89,658 research outputs found

    Hand and face segmentation using motion and colour cues in digital image sequences

    Get PDF
    © 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.In this paper, we present a hand and face segmentation algorithm using motion and color cues. The algorithm is proposed for the content based representation of sign language image sequences, where the hands and face constitute a video object. Our hand and face segmentation algorithm consists of three stages, namely color segmentation, temporal segmentation, and video object plane generation. In color segmentation, we model the skin color as a normal distribution and classify each pixel as skin or non-skin based on its Mahalanobis distance. The aim of temporal segmentation is to localize moving objects in image sequences. A statistical variance test is employed to detect object motion between two consecutive images. Finally, the results from color and temporal segmentation are analyzed to yield a change detection mask. The performance of the algorithm is illustrated by simulation carried out on the silent test sequence.Nariman Habili ; Cheng-Chew Lim ; Alireza Moin

    Using encoder-decoder architecture for material segmentation based on beam profile analysis

    Get PDF
    Abstract. Recognition and segmentation of materials has proven to be a challenging problem because of the wide divergence in appearance within and between categories. Many recent material segmentation approaches treat materials as yet another set of labels like objects. However, materials are basically different from objects as they have no basic shape or defined spatial extent. Our approach roughly ignores this and can primarily take advantage of limited implicit context (local appearance) as it seems during training, because our training images that almost do not have a global image context; such as (I) where the used materials have no inherent shape or defined spatial extent like apple, orange and potato approximately have the same spherical shape; (II) besides, images where taken under a black background, which roughly removes the spatial features of the materials. We introduce a new materials segmentation dataset, which was taken with a Beam Profile Analysis sensing device. The dataset contains 10 material categories, and it has image pair samples consisting of grayscale images with and without the laser spots (grayscale and laser images) in addition to annotated segmented images. To the best of our knowledge, this is the first material segmentation dataset for Beam Profile Analysis images. As a second step, we proposed a deep learning approach to perform material segmentation on our dataset; our proposed CNNs is an encoder-decoder model, which is based on the DeeplabV3+ model. Our main goal is to obtain segmented material maps and discover how the laser spots contribute to the segmentation results; therefore, we perform a comparative analysis across different types of architectures to observe how the laser spots contribute to the whole segmentation. We built our experiments on three main types of models that use a different type of input; for each model, we implemented various types of backbone architectures. Our experiments results show that the laser spots have an efficient contribution on the segmentation results. GrayLaser model achieves a significant accuracy improvement compared to other models, where the fine-tuned architecture of this model has reached an accuracy of 94% over MIoU metric, and one trained from the scratch has reached an accuracy of 62% over MIoU

    Temporally coherent 3D point cloud video segmentation in generic scenes

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Video segmentation is an important building block for high level applications, such as scene understanding and interaction analysis. While outstanding results are achieved in this field by the state-of-the-art learning and model-based methods, they are restricted to certain types of scenes or require a large amount of annotated training data to achieve object segmentation in generic scenes. On the other hand, RGBD data, widely available with the introduction of consumer depth sensors, provide actual world 3D geometry compared with 2D images. The explicit geometry in RGBD data greatly help in computer vision tasks, but the lack of annotations in this type of data may also hinder the extension of learning-based methods to RGBD. In this paper, we present a novel generic segmentation approach for 3D point cloud video (stream data) thoroughly exploiting the explicit geometry in RGBD. Our proposal is only based on low level features, such as connectivity and compactness. We exploit temporal coherence by representing the rough estimation of objects in a single frame with a hierarchical structure and propagating this hierarchy along time. The hierarchical structure provides an efficient way to establish temporal correspondences at different scales of object-connectivity and to temporally manage the splits and merges of objects. This allows updating the segmentation according to the evidence observed in the history. The proposed method is evaluated on several challenging data sets, with promising results for the presented approach.Peer ReviewedPostprint (author's final draft

    VQ-NeRF: Neural Reflectance Decomposition and Editing with Vector Quantization

    Full text link
    We propose VQ-NeRF, a two-branch neural network model that incorporates Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes. Conventional neural reflectance fields use only continuous representations to model 3D scenes, despite the fact that objects are typically composed of discrete materials in reality. This lack of discretization can result in noisy material decomposition and complicated material editing. To address these limitations, our model consists of a continuous branch and a discrete branch. The continuous branch follows the conventional pipeline to predict decomposed materials, while the discrete branch uses the VQ mechanism to quantize continuous materials into individual ones. By discretizing the materials, our model can reduce noise in the decomposition process and generate a segmentation map of discrete materials. Specific materials can be easily selected for further editing by clicking on the corresponding area of the segmentation outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy to predict the number of materials in a scene, which reduces redundancy in the material segmentation process. To improve usability, we also develop an interactive interface to further assist material editing. We evaluate our model on both computer-generated and real-world scenes, demonstrating its superior performance. To the best of our knowledge, our model is the first to enable discrete material editing in 3D scenes.Comment: Accepted by TVCG. Project Page: https://jtbzhl.github.io/VQ-NeRF.github.io

    Moving object detection unaffected by cast shadows, highlights and ghosts

    Get PDF
    IEEE Copyright Policies: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.This paper describes a new approach to perform segmentation of moving objects in real-time from images acquired by a fixed color video camera and is the first tool of a major project that aspires to recognize abnormal human behavior in public areas. The moving objects detection is based on background subtraction and it is unaffected by changes in illumination, i.e., cast shadows and highlights. Furthermore it does not require a special attention during the initialization process, due to its ability to detect and rectify ghosts. The results show that with image resolutions of 380x280 at 24 bits per pixel, the time spent in the segmentation process is around 80ms, in a 32 bits 3GHz processor based computer.Fundação para a Ciência e a Tecnologia (FCT

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning
    corecore