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ABSTRACT

In this paper, we present a hand and face segmentation algo-
rithm using motion and color cues. The algorithm is proposed for
the content based representation of sign language image sequences,
where the hands and face constitute a video object. Our hand and
face segmentation algorithm consists of three stages, namely color
segmentation, temporal segmentation, and video object plane gen-
eration. In color segmentation, we model the skin color as a normal
distribution and classify each pixel as skin or non-skin based on its
Mahalanobis distance. The aim of temporal segmentation is to lo-
calize moving objects in image sequences. A statistical variance
test is employed to detect object motion between two consecutive
images. Finally, the results from color and temporal segmentation
are analyzed to yield a change detection mask. The performance of
the algorithm is illustrated by simulation carried out on the silent
test sequence.

1. INTRODUCTION

There is a growing trend towards content-based representation in
image and video processing applications, as shown by the recent
MPEG-4 and 7 standardization efforts. Content-based representa-
tion requires the decomposition of an image or video sequence into
specific objects, known as video objects (VOs). In this context, a
VO may represent a moving person, a fixed background or audio.
The instances of VOs at a given time (i.e. frame) are called video
object planes (VOPs). A frame can be decomposed into VOPs by
means of segmentation.

In sign language communication, or simply signing, the hands
and face are perceptually important and thus constitute a VO. The
main objective of our research is to devise an algorithm for the seg-
mentation of VOPs in sign language sequences. A comprehensive
study on the segmentation of the hands and face, and the coding of
sign language sequences was presented in [1]. The author modeled
the skin color distribution as a normal mixture in the L*a*b color-
space and used the Bayesian classifier to classify image pixels as
skin or non-skin. The algorithm required a separate skin location
algorithm to identify skin pixels for distribution training. Due to
hand and face motion during signing, motion serves as an impor-
tant cue for VOP segmentation. The author did not take advantage
of motion information to enhance the segmentation results.

Our hand and face segmentation algorithm is composed of three
stages. In the first stage, image pixels are classified as skin or
non-skin to yield a skin detection mask (SDM). The skin color

distribution is modeled as a bivariate normal distribution and the
image pixels are classified based on their Mahalanobis distance.
In the second stage, the statistical variance test is employed to lo-
calize moving objects in the image sequence and yield a change
detection mask (CDM). The third stage involves the fusion of the
SDM and the CDM to generate the VOP. To distinguish between
the hands and face, a face identification method is proposed, em-
ploying shape features.

This paper is organized as follows. The color segmentation
and temporal segmentation techniques are presented in sections 2
and 3, respectively. In section 4, we present the VOP generation
method, and experimental results are presented in section 5. The
paper is concluded in section 6.

2. COLOR SEGMENTATION

We employ color information to locate skin regions in each image.
The YCbCr color space is considered since it is typically used in
video coding and provides an effective use of chrominance infor-
mation for modeling the human skin color. Experimental results
indicate that the skin-color distribution in the CbCr plane remains
constant regardless of any variation in the luminance information
of an image [2,3]. Moreover, the CbCr component of the skin pix-
els of people from European, African and Asian descent occupy
the same region in the CbCr plane.

2.1. Pixel Classification

This section describes the classification method employed to clas-
sify pixels as skin or non-skin. The method is analogous to the
single hypothesis classifier described in [4]. Single hypothesis
schemes have been proposed to solve problems in which one class
is well defined while others are not. It is assumed that the skin
class is well defined, while the non-skin class, which may include
a wide variety of different colors, is not.

2.1.1. The Skin-Color Model

Let x denote the feature vector formed by the Cb and Cr compo-
nents of a pixel, and x is in a 2-dimensional Euclidean space R�,
called the feature space. The skin and non-skin classes are denoted
by �S and ��S , respectively. The skin color distribution in the CbCr
plane is modeled as a bivariate normal distribution:

p�xj�S� �
�

��j�Sj
�

�
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where �S and �S are the mean vector and covariance matrix of
the distribution, respectively. Normal distributions are widely used
in the pattern recognition community because of their many de-
sirable properties [4]. The parameters, �S and �S , are estimated
from the skin training pixels. The training pixels were obtained
by manually segmenting training images that included people of
European, African and Asian descent.

The quantity d in

d� � �x� �S�
T
�
��
S �x��S� (2)

is known as the Mahalanobis distance from x to �S . Pixels can be
classified as skin or non-skin based on their Mahalanobis distance.
The value of d is related to the probability that a given pixel be-
longs to class �S . A small value of d indicates a high skin pixel
probability and vice-versa.

2.1.2. Test of Normality

An effective test to check the assumption of bivariate normality is
the chi-square test [5]. Equation (2) can be expressed as:

d� � �x� �S�
T
�S

���x��S� � z
T
z �

nX
j��

z�j (3)

where z � AT �x��S� andA is the whitening transformation [4].
Since the mean vector and covariance matrix of z are �� ��T and
the identity matrix respectively, the zi’s are independent random
variables with zero mean and unity variance. If x is indeed normal,
then
Pn

j�� z
�
j in equation (3) is a chi-square (��n) random variable

with n � � degrees of freedom. Therefore, the test for bivariate
normality is to compare the goodness of fit of the Mahalanobis
distances

d�i � �xi � ��S�
T ��

��

S �xi � ��S� (4)

to ���, where ��S and ��S are estimated from the skin training pix-
els. The procedure is as follows:

1. The squared distances in equation (4) are ordered in ascend-
ing order as d���� � d���� � ��� � d��NS�, where NS is
the number of skin training pixels. Note that d��i� is the ith
smallest squared distance, whereas d�i is the squared dis-
tance associated with the chrominance vector for the ith skin
training pixel.

2. d��i� is plotted against �����i � �����NS �, where �����i �
�����NS � is the 	���i � �����NS percentile of the chi-
square distribution with 2 degrees of freedom (the factor of
0.5 is added as a correction for continuity).

The plot should follow a straight line. The chi-square plot of the
ordered distances shown in figure 1 does not show any significant
deviation from a straight line. It can therefore be asserted that the
skin class pixels in the CbCr plane follow a bivariate normal distri-
bution.

2.1.3. The Segmentation Threshold

The skin detection mask (SDM) is defined as:

SDM�m� n� �

�
	� if dm�n � �
�� otherwise

(5)
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Figure 1: The chi-square plot of the ordered distances.

where � is the segmentation threshold, and dm�n is the Maha-
lanobis distance for the pixel at location �m�n�. � is derived by
examining the probability of classification error, Perror.

LetRS denote the region in the feature space where the classi-
fier decides �S and likewise forR�S and ��S . There are two ways in
which a classification error can occur; either an observation x falls
in RS and the true class is ��S , or x falls in R�S and the true class
is �S . Since these events are mutually exclusive and collectively
exhaustive, the probability of classification error is

Perror � P �x � R �S � �S� 
 P �x � RS � � �S� (6)

� P �x � R �S j�S�P ��S� 
 P �x � RS j� �S�P �� �S�

where P ��S� and P ���S� denote the a priori probabilities of the
skin and non-skin classes, respectively. For the remainder of this
paper, the following notations, borrowed from radar terminology,
will be used

PF � P �x � RSj� �S�

PD � P �x � RSj�S� (7)

PM � P �x � R �Sj�S��

PF , PD and PM are the probabilities of false alarm, detection and
miss, respectively. Note that PM � 	� PD.

Using the above notations, the probability of classification er-
ror can now be expressed as

Perror � PM ���P ��S� 
 PF ���P �� �S�� (8)

where � is a threshold. Therefore, the probability of error is a func-
tion of � and the a priori probabilities. PD and PF are evaluated
for the set of training images Ik, k � 	� ���� K,

PD��� �
	

NS

KX
k��

X
x�Ik

��x� k� ��� (9)

and

PF ��� �
	

N �S

KX
k��

X
x�Ik

	�x� k� ��� (10)

where ��x� k� �� and 	�x� k� �� are defined as:

��x� k� �� �

�
	� if xk � �S and dxk � �
�� otherwise�

(11)
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and

��x� k� �� �

�
�� if xk � � �S and dxk � �
�� otherwise�

(12)

xk denotes the feature vector of a pixel in training image k, k �
�� ���� K. The a priori probabilities can be either estimated or as-
sumed. The � that minimizes equation (8) is then designated as the
segmentation threshold.

3. TEMPORAL SEGMENTATION

In this section, a temporal segmentation method is developed based
on the variance statistical test. The motion of a moving object from
one image to the next generates intensity variations that can be
represented in the form of a difference image. However, intensity
variations can also occur due to camera or quantization noise. The
noise is usually modeled as a zero-mean normal distribution [6].
The objective of temporal segmentation is to distinguish between
temporal variations caused by noise and those caused by object
motion. We refer to intensity variations caused by motion as fore-
ground and those caused by noise as background.

Let ��
B denote the variance of the background population, and

W a sliding observation window. We use the statistical variance
test to detect background and foreground regions in the difference
image. The statistical variance test can be formally stated as:

H� � �� � ��
B

H� � �� � ��
B � (13)

The null hypothesis, H�, implies that the set of difference pixels
in W is drawn from a normal population with variance ��B . The
hypothesis is rejected if the variance of the difference pixels in W
is significantly greater than ��B . The intensity variation induced by
a moving object is greater than that of the background because of a
higher intensity gradient at the edge and inside of a moving object.
W is set to ��� samples (i.e. n � � samples) and the significance
level, �, is set to 1%. If the hypothesis is true, then

Y �
�n� ��S�

��
B

(14)

has a �� distribution with n � � � � degrees of freedom. S� is
the sample variance. For a significance level of 1%, the critical
value of Y is 20.1. Therefore if Y � 	���, we would reject the
hypothesis.

The foreground and background regions in the difference im-
age are represented in the form of a binary map, called the change
detection mask (CDM). If the null hypothesis is rejected, a binary
1 is allocated to the center pixel in W , otherwise a binary 0 is allo-
cated. The parameter ��B can be estimated by the histogram fitting
technique described in [7] or the least median of squares technique
described in [8].

4. VIDEO OBJECT PLANE GENERATION

This section describes the VOP generation method. Firstly, con-
nected components analysis on both the SDM and the CDM is per-
formed to remove all connected components of 50 or less pixels
(with 8-neighborhood connectivity). These regions can be gener-
ally attributed to false alarms. After connected components analy-
sis, holes in the remaining connected components are filled. This
was performed to promote the formation of semantic objects and
improve the accuracy of VOP generation.

4.1. SDM and CDM Analysis

Due to face and hand motion during signing, the CDM can be uti-
lized to identify the hands and face in the SDM. First, the SDM is
superposed on top of the CDM. When 80% or more of a connected
component in the SDM is covered by a foreground region in the
CDM, the connected component is declared as either a face or a
hand.

4.2. Face Identification

It may sometimes be necessary to discriminate between the face
and the hands. One method is to compare the areas of the con-
nected components in the VOP. Intuitively, the face would have the
largest area, however if a subject has part of an arm exposed, the
arm may have a greater area than the face and thus result in inac-
curate identification. An effective method to distinguish between
the face and the hands is to model the face as a rigid object, and the
hands as non-rigid objects, due to wrist and finger motion. Such
a model would allow the use of shape features to differentiate be-
tween the face and hands. We have devised three tests to make the
differentiation.

It is a well known fact that the shape of the face can be ap-
proximated by an ellipse [9]. The best-fit-ellipse of a connected
component, C, is defined by its center � 
m� 
n�, its orientation 	,
and the length of its major �a� and minor �b� axes [10]. The center
of gravity of C gives the center of the ellipse:


m �
�

N

X
�m�n��C

m� (15)

and


n �
�

N

X
�m�n��C

n� (16)

where N denotes the number of pixels in C. Orientation is de-
fined as the angle of axis of the least moment of inertia. It can be
computed by utilizing the central moments 
p�q of the connected
component:

	 �
�

	
tan��

�
	
���


��� � 
���

�
� (17)

The first test is the orientation test. We have observed that during
signing, the head can tilt in the range ����������� from vertical.
Therefore, if the orientation of a connected component is not within
this range, it cannot be the face.

The second test deals with the aspect ratio (a�b) of C. We
have observed that the aspect ratio of the face can range from 1.4
to 1.8. Therefore, any connected component outside of this range,
cannot represent the face. a and b are determined by computing the
moments of inertia of C. The least and greatest moments of inertia
for an ellipse are

Imin �
�

�
ab�� (18)

and

Imax �
�

�
a�b� (19)

For a given 	, the above moments can be calculated as

I �min �
X

�m�n��C

�n � 
n�cos	� �m� 
m�sin	�� � (20)
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and

I
�
max �

X
�m�n��C

��n� �n�sin�� �m� �m�cos��� � (21)

The requirements for a best fit ellipse are Imin � I �min and Imax �
I �max, which gives the lengths of a and b, respectively:

a �

�
�

�

� �

�

�
�I �max�

�

I �min

� �

�

� (22)

and

b �

�
�

�

� �

�

�
�I �min�

�

I �max

� �

�

� (23)

The final test is to assess the similarity between a connected com-
ponent and its best fit ellipse. This is accomplished by computing
the difference between the area of C inside and outside the ellipse.
The difference is then divided by the area of the ellipse. We have
found that the above similarity measure should be 0.8 or higher for
facial regions.

5. EXPERIMENTAL RESULTS

For simulation we used the silent test sequence. Results for frames
11 and 12 are shown in figure 2. The SDMs are shown in fig-
ure 2(b). The false alarms present in the SDMs are due to similar
skin and background color characteristics. The CDMs, shown in
figure 2(c), also contain false alarms. The false alarms to the sub-
ject’s right are due to shadow, induced by hand motion. The false
alarms are largely eliminated after connected components analy-
sis. The face and hands of the subject have been segmented quite
effectively, as shown in figure 2(d).

6. CONCLUSIONS

A new hand and face segmentation algorithm has been presented in
this paper. The algorithm consists of three steps, namely color seg-
mentation, temporal segmentation and VOP generation. In color
segmentation, the aim is to segment skin regions in an image. Mean-
while, in temporal segmentation, moving objects in the image se-
quence are localized. The color and motion information is then
used to generate the VOP. Experimental results indicate that the
technique is capable of segmenting the hands and face quite effec-
tively. The algorithm allows the flexibility of incorporating addi-
tional techniques to enhance the results. Work is currently under
way to incorporate a tracking technique to track the hands and face
throughout the sequence.
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