
1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Temporally Coherent 3D Point Cloud Video
Segmentation in Generic Scenes

Xiao Lin, Josep R. Casas, and Montse Pardàs

Abstract—Video segmentation is an important building block
for high level applications such as scene understanding and
interaction analysis. While outstanding results are achieved in
this field by state-of-the-art learning and model based methods,
they are restricted to certain types of scenes or require a large
amount of annotated training data to achieve object segmentation
in generic scenes. On the other hand, RGBD data, widely avail-
able with the introduction of consumer depth sensors, provides
actual world 3D geometry compared to 2D images. The explicit
geometry in RGBD data greatly helps in computer vision tasks,
but the lack of annotations in this type of data may also hinder
the extension of learning based methods to RGBD.

In this paper, we present a novel generic segmentation ap-
proach for 3D point cloud video (stream data) thoroughly exploit-
ing the explicit geometry in RGBD. Our proposal is only based
on low level features, such as connectivity and compactness. We
exploit temporal coherence by representing the rough estimation
of objects in a single frame with a hierarchical structure, and
propagating this hierarchy along time. The hierarchical structure
provides an efficient way to establish temporal correspondences
at different scales of object-connectivity, and to temporally
manage the splits and merges of objects. This allows updating
the segmentation according to the evidence observed in the
history. The proposed method is evaluated on several challenging
datasets, with promising results for the presented approach.

Index Terms—Video segmentation, RGBD data, point clouds,
3D connectivity, hierarchical segmentation.

I. INTRODUCTION

Segmentation is an essential task in computer vision. It
usually serves as the foundation for solving higher level
problems such as object recognition, interaction analysis and
scene understanding. Image segmentation is traditionally de-
fined as partitioning the image into a set of segments showing
some sort of pixel homogeneity. The segments obtained in
low level segmentation are expected to be perceptually more
meaningful than raw pixels, as in [35], [8]. The low level
segments also produce a simplification of the image, which can
be exploited by higher level segmentation and classification
approaches in order to produce even more meaningful regions,
ideally corresponding to semantic objects in the scene. To
achieve this goal, high level knowledge or supervision is
usually incorporated into the process, using object models
[7] or large databases containing fully annotated data as, for
instance, in label transfer [25] and convolutional networks [26]
approaches.

Video object segmentation extends image segmentation to
video frames while considering the temporal coherence of
object segments. As in the case of image segmentation, most
video segmentation methods are based on prior knowledge.
For instance, strong priors based on accurate object annotation

for the first frame are required in [32], [37] for initialization.
The advantage of introducing prior knowledge is obvious, as it
provides clear targets/models for the system to perform robust
segmentation in the following video frames. However, most
computer vision applications involve large amounts of data
with different types of scenes containing several objects, which
make these methods difficult to adapt to generic applications.
In this situation, some methods attempt to leverage the su-
pervision in more generic ways, such as [13]. They train a
classifier to determine whether an image region is an “object-
like” region or not, making the approach more generic to
different types of objects and scenes. But these approaches
strongly rely on the support of a large amount of annotated
data for training, which may not be available in some cases.

On the other hand, the widespread availability of RGBD
data from consumer depth sensors provides the possibility to
work with explicit 3D geometry (i.e. point clouds instead of
images). This richer information from actual 3D data in the
real world can be exploited to improve segmentation. However,
the lack of annotations for RGBD datasets compromises
the application of data-eager supervised video segmentation
methods for RGBD data. In this case, larger attention has been
drawn on unsupervised methods, which exploit only generic
features to cope with the semantic segmentation task in generic
RGBD scenes. Unsupervised approaches generate meaningful
segments by the analysis of generic features in space and
time, such as connectivity, geometry and motion. Due to their
genericity, unsupervised segmentation could also serve as a
building block for more powerful supervised approaches in
the future.

A. Related Work

Unsupervised methods for video segmentation [15], [17],
[1], [18], [21] mainly focus on tackling two problems: a
generic representation, which abstracts the raw data from
scratch in order to extract more representative features, and a
method to establish temporal correspondences, which makes
the segmentation along a video sequence more stable with
respect to occlusions and object interactions.

Representation: Generic object level representations are
proposed to incrementally learn an object model along a
sequence. For instance, Husain et al [17] maintains a quadratic
surface model to represent the object segments in the scene.
Each region is updated along the sequence using a split-and-
merge procedure which includes an adaptive mechanism for
the creation and removal of segments. Similarly, a Gaussian
Mixture Model (GMM) is used in [21] to represent objects.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

But these object level representations still rely on a good initial
configuration for the model and, since they are incrementally
updated in each frame, they are usually very sensitive to
segmentation errors which may easily propagate along time.

More recently, several methods represent the raw data with
a pool of object-like regions [22], [27], [41]. These object
proposals are extracted from each frame based on generic
spatial features. Then, temporal relations and motion are used
to extract the primary object segment in the video sequence
by means of optimization techniques. In [41], for instance,
the selection is formulated as the longest path problem for a
Directed Acyclic Graph. The work in [10] uses this approach
for co-segmentation, introducing in this case RGBD images.
In this line, and working with RGBD videos, the work in
[9] proposes to select the significant objects from a pool
of object proposals through graph optimization, introducing
objectness, motion and RGBD video saliency to evaluate the
importance of each object proposal. These approaches are
generally computationally expensive, mainly due to the cost of
the proposal generation process, and can not handle a varying
number of objects in the sequence.

Hierarchical representations are employed in some methods,
such as [2], [40], [28], [15], to represent the raw data from
coarse to fine. A hierarchical representation usually starts
from the segments at a relatively fine level, such as super-
pixels or over-segmented regions recovered from a contour
probability map [2] for RGB data, or super-voxels [30], [6]
in the case of RGBD data. Then, the segments are gradually
grouped into coarser level regions following strategies like
Binary Partition Tree (BPT) [38], Multiscale Combinatorial
Grouping [3] or Shape-Space Filtering [40]. One advantage
of hierarchical representations in video object segmentation
is that temporal correspondences can be established at dif-
ferent scales, which benefits the temporal coherence for the
video object segmentation task considered afterwards. On the
other hand, exploiting temporal coherence also helps to better
construct the hierarchical representation at each frame. For
instance, in [28], long term trajectories are leveraged to help
building BPTs.

Establishing temporal correspondences: The video seg-
mentation task establishes temporal correspondences based on
the representation discussed above. For hierarchical represen-
tations [15], [12], temporal connectivity is a simple criterion
to build the temporal correspondences between segments in
successive frames. However, this might not be a suitable
strategy at the finest level of the hierarchy. Scenes with fast
moving objects may not be temporally consistent and fail to
show temporally connected segments at this finest level when
over-segmentation is independently performed for each frame,
hampering the process of building temporal correspondences.
The temporal correspondence can also be built based on op-
tical flow [12], but the global optimum in the correspondence
building task is still difficult to achieve considering the large
scale of the problem. Instead, a local optimum is usually
accepted as a solution for the correspondence problem, which
makes the established correspondences less reliable in the
upcoming analysis.

Methods based on object proposals [41], [10], [9] fully

(a) (b)

Fig. 1. First row: input point clouds and color images. Second row:
segmentation errors (false split in purple on left, false merge in red on
the right) in challenging scenes with occlusions/self-occlusions or object
interactions, and the corresponding sketch maps shown besides. Third row:
Our segmentation result by analyzing generic features in spatio-temporal
domain to handle the challenges without introducing neither strong prior
knowledge nor initialization, together with the corresponding sketch maps.

connect the object proposals in consecutive frames and convert
the temporal correspondence building task into an optimization
problem on the graph. However, they highly rely on the
object proposal generator, and usually require a large (and
potentially redundant) set of proposals to keep the possibility
of having the proper object proposals and their temporal
correspondences across all frames.

B. Our Proposal

Motivated by the discussion above, we propose a method
that works with 3D point clouds obtained from RGBD stream
data. It fully exploits the 3D geometry and temporal infor-
mation in order to extract video objects and analyze their
interaction in an unsupervised way. The proposed segmen-
tation approach is generic, as it defines objects as “compact
point clouds” in the 3D-space plus time domain. It allows
point clouds corresponding to an object to break into different
compact sub-clouds due to occlusions, or to merge with point
clouds corresponding to other objects when they become spa-
tially close (this is what we call object interaction). Fig. 1(a)
shows an example where the object “human” breaks into two
compact clouds (blue and purple) due to self-occlusion, while
Fig. 1(b) shows an example where the objects “human” and
“box” become spatially close and merge in a compact point
cloud (in red).

We propose a hierarchical representation of the raw point
cloud data to cope with these situations considering 3D spatial
connectivity, and exploit the temporal information by building
the temporal correspondences between the hierarchical struc-
tures in successive frames. But, in contrast to [15], [12], we
do not construct the hierarchy from a relatively fine level. We
rather start at a much higher level formed by blobs, segments,
components and objects, as explained later in Section III,
so that the task of building temporal correspondences can

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

be solved globally as an optimization problem thanks to the
reduced problem scale. Building temporal correspondences
at a higher level does not affect object segmentation, since
only object correspondences are concerned rather than object
details in the segmentation task. Then, based on the established
temporal correspondences, objects in a given frame are defined
according to the evidence observed up to this frame.

A preliminary conference version of this work appeared
in [24], presenting video object segmentation on RGBD stream
data captured by a static camera in a predefined Space of
Interest (SoI), where background objects were removed by
manually setting the SoI. In this paper we avoid manual
selection of the SoI by exploiting a point cloud transformation
which defines point cloud connectivity for the whole scene
rather than just for objects in the SoI as in [24]. This
also allows us to detect and remove supporting planes more
efficiently in the scene, as a previous step before object
segmentation. In addition, we improve the segmentation result
by introducing a fully connected CRF [20], in order to cope
with more generic and challenging scenes involving complex
backgrounds and camera motion, and extend our approach to
a new application for the selection of “significan” objects.
Comparison experiments are made between the proposed
approach and two RGBD based generic object segmentation
approaches [17], [9] on several benchmark datasets.

The rest of the paper is organized as follows: in section II we
define point cloud connectivity and the detection of compact
point clouds in a single frame. Section III presents the frame-
work for the temporally coherent segmentation approach based
on compact point clouds. Results are shown in section IV, and
section V discusses the results and yields conclusions.

II. SINGLE FRAME COMPACT POINT CLOUD DETECTION

Individual pixel depths in RBG-D images captured by a
consumer depth sensor can be transformed into a 3D point
cloud from the camera intrinsic parameters. Our approach aims
to segment objects in RGBD video sequences by detecting
“compact point clouds” in 3D space plus time. We aim to
fully exploit geometry in terms of 3D spatial connectivity and
temporal correspondences. Let us first introduce the definition
of spatial connectivity in a 3D point cloud.

A. Spatial Connectivity in Point clouds

Unlike the well organized space of image coordinates, a
point cloud is a set of scattered 3D points. Spatial connectivity
among those 3D points can simply be defined by a distance
threshold. However, this would provide an excess of connectiv-
ity information which is not necessary for object segmentation
and would significantly enlarge the data structure. In addition,
point clouds obtained from a single RGBD camera have a
significant drawback: point density, i.e. details available about
scene geometry, falls rapidly with increasing distance from
the camera. This prevents the definition of spatial connec-
tivity using a single distance threshold. On the other hand,
noise produced in the depth capturing process leads to depth
estimation errors, which also affects the construction of spatial
connectivity in point clouds. Point cloud filtering methods (see

[14] for details) are usually applied to reduce noise in the point
cloud.

In our approach, we follow the method introduced in [6]
and [30] to robustly construct spatial connectivity for point
clouds. We first compensate the decreasing point density and
quantization with increasing depth by using the coordinate
transformation in [6]. Next, we build a super-voxel represen-
tation [30] on the transformed point cloud. When building
super-voxels of a point cloud, a grid voxel filtering step is
first performed to organize the 3D space into voxel grids.
In this manner, noise in a point cloud is somehow reduced
by representing the points in a voxel with the voxel center.
The spatial connectivity is defined at the super-voxel level,
rather than on the raw point cloud. This also allows to start
the segmentation from a higher level.

In practice, given a point cloud C, we transform C with
the reversible transformation T (C) → C ′ : x′ = x/z, y′ =
y/z, z′ = log (z). The division of the x and y coordinates by z
compensates for the perspective transformation [6], equalizing
the point density in the x − y−plane across the depth range.
Transforming the z coordinate helps to deal with the effects of
depth quantization by compressing points as depth increases.
The transformed point cloud C ′ is organized using a voxel
grid, and voxels are grouped into super-voxels considering
1) their distance in 3D space, 2) their color similarity, and
3) local 3D shape similarity. The color of each voxel is
represented by the mean color of the points in that voxel grid.
To measure the shape similarity, the local 3D shape of each
voxel is represented by Fast Point Feature Histograms (FPFH)
introduced in [34]. We finally represent the transformed point
cloud C ′ as a super-voxel graph G (v, e), in which nodes
vi ∈ v are super-voxels (homogeneous sub-cloud patches), and
edges ei,j (vi, vj) ∈ e define the adjacency of patches. In this
manner, a point cloud is simplified as a graph of super-voxels
where important boundary information is kept.

The spatial connectivity in a point cloud is therefore dealt
with as the connectivity among the super-voxels in the graph.
Fig. 2 shows an example of the super-voxels generated from
a point cloud. The spatial connectivity built on super-voxels
represents the geometry of the scene finely enough. We also
evaluated different graph building methods in our previous
work [23], concluding that the method in [29] outperforms
other methods such as [36] for an object segmentation task.

Based on the defined spatial connectivity, we call compact
point cloud a point cloud represented by a set of super-
voxels, when the graph built with this set of super-voxels is a
connected graph.

B. Compact Point Cloud Detection

Due to occlusions and object interactions, and unless prior
knowledge is introduced, detected compact point clouds in
a single frame will not usually correspond to objects, as
shown in Fig. 1. Instead, we attempt to obtain, for each
single frame, those connected components that are not part
of the background in the whole graph of the scene. The
obtained connected components are our first approximation of
the objects in the scene, which will then be refined exploiting

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

(a) (b)

Fig. 2. An example of the super-voxels generated in our approach from a point
cloud. (a) The original point cloud. (b) The super-voxels (each super-voxel is
labeled with a random color).

(a) (b)

Fig. 3. An example of plane detection results. The points in red, green and
blue belong to detected planes. The points in black are the points in the “not
on any plane” class. (a) Plane detection result from [16]. (b) Plane detection
result from our approach.

temporal information: splits, merges and object interactions. In
practice, we build a super-voxel graph to represent the point
cloud in each frame as explained in Section II-A. Then, we
apply a plane detection technique to eliminate large plane
shaped regions that may correspond to background in the
point cloud. Finally, we extract connected components in the
remainder of the graph by analyzing spatial connectivity.

1) Detection of Background Planes: In most scenes, fore-
ground objects are captured together with (spatially connected)
background such as floor, ceiling or walls. The background
point cloud serving as supporting planes for foreground objects
usually connects isolated foreground objects, thus preventing
segmentation via connectivity analysis. Therefore, we remove
large plane shaped regions before analyzing the connectivity
in the point cloud by applying a 3D plane detection technique
on the point cloud.

A plane detection method was proposed in [16], which
categorizes the points on the cloud into n + 1 classes cor-
responding to plane 1...n and “not on any plane” in two
steps. First, a local surface normal vector for each point on the
cloud is estimated by finding two vectors which are tangential
to the local surface within the neighborhood of this point
on the image plane. From these two tangential vectors, the
normal is computed using the cross product. Then, these points
are clustered in a voxelized normal space in order to obtain
clusters of points with similar local surface normal orientation,
while discarding clusters of small size. Secondly, each of the
obtained clusters is split into plane clusters, so that each of the
new clusters resembles a single plane. Thus, for each point in
a cluster, the distance between the origin to the plane crossing
this point with the averaged and normalized normal of this

cluster is computed. Then a similar clustering step is applied
in the distance space to classify points into different plane
clusters. The obtained n plane clusters represent the detected
n classes of planes, and the discarded clusters form the not
on any plane class.

However, simply applying the plane detection method
in [16] may fail when the point cloud is noisy (see Fig. 3(a)).
So, based on the plane detection result, we build another layer
modeled as a Conditional Random Field (CRF) 1 on the super-
voxel graph to provide extra robustness to the noise in the
point cloud considering its spatial connectivity. In this layer,
we propose to label the nodes (super-voxels) in the graph with
the n + 1 labels using a unary data energy, defined on the
basis of the detected planes, and a pairwise smoothness energy,
defined on the basis of the graph structure. The energy in the
CRF model is then optimized via graph cut [4] using alpha
expansion [5] to obtain the best labelling for the graph.

In practice, given the n+1 classes for points on a cloud ob-
tained from the plane detection result and its super-voxel graph
G, the energy function, Ep (·), is formulated as the summation
of the unary data energy µp and the pairwise smoothness
energy ρp. In Eqs.1,2 and 3, vi ∈ v and ei,j (vi, vj) ∈ e stand
for a node and an edge on the graph G (v, e) respectively, lp

stands for a labeling that assigns each node vi ∈ v a label lvi
in the label set Lp = {1, ..., n+ 1}:

Ep (lp) =
∑
vi∈v

µpvi (lvi)︸ ︷︷ ︸
unary energy

+
∑

(vi,vj)∈e

ρpvi,vj
(
lvi , lvj

)
︸ ︷︷ ︸

pairwise energy

(1)

The unary data energy measures the cost of assigning lvi to
node vi given the observed data. In our case, it depends on the
percentage of points in point cloud Cvi which are clustered
to class lvi in the plane detection process, denoted as Clvi .
NoP (C) computes the number of points in a point cloud C.

µpvi (lvi) = 1−
NoP

(
Clvi

)
NoP (Cvi)

(2)

The pairwise smoothness energy specifies the cost of assigning
different labels to vi and vj connected by ei,j . It is defined
as the cosine similarity between the normals of these two
nodes (

−−→
Nvi and

−−→
Nvj), since edges connecting nodes with high

normal difference usually coincide with boundaries. Note that
the normal of a node (super-voxel) is computed by averaging
the normals estimated with [16] at points belonging to this
super-voxel.

ρpvi,vj
(
lvi , lvj

)
=max

(−−→
Nvi
·
−−→
Nvj∥∥∥−−→Nvi

∥∥∥·∥∥∥−−→Nvj

∥∥∥ ,
−−→
Nvi
·−
−−→
Nvj∥∥∥−−→Nvi

∥∥∥·∥∥∥−−→Nvj

∥∥∥
)

lvi 6= lvj

0 otherwise

(3)

The energy function in Eq. 1 is optimized via a graph cut
method [4] to generate the best labelling. The nodes (super-
voxels) labeled as 1...n form n plane classes respectively.

1Traditional CRF models involve a unary energy µ and a pairwise energy
ρ, which respectively represent the degree that one node belongs to a label
and the strength of an edge connecting two nodes.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Object Level

Component Level

root

Over-Segmentation

Scene Level

Level

Super Voxel Graph

Point Cloud

blob

super voxel

Fig. 4. The hierarchical structure built for a point cloud. Different nodes at the same level in the hierarchy are labeled with different colors. The point cloud
beside it is labeled with the same color of its related node.

Fig. 3 compares an example of planes detected by the method
in [16] and in our approach, showing higher robustness to
noise in the point cloud.

C. Extracting Connected Components

After removing the nodes labeled as 1..n in the graph,
we build a new graph with the “not on any plane” nodes.
We extract m connected components on the new graph by
analyzing the spatial connectivity. The lower part of Fig. 4
presents a simplified example of our single frame compact
point cloud detection process, in which the blue circles and
the edges between them stand for the graph representation
built on the input point cloud. The ellipses marked in different
colors show the detected compact point clouds in one frame.
We denote those n+m compact point clouds with the name
“blob” in the rest of this paper. Note how the m non-plane
like blobs (in red, pink and blue) are spatially connected to
the floor blob (in grey). The elimination of the floor allows
us to obtain non-plane like blobs as connected components in
the graph.

III. TEMPORALLY COHERENT 3D SEGMENTATION

In this section, we explain how the 3D point cloud video
segmentation task is tackled by modelling the detected blobs
in each frame with the proposed hierarchical structure and
propagating this structure along time. The single frame com-
pact point cloud detection method described in Section II
exploits only the spatial connectivity in one frame to extract
blobs, which ideally correspond to objects. In real cases, the
point cloud corresponding to an object can split in different
blobs due to occlusions/self-occlusions, or can merge in a
single blob with the point cloud corresponding to other objects

due to what we call object interactions. In a single frame
analysis, it is difficult to produce proper object segmentation
without introducing prior knowledge. To tackle the problem
of object splits/merges while keeping our approach generic,
we propose to introduce temporal coherence when a stream
of RGBD data is available. More specifically, we segment
the detected blobs in each frame into meaningful sub-clouds
and represent these sub-clouds in a hierarchical fashion. Then,
we associate temporally these sub-clouds in the hierarchies in
order to maintain the trajectories for them, and to analyze
the correlation along time, always without explicit object
models or accurate initialization to keep the genericity of our
approach, and in order to make the best possible decision with
the accumulated information at a given time.

A. Hierarchical Representation

Before introducing the proposed hierarchical structure, let us
first define the terms and concepts that we use. Given a super-
voxel graph G (v, e) at time t and the object segmentation on
it
⋃Mo

i=1Goi = G, Gok ∩Goq = ø for k 6= q ∈ [1,Mo], blobs
are the connected components on the super-voxel graph G,
where

⋃Mb

i=1Gbi = G, Gbk ∩ Gbq = ø for k 6= q ∈ [1,Mb].
For each object oi, i ∈ [1,Mo], we define its components
cij , j ∈ [1,Mc] as the connected components on Goi , where⋃Mc

j=1Gcij = Goi , Gcik ∩ Gciq = ø for k 6= q ∈ [1,Mc]. For
each component cij , we over-segment it into segments, where⋃Ms

u=1Gsi,ju
= Gcij , Gsi,jk

∩Gsi,jq
= ø for k 6= q ∈ [1,Ms].

We build the hierarchical structure as a tree, in which
4 levels varying from coarse to fine represent the object
segmentation at different scales of object-connectivity. The
upper part of Fig. 4 shows the hierarchical structure for a
point cloud. Note that colors are used to differentiate nodes

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Color Image

Frame t-1 Frame t
Objects

Tree t-1

Objects

Components

Segments

Super-voxels

Blobs

Build tree t

Objects

Components

Segments

Super-voxel Graph

Tree t

Establish Correspondences

Blob
Segmentation

Fig. 5. An example of hierarchical structure creation. Upper-left: Object segmentation at t− 1 and its hierarchical structure; Middle column: color image at
t, detected blobs in the point cloud at t, illustrations about the establishment of correspondences and blob segmentation process; Right: hierarchical structure
building process at t.

at the same level in the hierarchy and the point clouds plotted
beside it are marked in the same color of their related nodes.
The root of the tree represents the scene. The second level
of the tree is the object level, in which each node stands for
one object in the object segmentation. The merges between
objects are handled at this level by maintaining the similarities
among objects along time. The next level, named component
level, is employed to handle potential splits of point clouds
representing these objects. Thus, an object is represented by
more than one component when it splits in different blobs.
Components from different objects can be part of the same
blob, because of the interactions between objects. Splits of an
object are managed by maintaining the similarities among the
components of this object along time. Managing object splits
and merges in this manner provides a way to update the object
segmentation according to the evidence observed up to time t.
The final level of the tree is the over-segmentation level. We
over-segment components into segments using normalized cut
in their graphs in order to correctly establish correspondences
between hierarchies along time and update its structure, that
is, to obtain temporally coherent object labelling. However
the amount of segments generated at this level (finest level in
our hierarchy) is much less than the finest level employed in
methods like [15], [12].

B. Hierarchical Structure Creation

In Section III-A, we have represented the detected blobs in
one frame hierarchically, given the object segmentation of this
frame. In this section, we explain how we obtain the object
segmentation taking into account the objects segmented in
the previous frame to create the hierarchical representation

for the current frame. We model the segmentation task as
a label assignment problem, in which we build temporal
correspondences to label the super-voxels in the current frame
considering the object labelling in the previous frame. But
instead of following the method in [15], [12], [1] to build the
temporal correspondences at a very fine level (super-voxels
in our case), we propose to first relate the object labels in
the previous hierarchy to the blobs detected in the current
frame by minimizing an assignment energy defined on the
difference of point cloud size and displacement. Then we split
the blobs associated to more than one object label by modeling
the problem as a multi-label segmentation task with a fully
connected CRF [20]. There are several advantages for this
method:
• Object labels in the previous hierarchy are associated to

blobs in the current frame via a small number of segments
at the finest level, which strongly reduces the scale of the
problem of building temporal correspondences

• The task of building temporal correspondences can be
solved globally as an optimization problem due to the
reduced problem scale

• The temporal consistency problem can be easily ad-
dressed by generating sufficient segments at the over-
segmentation level in the previous hierarchy

The object segmentation in the first frame is obtained by
simply taking the detected blobs (i.e. connected components
on the super-voxel graph) as the object segmentation, because
no prior information whatsoever about the objects is provided.
Accordingly, we create one component for each object and
over-segment each component into segments.

1) Establishing Temporal Correspondences: Apart from the
first frame, we obtain the object segmentation in a temporal

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

BA

A

A

frame t-1 frame t

?

(a)

A

A

frame t-1

B1 B2

frame t

A

(b)

Fig. 6. An example of temporal inconsistency problem. (a) The problem when
establishing the correspondences between components in the previous frame
and blobs in the current frame. (b) Using the segments instead of components
solves this problem.

coherent way by considering both the blobs detected in the
current frame and the object segmentation in the previous
frame. Fig. 5 shows an example of how we create the hierarchy
for frame t. The object segmentation at t−1 and its hierarchical
representation are shown at the upper-left corner of Fig. 5. For
the data in frame t, we show the color image and detected
blobs (labeled in different colors) in the middle. Then the
point clouds of the blobs are represented as circles with a
dash border, each of which consists of several super-voxels
(e.g. the red blob consists of 6 super-voxels, as shown below).
We also show the corresponding point cloud beside the blobs.

Our goal is to label the super-voxels in different blobs at
frame t with the object labels contained in the hierarchy at
t − 1, and to obtain the object segmentation at t from this
labelling. In our approach, a correspondence is made between
the blobs in the current frame and the segments at the over-
segmentation level of the hierarchy at t−1. This is a first step
to warranty the temporal continuity of the segmentation in
the video objects. Fig. 5 shows the label assignment process,
in which object labels in hierarchy t − 1 are associated to
blob labels at t. The color of the lines, linking segments in
hierarchy t−1 and blobs at t, correspond to the object nodes in
hierarchy t−1, which indicates that object labels are associated
to blobs via segments. The over-segmentation level in the
tree is employed to tackle temporal consistency problems.
Fig. 6(a) shows an example of this, where objects are marked
in different colors and their components are denoted with
letters. The component B of the blue object in frame t−1 splits
into two blobs in frame t. In this case, no correct association
is found between components at t − 1 and blobs at t. The
problem may be tackled by over-segmenting the component
B of the blue object into segments B1 and B2 (shown in
Fig. 6(b)) and associating the segments in frame t − 1 with
blobs in frame t.

Given the Mb blobs bi detected in frame t, Ms segments si
in frame t− 1 and their corresponding point clouds (Cbi and
Csi), establishing the correspondence between the blobs and
the segments is a problem of assigning Mb blob labels to Ms

segments. This can be interpreted as a process of allocating
balls (segments) into baskets (blobs), which finds the best
allocation (temporal correspondences) between segments and
blobs. In order to cope with possible segments moving out
of the scene, we create a virtual empty blob bout. This
allows assigning bout to any segment in the correspondence
building process, which implicitly represents the segments

moving out of the scene. The labels assignment task is a
nonlinear integer programming problem. We solve it using
a Genetic Algorithm [39] to minimize an energy function
Eas (·), which is composed of three terms representing the
appearance changes Ea, the displacements Ed and the penalty
when objects move out of the scene Eo.

Eas (las) = Ea + Ed + Eo (4)

where las is an assignment proposal which assigns each
segment si a label lsi in the label set Las. Ea stands for
the overall appearance difference between each of the Mb

blobs bi and its corresponding segments
{
sj | lsj = bi

}
under

las. In practice, the appearance difference is defined as a size
measure, by computing the difference on the number of points
between them. NoP (C) counts the number of points in the
point cloud C.

Ea (las) =

Mb∑
i=1

∣∣∣∣∣∣∣NoP (Cbi)−
∑

{sj |lsj=bi}
NoP

(
Csj
)∣∣∣∣∣∣∣ (5)

Ed represents the overall displacement for moving each of the
Ms segments sj at t − 1 to the location of its corresponding
blob bi at t under las. Specifically, we employ the Hausdorff
distance dh (·) to compute the displacement between point
clouds.

Ed(las) =

Mb∑
i=1

∑
{sj |lsj=bi}

dh
(
Csj , Cbi

)
(6)

Eo stands for a penalty when segment sj moves out of the
scene, that is, when bout is assigned to it. In this case, we
calculate the Euclidean distance de (·) between the centroid
of Csj to the closest boundary among the predefined MP
boundaries Pi, which are set with respect to the field of view
of the camera.

Eo(las) =
∑

{sj |lsj=bout}
min

i=1...MP

(
de
(
Csj ,Pi

))
(7)

2) Blob Segmentation: In order to obtain the object seg-
mentation, we still need to segment the blobs when segments
corresponding to different objects in the previous frame are
related to the same blob. For example, in Fig. 5, we perform
segmentation in the red blob, where three segments that
correspond to two different objects are related to it. Segment-
ing the red blob produces two partitions which respectively
correspond to the red object and blue object in tree t − 1.
In this manner, each partition is related to only one object
in the previous frame. These partitions and the blobs related
with only one object label form the object segmentation for
the current frame.

In our approach, we formulate the blob segmentation prob-
lem as a node labelling task on its related graph Gb (v, e), in
which nodes are super-voxels and edges show the adjacency
of super-voxels. We label each of the super-voxels vi in the
graph with object labels oi related to this blob. This is usually
achieved by employing Conditional Random Field (CRF)
models [33], [19]. Traditional CRF models involve a unary

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

energy µ and a pairwise energy ρ, which respectively represent
the degree that one node belongs to a label and the strength
of an edge connecting two nodes. Minimizing the CRF energy
produces the optimal labelling on the graph, that is also the
segmentation of the blob. However, the pairwise energy is only
computed for neighboring nodes on the graph in traditional
CRF models, which makes the boundaries between different
labels favor the “thinner” part of the graph with less edges. To
overcome this limitation, we employ a fully connected CRF
[20] model in our system. In the fully connected CRF model,
the pairwise energy is established on any pair of nodes on the
graph, which makes the “shape” of the graph less critical to
the optimal labelling of the graph.

In practice, the energy function in the fully connected CRF
model is modeled as:

Es (ls) =
∑
vi∈v

µsvi (lvi)︸ ︷︷ ︸
unary energy

+
∑

(vi,vj)∈e

ρsvi,vj
(
lvi , lvj

)
︸ ︷︷ ︸

pairwise energy

(8)

where ls stands for the labelling which assigns each super-
voxel vi a label lvi in the label set Ls. We follow the unary
energy defined in [23], where the unary energy of labelling
node vi with object label oj , µvsi (li = oj) is proportional to
the mean distance between node vi in the current frame and
the k-nearest nodes labeled by oj in the previous frame. For
the pairwise energy, we extend the one defined in [20] for
nodes representing pixels on 2D images to an energy which is
suitable for nodes representing 3D point clouds. Specifically,
we adopt an appearance and an smoothness term balanced with
weights ω1 and ω2. The appearance energy term is defined as
the 3D Euclidean distance de

(
Cvi , Cvj

)
between the centroids

of two point clouds and the color distance drgb
(
Cvi , Cvj

)
as

the difference between the mean color of each point cloud in
the Gaussian kernel exp

(
−d(·)2σ2

)
. The smoothness energy term

is defined as the 3D Euclidean distance between the centroid
of two point clouds in the Gaussian kernel.

ρsvi,vj (li, lj)

=



ω1 exp

(
−
de
(
Cvi , Cvj

)
2σ2

α

−
drgb

(
Cvi , Cvj

)
2σ2

β

)

+ ω2 exp

(
−
de
(
Cvi , Cvj

)
2σ2

γ

)
li 6= lj

0 otherwise
(9)

As shown in Eq. 9, ω1 and ω2 are used to balance the
appearance energy and smoothness energy. σα, σβ and σγ
control the scale of the Gaussian kernel. The energy function
in Eq. 8 is minimized using an efficient message passing
implementation based on the mean fields approximation and
high dimensional filtering [20]. The optimum represents the
best labelling on graph Gb, which also corresponds to the
segmentation of the blob. Each partition in this segmentation
is related to an object in the previous frame.

The object segmentation for the current frame is then
formed by the partitions and blobs related with only one object
label. Then, the hierarchy in the current frame is built based

blob

... ...

blob

...

accumulated

similarity

matrix

split

Object

Component

Level

Level

(a)

blob

...

blob

...
accumulated

similarity

matrix merge

Object

Component

Level

Level

(b)

Fig. 7. Example of how we update the object segmentation in the current
frame by dynamically managing object splits (a) and merges (b)

on the current object segmentation, starting from the object
level to the component level following the criteria explained
in Section III-A (see the right part in Fig. 5), while the
correspondences between the current hierarchy and previous
hierarchy are established in the object and component level
accordingly.

3) Dynamic Management of Merges and Splits: In the
current hierarchy obtained in Section III-B2, we have the
segmented objects for the current input data at the object
level of the tree, which are temporally coherent with the
segmented objects in the previous frame. However, they may
not represent the proper object segmentation, since no accurate
initialization is guaranteed at the beginning of this process in
our approach. That is to say, the segmented objects need to
be further analyzed along the time, in order to cope with the
errors in the previous information. In this case, we exploit
the established correspondences and analyze the behaviors of
related nodes in hierarchies along time. More precisely, we
maintain similarities between nodes at the component and
object level respectively and update the object segmentation in
the current hierarchy based on it. The component similarities
are measured among components belonging to the same object,
while the object similarities are measured among all objects.
These similarities are computed by considering the distances
between the point clouds of components Cc or objects Co,
which reveal the likelihood of object splits and merges. In
our approach, the similarity between point cloud C and C∗

is inversely proportional to the shortest distance between the
two point clouds. The shortest distance ds (C,C∗) is measured
based on the corresponding graphs (G and G∗) built on C
and C∗, in which we search for the shortest distance between
nodes vi in G and nodes vj in G∗. ψ is a normalizing factor
which normalizes distances between two point cloud smaller
than ψ while forcing the similarity between point clouds equal
to zero when the distance is larger than ψ.

Sim (C,C∗) =

{
0 ds (C,C∗) > ψ

1− ds(C,C
∗)

ψ otherwise
(10)

ds (C,C∗) = min
vi∈G,vj∈G∗

de (vi, vj) (11)

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

child.no1 toy.wg.occbdog.occ.2
ou

rs
[9
]

Fig. 8. Qualitative results in RGBD video foreground segmentation dataset

We accumulate the similarities along time by averaging
the current similarity and the previous accumulated similarity
using the correspondences built at component and object
level between trees. The accumulated similarity reveals the
likelihood of object splits and merges regarding the evi-
dences observed up to the current frame. Then object splits
and merges are confirmed by thresholding the accumulated
similarities regarding two thresholds, Ths and Thm. More
precisely, a split for an object is confirmed when one or several
components of it have the accumulated similarities to the rest
of its components smaller than Ths. Then a new object node
is created in the tree for the split components. Similarly, a
merge is confirmed among objects when they are spatially
connected and the similarities among those objects are larger
than Thm. Fig. 7 shows an example of object merge and split.
In Fig. 7(a), the red component splits from its parent object
and a new object marked in blue is created. In Fig. 7(b), the
blue object is merged with the green object, since they are
physically connected and the accumulated similarity between
them is larger than Thm. The components of these two objects
are all connected to the one with larger size (the green object)
while the one with smaller size (the blue object) is removed
from the hierarchy.

C. Over Segmentation

The over-segmentation level in our hierarchical structure
is employed to tackle the temporal consistency problem. In
our approach, we over-segment components into segments to
ensure that correct correspondences can be made between
segments in the current hierarchy and the blobs detected in the
next frame. Since the number of segments strongly affects the
complexity of the task of building temporal correspondences,
it is inappropriate to employ over-segmentation methods like
super-voxels [29], which generate a large number of seg-
ments. In this case, we propose a normalized cut based over-
segmentation method working with the super-voxel graph of
a component. In this graph, each node represents a super-
voxel, and each edge is weighted by a measure of compactness
between the two super-voxels it connects. We assume that any
split will gradually reduce the compactness of the connections
in the graph. So we perform a normalized cut iteratively in
this graph to generate sub-graphs which are less compactly
connected, that is, anticipating possible splits in the next frame.

For a pair of connected super-voxels vi and vj in graph
Gc, we first define the touching points TPi,j between them

Name nFrames [9] ours
basketball2.2 40 42.60 55.13
bdog.occ2 20 59.24 78.98
br.occ.0 34 50.40 78.15
child.no1 47 54.34 84.26
dog.no.1 20 48.81 66.39
studentcenter2.1 23 20.34 58.81
toy.car.no 35 38.51 62.19
toy.green.occ 31 64.66 78.83
toy.wg.occ 56 86.45 72.07
tracking4 41 56.22 89.67
walking.no.occ 23 61.04 69.19
zcup.move.1 36 64.07 79.96
average 34 53.90 72.80

TABLE I
IOU SCORES FOR 12 SEQUENCES IN RGBD VIDEO FOREGROUND

SEGMENTATION DATASET REPORTED IN [9] AND FOR OUR METHOD

as the points in one point cloud with the closest Euclidean
distance to the points in the other point cloud, smaller than a
threshold Tht. Then, the connection compactness CC (vi, vj)
between vi and vj is defined as the percentage of touching
points between them.

CC (vi, vj) =
NoP (TPi,j)

NoP (Cvi) +NoP
(
Cvj
) (12)

A normalized min cut [35] is performed on the graph itera-
tively, thus creating one segment node in each iteration until
the cut cost is larger than a threshold Thc.

IV. EXPERIMENTS

We evaluate the proposed method on two datasets for RGBD
video segmentation: the RGBD video foreground segmentation
dataset [9] and the Human Manipulation dataset [31]. Apart
from that, we also test our approach on 3 sequences provided
in [17] for comparison, and some other sequences without
ground truth labelling for additional qualitative results. Note
that all the RGBD videos used in our experiments have the
same resolution (640 by 480 for both color images and depth
maps), and the voxel grid used for building the super-voxel
graph is 1cm3.

A. Comparison Experiments on RGBD Video Foreground Seg-
mentation Dataset

The RGBD video foreground segmentation dataset [9] con-
tains 12 RGBD sequences captured in 7 different types of

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) (b)

Fig. 9. An example of the segmentation result in our method: (a) a color
image (b) related segmentation mask

scenes with multiple objects. The first two columns of Table
I specify the name of the 12 sequences and the corresponding
number of frames. Challenges in these sequences are scenes
with occlusions, interactions between objects, fast moving
objects and camera movement. The ground truth labeled at
pixel level for multiple objects is given for one out of every 5
frames. The authors also provide the results of their method in
this database, which is based on the selection through graph
optimization within a pool of object proposals using RGBD
data [9]. We compare our method with the results provided in
this dataset by employing the average Intersection Over Union
(IOU) [11] to measure the segmentation performance:

IOU =
1

Mo

Mo∑
j=1

max
i

GTj ∩Ri
GTj ∪Ri

(13)

For each frame, Mo stands for the number of objects labeled in
the ground truth, GTj is the ground truth for object j and Ri
represents the object proposals in the frame. Table I compares
the IOU scores of the segmentation results of our approach
with those obtained in [9], while Fig. 8 shows some qualitative
results from both methods. In [9], the authors present the
comparison between a number of other methods and their
method, which achieves the best results in the RGBD video
foreground segmentation dataset. Our approach achieves better
average IOU score: 72.80% compared to 53.90% in [9] over
the 12 sequences, as well as better average IOU in almost
all sequences except “toy.wg.occ”. Note that, in Fig. 8, we
only show the object proposals obtained with our approach
which are related to the objects labeled in the ground truth
to be able to compare with the method in [9]. In fact, our
approach segments the whole point cloud of the scene and
obtains all foreground objects and their supporting planes,
which are labeled accordingly as shown in Fig. 9.

Application: Selection of Significant Objects. In this exper-
iment, we aim to select the significant objects from the object
proposals obtained by our method along a sequence. This is
usually achieved by evaluating the importance of object pro-
posals along time based on some object attributes. In [9], Fu et
al. propose to select significant objects from a pool of object
proposals through graph optimization, in which objectness,
motion, RGBD video saliency are involved to evaluate the
importance of each object proposal. In our case, we employ
the Frobenius norm of optical flow gradients [41], which is the
same motion term used in [9], to represent the importance of
an object proposal. Then, the evaluation is simply performed
by averaging the importance of an object proposal in each

Name [17] ours
seq1 99.3 99.5
seq2 82.1 86.0
seq3 77.4 91.8
average 84.8 92.8

TABLE II
SEGMENTATION ACCURACY OF OUR APPROACH AND THE ASMS FOR THE

3 SEQUENCES PROVIDED IN [17].

frame and selecting objects with higher importance along the
sequence, since the temporal correspondences are made for all
object proposals when they are generated in our approach. We
compare our approach with [9] on the RGBD video foreground
segmentation dataset. The qualittative comparison in Fig. 10
shows better results than [9]. Our approach generates less but
more accurate object proposals in each frame, which allows
the system to establish object proposal correspondences online
and simplifies the significant object selection problem.

B. Comparison Experiments for Sequences in [17]

For comparison, we employ 3 more sequences proposed
in [17] and perform our approach against the Adaptive Surface
Models based 3D Segmentation method (ASMS) in [17]. Ta-
ble II shows a quantitative comparison between our approach
and ASMS in these 3 sequences. Sequence 1 contains a
scenario of a human hand rolling a green ball forward and
then backward with the fingers. Sequence 2 involves a robot
arm grasping a paper roll and moving it to a new position.
Sequence 3 describes a scenario in which a human hand
enters and leaves the scene, displacing the objects rapidly. We
evaluate the segmentation result by global accuracy. Global
accuracy counts the percentage of pixels which are correctly
labeled with respect to the ground truth labelling. The com-
parison results show that the proposed approach outperforms
ASMS in all 3 sequences. It also illustrates one of the
drawbacks in ASMS. In sequence 3, rapid object movement
leaves little or no overlap of corresponding segments for
ASMS to build temporal correspondences between objects and
update the object models. However, our method shows a higher
robustness to cope with rapid movements, since the temporal
correspondences are built by finding the global optimum of an
assignment energy.

C. Ablation Experiments on Human Manipulation Dataset

To evaluate the improvements on performance when intro-
ducing Dynamic Management of Merges and Splits (DMMS),
we employ 5 RGBD sequences in the Human Manipulation
dataset with the 3D point cloud ground truth labelling in
consecutive frames provided in [23]. Each of the sequences
contains 201 frames of human manipulation actions which
involve object interactions and self-occlusions/occlusions. The
super-voxel based graph representation organizes the input
point cloud with voxels in 3D producing a voxelized point
cloud, while the ground truth is labeled in the original cloud.
Therefore, we extend our segmentation result on the original
cloud by simply finding k-nearest neighbors for each point
on the original point cloud from our segmentation result.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

child.no1 tracking4bdog.occ.2
ou

rs
[9
]

Fig. 10. Qualitative results of significant objects selection in RGBD video foreground segmentation dataset

without DMMS with DMMS
Seq.1 93.95 96.87
Seq.2 85.87 94.17
Seq.3 91.16 96.63
Seq.4 82.28 92.55
Seq.5 88.39 90.46

average 88.33 94.14

TABLE III
IOU SCORES FOR 5 SEQUENCES PRODUCED BY OUR METHOD WITHOUT

DMMS AND WITH DMMS.

0 20 40 60 80 100 120 140 160 180 200

frame

70

75

80

85

90

95

100

IO
U

#30

(a)

0 20 40 60 80 100 120 140 160 180 200

frame

70

75

80

85

90

95

100

IO
U

#64

(b)

without DMMS with DMMS

(c)

without DMMS with DMMS

(d)

Fig. 11. (a)-(b) present the IOU (vertical axis) per frame (horizontal) results
for Seq 2-3. Red: our approach without DMMS, Blue: with DMMS.(c)-(d)
present point cloud plots in frame 30 of Seq 2 and in frame 64 of Seq 3,
object proposals are marked in different colors.

This allows using the majority voted label among k-nearest
neighbors as the label for this point. Similarly, we employ
the average intersection over union to measure and compare
the performance of our approach with and without introducing
DMMS in each frame.

Table III shows the segmentation performance of our ap-
proach in the 5 sequences with or without employing DMMS.
In the case of “without DMMS”, we do not maintain the
similarities between corresponding nodes in the tree structures
to update the object proposals along time. Table III exploiting
DMMS provides improvements on segmentation performance
in all 5 sequences (around 6% improvement in average IOU
scores), which proves that DMMS contributes in the low level
to the better segmentation of actual objects in the scene.
In Fig. 11(a)-11(b), we present the IOU score per frame in
2 of the 5 sequences. The point cloud view in Fig. 11(c)-
11(d) show that the torso of the human body splits into
two parts (marked in blue and pink in the left point cloud

Fig. 12. Qualitative results of the proposed method. Column 1-2: from human
manipulation dataset in [31], Column 3: from data in [17] and Column 4: from
data recorded by ourselves.

in Fig. 11(c)) due to the self-occlusion, which leads to an
improper segmentation in frame 30 of Seq 2. However, this is
handled by DMMS which analyzes the correlations between
those two parts in the history and maintains the similarity
between them to produce a proper segmentation in the point
cloud (shown as the right point cloud in Fig. 11(c)). Fig. 11(d)
presents a similar situation in frame 64 of Seq 3, which
also shows the importance of introducing DMMS. Fig. 12
presents more qualitative results produced by our approach.
We manually remove some segments in the background for
the clarity of the illustration. Each row in Fig. 12 shows the
segmentation results in 4 frames of a sequence, which are
uniformly sampled along the sequence. More visual results
showing the dynamic behavior of the presented method are
available on https://imatge.upc.edu/web/node/1910.

D. Computational Cost

There are three main parts where the computational power
is spent in our approach: the optimization for the multi-label
assignment for the establishment of temporal correspondences,

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

time problem scale
Assignment Optimization 2.3s ∼ 15 segments, ∼ 8 blob labels

Over-Segmentation 0.252s ∼ 200 super-voxels ∼ 1500 edges
Blob Segmentation 0.021s ∼ 250 super-voxels ∼ 1800 edges

TABLE IV
RUN-TIME PERFORMANCE OF THE PROPOSED APPROACH.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!1

0.5

0.6

0.7

0.8

0.9

1

Io
U

Fig. 13. IoU scores for 20 validation images under different settings of ω1

the fully connected CRF method used in the blob segmentation
and the graph cut technique in the over-segmentation process.
The main problem of approaching the temporal correspon-
dences association by a multi-label assignment problem is
the computation complexity. The problem scale increases
exponentially with the number of labels. However, the number
of labels is well controlled in our approach by finding a
suitable over-segmentation level so that we can achieve the
assignment task in a small scale while not leading to the
temporal inconsistency problem. In the experiments, generally
20 segments are involved in the assignment task in each frame.
In the fully connected CRF method [20], the energy function is
optimized using an efficient message passing method based on
the mean fields approximation and high dimensional filtering,
which makes the complexity of the approximated inference
process sublinear in the number of the edges in the model.
The graph cut technique used in our approach has the reported
computation complexity O

(
v2 · sqrt (e)

)
where v stands for

the number of vertices and e the number of edges on the graph.
Table IV shows the run-time performance of the three main
parts in our approach.

E. Implementation Details

In this section we analyze the parameters used in the
implementation of the proposed system. In the first place, the
balance factors for the appearance and smoothness energies,
ω1 and ω2 in Eq. 9, are learned from a small set of valida-
tion images. In practice, we select 20 examples, where blob
segmentation is needed. For each example, we provide the
ground truth object segmentation in the previous frame and
build the previous hierarchy based on the ground truth object
segmentation. Then we follow the proposed method to segment
the current frame. The weights in Eq. 9 are then learned by
searching for the best segmentation performance over these 20
training examples under different configuration of the weights.
We set ω1 + ω2 = 1 and search for the best configuration of
ω1 from 0 to 1 with step length 0.1. Fig. 13 shows the best
segmentation result is obtained when ω1 is set to 0.6, and
ω2 is set to 0.4. One advantage of dealing with actual 3D
data is that the point cloud maintains the real size of objects
in the scene, which provides a more clear physical meaning

for the related parameters. In our experiments, we fix σα and
σγ to 0.3 meter with respect to their physical significance.
σβ is set to 13 following [20]. Ths and Thm are the two
parameters used for confirming the split and merge of an
object by thresholding the component and object similarity.
Thus, Ths and Thm are set to 1/3 and 2/3, which splits
the similarity interval [0, 1] into 3 zones (similar, neutral and
not similar). Tht and Thc are the parameters used in over-
segmentation. Tht is a 3D distance threshold specifying the
touching points between two point clouds. Thc represents a
graph cut cost threshold when performing normalized cut on
the connection compactness graph. In our experiment, 0.07
meter is set for Tht and 0.03 is set for Thc.

V. CONCLUSION

In this paper, we have introduced a generic and temporally
coherent 3D point cloud segmentation method for segmenting
objects from generic scenes in RGBD videos. We exploit
temporal coherence by representing the generic point cloud
segmentation in a single frame with a tree structure, and
propagate it along time. Based on the tree structure repre-
sentation, we generate temporally coherent object proposals
at different scales of object-connectivity and establish reliable
temporal correspondences between them. The behaviors of the
temporally related nodes in the tree structures built along time
are further analyzed to produce improved object proposals.

We evaluate the performance of the proposed approach with
the RGBD video foreground segmentation dataset and the
Human Manipulation data set, and compare it with state of
the art. Our approach generates a better segmentation result
based on all low-level features available. This guarantees it to
be generic, as no explicit or learnt model of the objects or the
scene are introduced in the proposed method.

REFERENCES

[1] A. Abramov, K. Pauwels, J. Papon, F. Wörgötter, and B. Dellen. Depth-
supported real-time video segmentation with the kinect. In Applications
of Computer Vision (WACV), 2012 IEEE Workshop on, pages 457–464.
IEEE, 2012.

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and
hierarchical image segmentation. IEEE transactions on pattern analysis
and machine intelligence, 33(5):898–916, 2011.

[3] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik. Mul-
tiscale combinatorial grouping. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 328–335, 2014.

[4] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1124–
1137, 2004.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy min-
imization via graph cuts. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 23(11):1222–1239, 2001.

[6] S. Christoph Stein, M. Schoeler, J. Papon, and F. Worgotter. Object par-
titioning using local convexity. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 304–311, 2014.

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Ob-
ject detection with discriminatively trained part-based models. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 32(9):1627–
1645, 2010.

[8] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image
segmentation. International journal of computer vision, 59(2):167–181,
2004.

[9] H. Fu, D. Xu, and S. Lin. Object-based multiple foreground segmenta-
tion in rgbd video. IEEE transactions on image processing: a publication
of the IEEE Signal Processing Society, 2017.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2811541, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[10] H. Fu, D. Xu, S. Lin, and J. Liu. Object-based rgbd image co-
segmentation with mutex constraint. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4428–
4436, 2015.

[11] H. Fu, D. Xu, B. Zhang, S. Lin, and R. K. Ward. Object-based multiple
foreground video co-segmentation via multi-state selection graph. IEEE
Transactions on Image Processing, 24(11):3415–3424, 2015.

[12] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical
graph-based video segmentation. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 2141–2148.
IEEE, 2010.

[13] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features
from rgb-d images for object detection and segmentation. In European
Conference on Computer Vision, pages 345–360. Springer, 2014.

[14] X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao. A
review of algorithms for filtering the 3d point cloud. Signal Processing:
Image Communication, 2017.

[15] S. Hickson, S. Birchfield, I. Essa, and H. Christensen. Efficient
hierarchical graph-based segmentation of rgbd videos. In CVPR2014.
IEEE Computer Society, 2014.

[16] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke. Real-time plane
segmentation using rgb-d cameras. In Robot Soccer World Cup, pages
306–317. Springer, 2011.

[17] F. Husain, B. Dellen, and C. Torras. Consistent depth video segmentation
using adaptive surface models. Cybernetics, IEEE Transactions on,
45(2):266–278, 2015.

[18] M. Keuper, B. Andres, and T. Brox. Motion trajectory segmentation
via minimum cost multicuts. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3271–3279, 2015.

[19] P. Kohli, P. H. Torr, et al. Robust higher order potentials for enforcing
label consistency. International Journal of Computer Vision, 82(3):302–
324, 2009.

[20] V. Koltun. Efficient inference in fully connected crfs with gaussian edge
potential. Adv. Neural Inf. Process. Syst, 2(3):4, 2011.

[21] S. Koo, D. Lee, and D.-S. Kwon. Incremental object learning and robust
tracking of multiple objects from rgb-d point set data. Journal of Visual
Communication and Image Representation, 25(1):108–121, 2014.

[22] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object
segmentation. In 2011 International Conference on Computer Vision,
pages 1995–2002. IEEE, 2011.

[23] X. Lin, J. Casas, and M. Pardàs. 3d point cloud segmentation oriented
to the analysis of interactions. In The 24th European Signal Processing
Conference (EUSIPCO 2016). Eurasip, 2016.

[24] X. Lin, J. R. Casas, and M. Pardàs. 3d point cloud video segmen-
tation based on interaction analysis. In Computer Vision–ECCV 2016
Workshops, pages 821–835. Springer, 2016.

[25] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label
transfer. Pattern Analysis and Machine Intelligence, 33(12):2368–2382,
2011.

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[27] T. Ma and L. J. Latecki. Maximum weight cliques with mutex
constraints for video object segmentation. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 670–
677. IEEE, 2012.

[28] G. Palou and P. Salembier. Hierarchical video representation with
trajectory binary partition tree. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2099–2106, 2013.

[29] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter. Voxel cloud
connectivity segmentation-supervoxels for point clouds. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pages 2027–2034. IEEE, 2013.

[30] J. Papon, T. Kulvicius, E. E. Aksoy, and F. Wörgötter. Point cloud video
object segmentation using a persistent supervoxel world-model. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3712–3718. IEEE, 2013.

[31] A. Pieropan, G. Salvi, K. Pauwels, and H. Kjellstrom. Audio-visual
classification and detection of human manipulation actions. In Intel-
ligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 3045–3052. IEEE, 2014.

[32] X. Ren and J. Malik. Tracking as repeated figure/ground segmentation.
In Computer Vision and Pattern Recognition, 2007., pages 1–8. IEEE,
2007.

[33] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground
extraction using iterated graph cuts. ACM transactions on graphics
(TOG), 23(3):309–314, 2004.

[34] R. B. Rusu, A. Holzbach, N. Blodow, and M. Beetz. Fast geometric
point labeling using conditional random fields. In Intelligent Robots

and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on,
pages 7–12. IEEE, 2009.

[35] J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–
905, 2000.

[36] X. Suau, J. Ruiz-Hidalgo, and J. R. Casas. Detecting end-effectors on 2.5
d data using geometric deformable models: Application to human pose
estimation. Computer Vision and Image Understanding, 117(3):281–
288, 2013.

[37] D. Tsai, M. Flagg, A. Nakazawa, and J. M. Rehg. Motion coherent
tracking using multi-label mrf optimization. IJCV, 100(2):190–202,
2012.

[38] V. Vilaplana, F. Marques, and P. Salembier. Binary partition trees for
object detection. IEEE Transactions on Image Processing, 17(11):2201–
2216, 2008.

[39] D. Whitley. A genetic algorithm tutorial. Statistics and computing,
4(2):65–85, 1994.

[40] Y. Xu, E. Carlinet, T. Géraud, and L. Najman. Hierarchical segmentation
using tree-based shape spaces. IEEE transactions on pattern analysis
and machine intelligence, 39(3):457–469, 2017.

[41] D. Zhang, O. Javed, and M. Shah. Video object segmentation through
spatially accurate and temporally dense extraction of primary object
regions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 628–635, 2013.

