization recently reported in humans were induced by phasic β-AS and phasic mechanical loading, which acted synergistically, and were greatly enhanced by disease-associated conditions, leading to arrhythmogenic events

    Interactive effect of beta-adrenergic stimulation and mechanical stretch on low-frequency oscillations of ventricular action potential duration in humans

    Get PDF
    Ventricular repolarization dynamics are crucial to arrhythmogenesis. Low-frequency oscillations of repolarization have recently been reported in humans and the magnitude of these oscillations proposed to be a strong predictor of sudden cardiac death. Available evidence suggests a role of the sympathetic nervous system. We have used biophysically detailed models integrating ventricular electrophysiology, calcium dynamics, mechanics and ß-adrenergic signaling to investigate the underlying mechanisms. The main results were: (1) Phasic beta-adrenergic stimulation (ß-AS) at a Mayer wave frequency between 0.03 and 0.15 Hz resulted in a gradual decrease of action potential (AP) duration (APD) with concomitant small APD oscillations. (2) After 3-4 minutes of phasic ß-AS, the mean APD adapted and oscillations of APD became apparent. (3) Phasic changes in haemodynamic loading at the same Mayer wave frequency (a known accompaniment of enhanced sympathetic nerve activity), simulated as variations in the sarcomere length, also induced APD oscillations. (4) The effect of phasic ß-AS and haemodynamic loading on the magnitude of APD oscillations was synergistic. (5) The presence of calcium overload and reduced repolarization reserve further enhanced the magnitude of APD oscillations and was accompanied by afterdepolarizations and/or spontaneous APs. In conclusion, low-frequency oscillations of repolarization recently reported in humans were induced by phasic ß-AS and phasic mechanical loading, which acted synergistically, and were greatly enhanced by disease-associated conditions, leading to arrhythmogenic events

    Multiscale Modeling and Simulation of Human Heart Failure

    Full text link
    Tesis por compendio[EN] Heart failure (HF) constitutes a major public health problem worldwide. Operationally it is defined as a clinical syndrome characterized by the marked and progressive inability of the ventricles to fill and generate adequate cardiac output to meet the demands of cellular metabolism that may have significant variability in its etiology and it is the final common pathway of various cardiac pathologies. Much attention has been paid to the understanding of the arrhythmogenic mechanisms induced by the structural, electrical, and metabolic remodeling of the failing heart. Due to the complexity of the electrophysiological changes that may occur during heart failure, the scientific literature is complex and sometimes equivocal. Nevertheless, a number of common features of failing hearts have been documented. At the cellular level, prolongation of the action potential (AP) involving ion channel remodeling and alterations in calcium handling have been established as the hallmark characteristics of myocytes isolated from failing hearts. At the tissue level, intercellular uncoupling and fibrosis are identified as major arrhythmogenic factors. In this Thesis a computational model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of the late sodium current (INaL) in order to study the arrhythmogenic processes due to failing phenotype. Experimental data from several sources were used to validate the model. Due to extensive literature in the subject a sensitivity analysis was performed to assess the influence of main ionic currents and parameters upon most related biomarkers. In addition, multiscale simulations were carried out to characterize this pathology (transmural cardiac fibres and tissues). The proposed model for the human INaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. An enhanced INaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of calcium homeostasis of failing myocytes. Our strand simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the human failing ventricle modulate the dispersion of action potential duration (APD) and repolarization time (RT). Conduction velocity (CV) and the safety factor for conduction (SF) were also reduced by the progressive structural remodeling during heart failure. In our transmural ventricular tissue simulations, no reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the vulnerable window (VW). However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In conclusion, enhanced fibrosis in failing hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical propagation. In that sense, structural remodeling is a key factor in the genesis of vulnerability to reentry, mainly at intermediates levels of fibrosis and intercellular uncoupling.[ES] La insuficiencia cardíaca (IC) constituye un importante problema de salud pública en todo el mundo. Operacionalmente se define como un síndrome clínico caracterizado por la incapacidad marcada y progresiva de los ventrículos para llenar y generar gasto cardíaco adecuado para satisfacer las demandas del metabolismo celular, que puede tener una variabilidad significativa en su etiología y es la vía final común de varias patologías cardíacas. Se ha prestado mucha atención a la comprensión de los mecanismos arritmogénicos inducidos por la remodelación estructural, eléctrica, y metabólica del corazón afectado de IC. Debido a la complejidad de los cambios electrofisiológicos que pueden ocurrir durante la IC, la literatura científica es compleja y, a veces equívoca. Sin embargo, se han documentado una serie de características comunes en corazones afectados de IC. A nivel celular, se han establecido como las características distintivas de los miocitos aislados de corazones afectados de IC la prolongación del potencial de acción (PA), que implica la remodelación de los canales iónicos y las alteraciones en la dinámica del calcio. A nivel de los tejidos, el desacoplamiento intercelular y la fibrosis se identifican como los principales factores arritmogénicos. En esta tesis se propuso un modelo celular computacional para la insuficiencia cardíaca utilizando una versión modificada del modelo de potencial de acción ventricular humano de Grandi y colaboradores que incorpora la formulación de la corriente tardía de sodio (INaL) con el fin de estudiar los procesos arritmogénicas debido al fenotipo de la IC. Los datos experimentales de varias fuentes se utilizaron para validar el modelo. Debido a la extensa literatura en la temática se realizó un análisis de sensibilidad para evaluar la influencia de las principales corrientes iónicas y los parámetros sobre los biomarcadores relacionados. Además, se llevaron a cabo simulaciones multiescala para caracterizar esta patología (en fibras y tejidos transmurales). El modelo propuesto para la corriente tardía de sodio y la remodelación electrofisiológica de los miocitos de corazones afectados de IC reprodujeron con precisión las observaciones experimentales. Una INaL incrementada parece ser un importante contribuyente al fenotipo electrofisiológico y la desregulación de la homeostasis del calcio de los miocitos afectados de IC. Nuestros resultados de la simulaciones en fibra ilustran cómo la presencia de células M y el remodelado electrofisiológico heterogéneo en el ventrículo humano afectado de IC modulan la dispersión de la duración potencial de acción (DPA) y el tiempo de repolarización (TR). La velocidad de conducción (VC) y el factor de seguridad para la conducción (FS) también se redujeron en la remodelación estructural progresiva durante la insuficiencia cardíaca. En nuestras simulaciones transmurales de tejido ventricular, no se observó reentrada en condiciones normales o en presencia de la remodelación iónica de la IC. Sin embargo, determinadas cantidades de fibrosis y / o desacoplamiento celular eran suficientes para provocar la actividad reentrante. En condiciones donde se había generado la reentrada, el remodelado electrofisiológico de la IC no alteró la anchura de la ventana vulnerable (VV). Sin embargo, niveles intermedios de fibrosis y el desacoplamiento celular ampliaron significativamente la VV. En conclusión, niveles elevados de fibrosis en corazones afectados de IC, así como la reducción de acoplamiento intercelular, se combinan para aumentar los gradientes electrofisiológicos y reducir la propagación eléctrica. En ese sentido, la remodelación estructural es un factor clave en la génesis de la vulnerabilidad a las reentradas, principalmente en niveles intermedios de fibrosis y desacoplamiento intercelular. El remodelado electrofisiológico promueve la arritmogénesis y puede ser alterado dependi[CA] La insuficiència cardíaca (IC) constitueix un important problema de salut pública arreu del món. A efectes pràctics, es defineix com una síndrome clínica caracteritzada per la incapacitat marcada i progressiva dels ventricles per omplir i generar el cabal cardíac adequat, per tal de satisfer les demandes del metabolisme cel·lular, el qual pot tenir una variabilitat significativa en la seua etiologia i és la via final comuna de diverses patologies cardíaques. S'ha prestat molta atenció a la comprensió dels mecanismes aritmogènics induïts per la remodelació estructural, elèctrica, i metabòlica del cor afectat d'IC. A causa de la complexitat dels canvis electrofisiològics que poden ocórrer durant la IC, trobem que la literatura científica és complexa i, de vegades, equívoca. No obstant això, s'han documentat una sèrie de característiques comunes en cors afectats d'IC. A nivell cel·lular, com característiques distintives dels miòcits aïllats de cors afectats d'IC, s'han establert la prolongació del potencial d'acció (PA), que implica la remodelació dels canals iònics, i les alteracions en la dinàmica del calci. A nivell dels teixits, el desacoblament intercel·lular i la fibrosi s'identifiquen com els principals factors aritmogènics. Per tal d'estudiar els processos aritmogènics a causa del fenotip de la IC, es va proposar un model cel·lular computacional d'IC utilitzant una versió modificada del model de potencial d'acció ventricular humà de Grandi i els seus col·laboradors, el qual incorpora la formulació del corrent de sodi tardà (INaL). Amb l'objectiu de validar el model es van utilitzar dades experimentals de diverses fonts. A causa de l'extensa literatura en la temàtica, es va realitzar una anàlisi de sensibilitat per tal d'avaluar la influència de les principals corrents iòniques i els paràmetres sobre els biomarcadors relacionats. A més, es van dur a terme simulacions multiescala per a la caracterització d'aquesta patología (fibres i teixits transmurals). El model proposat per al corrent de sodi tardà i la remodelació electrofisiològica dels miòcits de cors afectats d'IC van reproduir amb precisió les observacions experimentals. Una INaL incrementada sembla contribuir de manera important al fenotip electrofisiològic i a la desregulació de l'homeòstasi del calci dels miòcits afectats d'IC. Els resultats de les nostres simulacions en fibra indiquen que la presència de cèl·lules M i el remodelat electrofisiològic heterogeni en el ventricle humà afectat d'IC modulen la dispersió de la durada del potencial d'acció (DPA) i el temps de repolarització (TR). La velocitat de conducció (VC) i el factor de seguretat per a la conducció (FS) també es van reduir en la remodelació estructural progressiva durant la IC. A les nostres simulacions transmurals de teixit ventricular, no s'observà cap reentrada ni en condicions normals ni en presència de la remodelació iònica de la IC. No obstant això, amb determinades quantitats de fibrosi i/o desacoblament cel·lular sí que es provocà l'activitat reentrant. I amb les condicions que produïren la reentrada, el remodelat electrofisiològic de la IC no va alterar l'amplada de la finestra vulnerable (FV). Tanmateix, nivells intermedis de fibrosi i el desacoblament cel·lular sí que ampliaren significativament la FV. En conclusió, nivells elevats de fibrosi en cors afectats d'IC, així com la reducció d'acoblament intercel·lular, es combinen per augmentar els gradients electrofisiològics i reduir la propagació elèctrica. Per tant, la remodelació estructural és un factor clau en la gènesi de la vulnerabilitat a les reentrades, principalment en nivells intermedis de fibrosi i desacoblament intercel·lular.Gómez García, JF. (2015). Multiscale Modeling and Simulation of Human Heart Failure [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52389TESISCompendi

    Modelling the interaction between induced pluripotent stem cells derived cardiomyocytes patches and the recipient hearts

    Get PDF
    Cardiovascular diseases are the main cause of death worldwide. The single biggest killer is represented by ischemic heart disease. Myocardial infarction causes the formation of non-conductive and non-contractile, scar-like tissue in the heart, which can hamper the heart's physiological function and cause pathologies ranging from arrhythmias to heart failure. The heart can not recover the tissue lost due to myocardial infarction due to the myocardium's limited ability to regenerate. The only available treatment is heart transpalant, which is limited by the number of donors and can elicit an adverse response from the recipients immune system. Recently, regenerative medicine has been proposed as an alternative approach to help post-myocardial infarction hearts recover their functionality. Among the various techniques, the application of cardiac patches of engineered heart tissue in combination with electroactive materials constitutes a promising technology. However, many challenges need to be faced in the development of this treatment. One of the main concerns is represented by the immature phenotype of the stem cells-derived cardiomyocytes used to fabricate the engineered heart tissue. Their electrophysiological differences with respect to the host myocardium may contribute to an increased arrhythmia risk. A large number of animal experiments are needed to optimize the patches' characteristics and to better understand the implications of the electrical interaction between patches and host myocardium. In this Thesis we leveraged cardiac computational modelling to simulate \emph{in silico} electrical propagation in scarred heart tissue in the presence of a patch of engineered heart tissue and conductive polymer engrafted at the epicardium. This work is composed by two studies. In the first study we designed a tissue model with simplified geometry and used machine learning and global sensitivity analysis techniques to identify engineered heart tissue patch design variables that are important for restoring physiological electrophysiology in the host myocardium. Additionally, we showed how engineered heart tissue properties could be tuned to restore physiological activation while reducing arrhythmic risk. In the second study we moved to more realistic geometries and we devised a way to manipulate ventricle meshes obtained from magnetic resonance images to apply \emph{in silico} engineered heart tissue epicardial patches. We then investigated how patches with different conduction velocity and action potential duration influence the host ventricle electrophysiology. Specifically, we showed that appropriately located patches can reduce the predisposition to anatomical isthmus mediated re-entry and that patches with a physiological action potential duration and higher conduction velocity were most effective in reducing this risk. We also demonstrated that patches with conduction velocity and action potential duration typical of immature stem cells-derived cardiomyocytes were associated with the onset of sustained functional re-entry in an ischemic cardiomyopathy model with a large transmural scar. Finally, we demonstrated that patches electrically coupled to host myocardium reduce the likelihood of propagation of focal ectopic impulses. This Thesis demonstrates how computational modelling can be successfully applied to the field of regenerative medicine and constitutes the first step towards the creation of patient-specific models for developing and testing patches for cardiac regeneration.Open Acces

    Ursodeoxycholic acid: a potential anti-arrhythmic and anti-fibrotic agent in adult hearts

    Get PDF
    Acute myocardial ischaemia and reperfusion (I-R) are major causes of ventricular arrhythmias. In the chronic post-ischaemic heart, the presence of a healed fibrotic scar contributes to the occurrence of malignant arrhythmias, and development of post-myocardial infarction (MI) left ventricular (LV) remodelling and heart failure (HF). The aim of the work in this thesis was to investigate if ursodeoxycholic acid (UDCA) protects against acute I-R-induced arrhythmias, and if it plays cardioprotective and anti-arrhythmic roles in the chronic post-MI adult myocardium. An ex vivo rat model of acute I-R was used to study the effect of UDCA on arrhythmia incidence. UDCA administration reduced acute ischaemia-induced arrhythmias, with no effect on reperfusion arrhythmias. The antiarrhythmic effect of UDCA is partially mediated by an increase in cardiac wavelength, due to the attenuation of conduction velocity (CV) slowing, and the preservation of Connexin43 phosphorylation during acute ischaemia. Multiple in vitro models of cardiac fibrosis were used to study the potential of UDCA as treatment of cardiac fibrosis. UDCA was proven to reduce cardiac fibrosis and preserve the associated changes in contractile functions and electrophysiology. The antifibrotic mechanism of action of UDCA is partially mediated by TGR5 modulation via dephosphorylation of ERK protein. A sixteen-week post-MI model was generated to explore the effects of UDCA on late post-MI arrhythmias and LV remodeling. UDCA prevented the adverse LV remodeling associated with the progression of MI and reduced fibrosis and the healed ischaemic border zone (IBZ) sizes. This resulted in reduced late susceptibility to ventricular arrhythmias and improved CV across the IBZ in UDCA-treated hearts at 16 weeks post MI. We generated robust novel data highlighting the potential application of UDCA in the prevention of ventricular arrhythmias during acute MI in the adult myocardium as well as against cardiac arrhythmias that are associated with cardiac fibrosis, due to its cardioprotective effect in the post-MI heart.Open Acces

    Synthetic mammalian neuromuscular junction and method of making (US)

    Get PDF
    The next generation of system biology and drug discovery tools will be functional in vitro systems composed of human cells in defined serum-free systems. These functional in vitro systems will enable understanding beyond the single cell level directly to the human condition and enable the faster and least expensive translation of basic research to therapeutics. This study reports the first pure human-based in vitro Neuromuscular Junction (NMJ) system by demonstrating the co-culture of motoneurons and skeletal muscle (SKMs) derived from human stem cells, in a defined, serum-free medium and on a patternable non-biological surface

    The fundamental role of cardiac tissue morphology in electrical signal propagation

    Get PDF
    corecore