\l/

R

UNIVERSITY
OF OULU

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Bilel Bennadji

USING ENCODER-DECODER ARCHITECTURE
FOR MATERIAL SEGMENTATION BASED ON
BEAM PROFILE ANALYSIS

Master’s Thesis

Degree Programme in Computer Science and Engineering
July 2020

Bennadji B. (2020) Using Encoder-Decoder Architecture for Material
Segmentation Based on Beam Profile Analysis. University of Oulu, Degree
Programme in Computer Science and Engineering, 63 p.

ABSTRACT

Recognition and segmentation of materials has proven to be a challenging
problem because of the wide divergence in appearance within and between
categories. Many recent material segmentation approaches treat materials as
yet another set of labels like objects. However, materials are basically different
from objects as they have no basic shape or defined spatial extent. Our approach
roughly ignores this and can primarily take advantage of limited implicit context
(local appearance) as it seems during training, because our training images that
almost do not have a global image context; such as (I) where the used materials
have no inherent shape or defined spatial extent like apple, orange and potato
approximately have the same spherical shape; (II) besides, images where taken
under a black background, which roughly removes the spatial features of the
materials.

We introduce a new materials segmentation dataset, which was taken with a
Beam Profile Analysis sensing device. The dataset contains 10 material categories,
and it has image pair samples consisting of grayscale images with and without
the laser spots (grayscale and laser images) in addition to annotated segmented
images. To the best of our knowledge, this is the first material segmentation
dataset for Beam Profile Analysis images.

As a second step, we proposed a deep learning approach to perform material
segmentation on our dataset; our proposed CNNs is an encoder-decoder model,
which is based on the DeeplabV3+ model. Our main goal is to obtain segmented
material maps and discover how the laser spots contribute to the segmentation
results; therefore, we perform a comparative analysis across different types of
architectures to observe how the laser spots contribute to the whole segmentation.
We built our experiments on three main types of models that use a different
type of input; for each model, we implemented various types of backbone
architectures. QOur experiments results show that the laser spots have an
efficient contribution on the segmentation results. GrayLaser model achieves
a significant accuracy improvement compared to other models, where the fine-
tuned architecture of this model has reached an accuracy of 94% over MloU
metric, and one trained from the scratch has reached an accuracy of 62% over
MiloU.

Keywords: semantic segmentation, deep learning, convolutional neural networks,
laser spots, grayscale images, data annotation.

TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
L. INTRODUCGTIONo 7
2. DEPTH ESTIMATION ... 8
2.1. Active Depth Sensing Techniquescoooeeviiiiiiieiiiiiiiiiiiieeeeeeeeiiiinnn, 8
2.1.1. Time of FIIghtcoooiiiiiiiiiiieeeee e 8
2.1.2. Structured Lightccooomiiiiiiiiii e, 9
2.2. Passive Depth Sensing Techniquesccooeiviiiiiiiiiiiiiiiiiiineeceeeein, 12
2.2.1. Monocular CUEccoovuuiiiiiieiiiiiiiie et 12
2.2.2. BINOCUIAr CUCeeiiiiiiiiiieeee e 12
2.3. 3D Technology COMPATISONceeeieiiiiiieeeeeriiiiiiiieeeeeeeeeiiiiieeeeeeeeeeanennes 14
. LEARNING-BASED SEMANTIC SEGMENTATION.............ccoouvviuinannn. 16
3.1. Computer Vision Pipeline..............ccccooiiiiiiiiiiiiiiiiiiiiiii e 16
3.2. Deep Learning and Neural Networks.........ccccoevevieiiieieieiiiniiiii. 16
3.3. Convolutional Neural Networks Basicscccoeeeevvieieiiiiiiiiii. 19
3.3.1. Convolutional Layer...........cccoeeeeiiiiiiiiiiineiiiiiiiiiieee e 19
3.3.2. POOING LAYET «.evvviiieeeeiiiiiiiieee e 20
3.3.3. Fully-Connected Layercccooviiiiiiiniiiiiiiiiiiine e 20
3.3.4. Activation FUNCHONccoouuuiiiiiiiiiiiiiiiiiee e 21
3.3.5. Weight Initializationccoeeeiiiiiiiiiiineieiiiiiiee e 21
3.3.6. Regularization SOIUtIONSceeeeviiiiiiiiiieeeeiiiiiiiiee e 21
3.4. Convolutional Neural Networks Backbones................cccooee 22
R T 3 B 11 171C) 015 10) 1 PR PPPURRPPN 22
3420 RESINEL....uiiiiiiiiiie e 22
3.5. Deep Learning TEChNIQUESeuuvuimiiiiiiiiiiiieieeeeee e 23
3.5.1. Transfer Learning..............ueveriiiiiiiiiiiiine e 23
3.5.2. Data AUZMENtationuceeeeeeeiriiiiiieeeeeeieriiiieeeeeeeeeeanieeeenns 24
3.6. Semantic SEZMENTAtIONccevvuuuneeeeereiiiiiieeeeeeeeriiieeeeeeereriannaeeeeeeennes 24
3.6.1. Related WOrkcooiiiiiiiiiiiii 25
3.7. Semantic Segmentation NEtWOTKSuuiiiiiiiiiiiiieieieieieeeiieeee, 26
3710 DeePLab...ccccciiiiiiiiieeeeee e 26
3720 SEENEL. .. 26
3730 GON i e e 27
3.8. Material Recognition and Segmentationcccuuuuieeeeeieiiiiiiinereeeennnn. 28
. DATASET GENERATION ...t 29
4.1. Data CollECTiON.uueiiiiiiieeeee ettt 29
4.2, Data ANNOTALIONeveiiiiiiiiieiee e e e e e e e et et e et 30
4.3. Data Analysis and Visualization..............cceevviiiinereriiiiiiiineeeeeeeiiieeeenne, 30
4.4. Dimensionality RedUCtiONoeeiiiiiiiiiiiiiieeiiiiee e 31
4.4.1. Principal Component Analysisccceeveiririiiiiimiiiiriiniiiiinenens 31

4.4.2. T-Distributed Stochastic Neighbor Embeddingc......... 32

5.

6.

7.
8.

4.4.3. TSNE versus PCA ..., 32

EXPERIMENTAL EVALUATION..........ccoooee 33
5.1. Implementation Environment................coeveiiiiiieeiiiineeiiiieeeeiieeeeeiieeees 33
5.2, Data CollECtION.uuuieeeiiiiiiiiie ettt e s 34

5.2.1. Datad ANaLYSIS.....uuuuuuiiiieieeeeeeee ettt 34

5.2.2. Collecting PrOCESSuuuuuiieeeiiiiiiiiiiee ettt 37

5.2.3. Annotation Process........ccooeveieeiiiiiiiiiiiiiiiiiiiiiii 39
5.3. Data Preparation and Validation..............ceeevuivreiiiiiniiiiiineeiiiee e 40
5.4, Model BUildingooeeiiiiiiiiiiiiee e 41
5.5. TTAIMING ..euieeeeeeiiiii e e ettt e e e e e ettt e e e e e eeeeaaaaaes 42
5.6, RESUILS cociiiiiiiiiiiiiiiiiii e e e 44

5.6, 1. MELIICS vttt ettt 44

5.6.2. Evaluation Results........ccooeeiiiiiiiiiiiiiiiiee 44
DISCUSSION ...ttt ettt ettt eeeebeaeaeaes 53
6.1. Depends on the Quantitative Resultsccccoeeeeeiiiii. 53
6.2. Depends on the Qualitative Resultscccovviiiiiiieiiiiiiiiiiiineeeeieiiiiennn, 54
6.3, LIMITATIONS ceeeeteiiiiiiiiiiiiiiiiiiietiiiie s e e e e e e e e e e e e e eeeeeeeeeeeeeeeeees 54
6.4. Future Work and Improvementsoeeeeiuinveeiiiineeeiiiieeeeiiee e 55
CONCLUSION ... e e e e e e e e e e e e e e eeeees 56
REFERENCES ...ttt 57

FOREWORD

I would like to acknowledge the support and encouragement I received during my
thesis research. I am incredibly grateful for those of you who shared with me personal
and professional supports. I thank you for helping me during the journey. First, I want
to thank my supervisor the Professor Janne Heikkild. He has taught me how to become
a good researcher at work. I appreciate his contributions of time, ideas and letting me
work on my ideas as well during the whole of this work.

Second, I want to thank my colleagues and my friends in the Center for Machine
Vision and Signal Analysis (CMVS). Thank all of you for providing support,
mentoring, and motivation along the way.

Finally, my most sincere gratitude goes to my family. I give my heartfelt thanks to
my parents. I cannot be here without their unlimited supports and encouragements.

Oulu, June 16, 2020.

Bilel Bennadji

LIST OF ABBREVIATIONS AND SYMBOLS

3D three dimensional

VR Virtual Reality

AR augmented reality

ToF Time of Flight

SL Structured Light

LIDAR Light Detection And Ranging
RGB-D Red-Green-Blue-Depth

IR Infrared

BPA Beam Profile Analysis

Cv Computer Vision

FoV field of view

fps Frame per second

DL Deep Learning

ML Machine learning

2D two dimensional

CNN convolutional neural networks
RNN recurrent neural networks
GAN generative adversarial networks
VGA Video Graphics Array

ANN artificial neural networks
SVM Support Vector Machine
DBN deep belief network

SAE tacked auto encoders

CONV convolutional layer

POOL pooling layer

FC fully connected layer

ReLU rectified linear unit

FCN fully convolutional network
ASSP atrous spatial pyramid pooling
BT batch normalization

oS output stride

DoF degree of freedom

1. INTRODUCTION

3D imaging solutions can be divided into passive and active technologies. Passive
sensing relies on scene details such as corners, edges and points that are uniquely
distinguishable from conventional RGB images. Common passive sensing methods
include stereo, structure from motion, and depth from focus. The main weakness of
the passive methods is that they can only provide 3D information from locations where
details are visible.

In contrast, active 3D sensing solutions use light patterns projected to the scene that
enable denser and more regular sampling even from surfaces that do not have any
details. The most common approaches used in active depth cameras include structured
light (SL) and time of flight (ToF).

In this regard, Beam Profile Analysis (BPA) sensing solution is an active depth
measuring technology based on SL technique. It uses a grid of laser beams projected
to the scene and a CMOS sensor for observing the reflected beams. The sensor
produces image pairs consisting of grayscale images with and without the laser spots,
where those laser spots have important information about the depth and the material
information of the scene. Therefore, they allow classifying materials based on specific
scattering/reflection properties.

Convolutional neural networks (CNN) have recently shown to provide great
potential for various image prediction problems including depth estimation and
semantic segmentation. The previous works on CNNs form a solid basis to develop
a learning-based approach for smart image interpolation and material segmentation
using the features of laser spots produced by the BPA sensing solution.

The objective of semantic segmentation is to assign a class to each pixel describing
what type of object it belongs to. Similarly, for material segmentation, each pixel
is assigned a material class. Recognizing materials is essential for understanding,
interacting, and summarizing complex and different scenes. Material recognition plays
a significant role in many applications.

Our project aims to devise an alternative interpolation scheme based on deep
learning and scene understanding, which delivers a material-based segmentation of the
scene by using laser images as well as the grayscale images based on beam profile
analysis. The work starts with creating a material segmentation dataset observed
through the BPA sensing solution including annotation of all relevant materials. As
a second step, the proposed network architectures were implemented and trained with
the goal of getting a segmented material map of the scene.

2. DEPTH ESTIMATION

The human visual system 1s designed for depth perception, which is the ability to see
things in three dimensions (3D), including width, length, and depth. This perception is
possible through a combination of different physiological and psychological structures
and functions. Generally depth perception needs to have a binocular (two eyes) vision.
It is called stereopsis when the pair of eyes look at an object from slightly different
angles and the brain processes and compare two sets of information to form only one
image effectively [1]. Sometimes the brain recognizes depth primarily using one eye
that is called monocular vision. Some of the monocular cue structures are relative size,
familiar size, motion parallax, occultation, and differences in brightness [1].

Depth estimation or extraction of the depth refers to the set of methods and
algorithms aiming to obtain a three-dimensional representation of the spatial structure
of a scene, in other words, to get the distance measurements of each point of the
viewed scene. In the computer vision field, depth estimation from scenes or objects
has been studied for a long time and it is a crucial and fundamental problem. Depth
estimation has been applied in various applications to make them more feasible, robust
and to make machines identify objects, and not only for capturing the object but also to
understand the representation of the objects because representation is the main step in
recognition. Some of these applications include 3D modelling, semantic segmentation,
computer graphics, virtual reality (VR), and augmented reality (AR).

In general terms, we can divide all the methods to obtain the depth estimate from
the real-world scene as active and passive depth sensing techniques, both of which are
extremely popular [2][3]. Some of the methods to estimate depth use the human visual
system as an essential source of inspiration when a set of algorithms are implemented
to process videos or images in a complex manner by using several binocular and
monocular cues. Other methods are sensor-based methods using time of flight like
RGB-D cameras and LIDAR, and structured light (SL) like Microsoft Kinect.

In this chapter, a general review of the main techniques and technologies used for
depth estimation is provided, presenting some hardware used to measure the depth and
finally a general comparison of the techniques and devices.

2.1. Active Depth Sensing Techniques

The active techniques put some energy onto the target scene, by projecting it to
illuminate the space and processing the reflected energy. Some of their advantages
are that their depth accuracy is higher than the passive methods. However, they require
energy compared to the passive methods. Some of the popular active methods are the
time of flight (ToF) and structured light (SL).

2.1.1. Time of Flight

The term time of flight (ToF) refers to methods that implement the measurement of the
distance using the phase delay of the adjusted light source received at different distance

and calculating the depth according to the speed of light as shown in Figure 1 [4], so
the distance D can be calculated as follows:

c

:ﬁ% (1)

where f is the signal’s frequency, c is the light’s speed, and v is the phase difference
between the emitted and reflected infrared (IR) signals. The attractive features of the
ToF technique include its low cost, small size and video-rate depth data collection.
However, there are some disadvantages of the ToF system including the need for
active illumination synchronization, distance aliasing and the possibility for multi-
path interference. This 3D sensing technology is used in some applications such as
3D reconstruction, mapping and object detection [5].

Distance

4. mmmmmmmmmmmmmmmmmmmmmmmmmm).
f W
b, W e .

4 U 7 o oo o o N o o o @ {R Light
| Emitter
[| A e e w w w w

Object

Sensor

Phase Defay

Figure 1. The principle of Time of Flight.

2.1.2. Structured Light

The principle of Structured Light (SL) technique is transmitting a predetermined light
pattern to the object surface and to obtain the depth information based on the analysis
of the distorted pattern [6]. The process of SL has two steps. Firstly, a laser projector
is used to project the encoded beam onto a target object in order to generate the feature
points. Then, depending on the projection model and the geometric pattern of the
projected light, the triangulation principle is used to calculate the distance between the
feature points and the optical centre of the camera, which allows generating the depth
of the feature point and implement the reconstruction of the model. The encoded beam
can represent the Structure Light, including various patterns such as points and lines.

Figure 2 shows the basic principle of the SL. method. Usually the camera is described
as a perspective projection model, and the corresponding relationship between object
space and image plane can be expressed as:

sfucve]t = Mo [XY Zo|")

10

where s an arbitrary scale factor; [u.,v.,1] are the homogeneous coordinates of a
point P in the image coordinate system of the camera; M. is the linear transformation
matrix of 3x4; and [X,,,Y.,Zw,1] are the homogeneous coordinates of a point P in
the object world coordinate system. The projector can be seen as an inverse camera.
Hence, the projector has a similar model as equation (2), where s* is an arbitrary scale
factor; [u,,v,,1] are the coordinates of a point P in the image coordinate system of the
projector; M, is the linear transformation matrix of 3x4. Therefore, the 3D coordinates
[Xw,Yw,Z,1] of the calculated point can be obtained by equations (2) and (3) with the
image coordinates u.,v. and u,,v, with known values of M. and M,,.

Projector Camera

Figure 2. The basic principle of 3D SL method.

Due to the ease of implementation and high precision, the SL method is used in a
vast range of applications such as object detection [7], 3D reconstruction [8] and scene
understanding [9]. There are several hardware devices based on SL technology such
as Kinect from Microsoft and RealSense from Intel. The next sections present brief
descriptions for Kinect from Microsoft and Beam Profile Analysis devices.

Microsoft Kinect

Microsoft Kinect is an RGB-D sensor (depth sensor, a colour camera) providing
synchronised colour and depth images. It was initially utilised as an input device
for Xbox game consoles [10]. With a full-body 3D motion capture algorithm and
facial recognition capabilities, Kinect allows interaction between players and a game
without touching the controller. In recent years, the computer vision (CV) community
discovered that Kinect’s depth sensing technology could be extended far beyond the
gaming industry and at a lower cost than conventional 3D cameras like TOF cameras
and stereo cameras. Besides, Kinect opens a new solution for classical problems of
CV by providing complementary nature of the colour and depth information.
Furthermore, a large number of research papers have been already presented in
several CV conferences and journals, which clearly show the potential impact of Kinect

11

in the computer vision area after it was released [11] [12]. Some of those research
papers include topics in object tracking, recognition and indoor 3D mapping.

Figure 3 shows the arrangement of a Kinect Sensing Hardware, consisting of an IR
projector, an IR camera, and a colour RGB camera. The depth sensor includes the IR
camera and the IR projector together to create the depth map where the IR projector
emits an IR speckle dot pattern into the 3D scene while the reflection of the IR speckles
is captured by the IR camera. The depth sensor has a practical range limit of 0.8 m to
3.5 m length and 30 fps for the outputs video with a resolution of 640 x 480 pixels. It
has a field of view (FoV) of 57 degrees horizontally and 43 degrees vertically. While
the RGB Camera operates at 30 Hz and has a resolution of 640 x 480 pixels with an
8-bit per channel, it has a resolution of 1280 x 1024 pixels as an additional option
running at 10 fps.

|(3D Deptk Sensor

RGB Camera

Infrared Infrared
Projector Camera

Figure 3. Kinect Sensing Hardware arrangement with two images captured by the
depth camera and the RGB camera.

Distance 1 Distance 2

Beam: Profile Analysis
Figure 4. BPA technology spot @ @

image of a planar surface. Figure 5. The basic principle of BPA.

Beam Profile Analysis technology

Beam Profile Analysis (BPA) technology is an active depth measuring technology
based on SL technique. It projects a laser beam (light source) resulting in a matrix
of regular dots pattern on the object to be measured, as Figure 4 shows. The reflection
of each laser spot is captured by a CMOS camera, and its beam profile is then being
analyzed where the 3D coordinates of these spots are computed [13][14], as Figure
5 shows. BPA technology can be used for a variety of applications such as in face
authentication solutions in smartphones, segmentation for AR/VR purposes, image
enhancements or object detection like what is used in bin-picking robots.

12

2.2. Passive Depth Sensing Techniques

Passive techniques are the techniques that deal with the natural ambient light and
the extract optical information from the captured image without consuming energy
compared to the active methods. They have only image sensors that capture the images
and their algorithm of measuring the depth is divided into monocular and stereo cues.

2.2.1. Monocular Cue

Monocular Depth Estimation (MDE) is estimating the depth of a scene from a single
image, which is considered a complex task for computational models to obtain high
accuracy and with low resource requirements. Some of the advantages to be able
to estimate depth from a single image is recovering depth information when other
information such as stereo images, or optical flow is unavailable.

This is an easy task for humans because we can exploit features such as perspective,
occlusion, relative, familiar size to known objects, lighting and shading, and more.
Monocular depth estimation is an ill-posed problem because a single 2D image may
be generated from an infinite number of distinct 3D scenes. Therefore, previous
approaches have been published to exploiting the same statistically meaningful
monocular cues of human vision such as perspective, occlusions, object sizes, and
object localization. Other approaches have used multiple images (a series of 2D
image sequences) that provide geometric constraints to overcome the ambiguities of
photometric data. Some of those approaches include structure from motion, depth
from focus, depth from defocus methods [15].

In recent years, with the rapid development in DL, deep neural networks have shown
their excellent performance on computer vision, like image classification, semantic
segmentation and objective detection. Furthermore, recent studies have shown that
the pixel level monocular depth estimation task is promising in end-to-end learning
based on DL. Various end-to-end deep neural networks have proved their effectiveness
to address the MDE, such as convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and generative adversarial networks (GANs) [16][17][18].

2.2.2. Binocular Cue

The stereo vision system, or in other words, the binocular system uses two cameras
to capture the images of the object from two different images of a scene, similar to
the human visual system that renders the images for depth perception from the slightly
different views of the eyes.

Obtaining the depth information of a scene from a pair of images requires to
solve one of the relatively complicated problems in the stereo vision field, called
the correspondence problem. Object projections into the planes are represented
with respect to two different image coordinates in stereo vision. Hence, the stereo
correspondence problem can be described as determining the coordinate difference
between the two images of the object. The term stereo matching refers to solving
this correspondence problem [19]. The outcomes of stereo matching are usually

13

represented by a disparity map whose intensity describes the coordinate difference
between corresponding image points.

Generally, the stereo vision system has two identical vision cameras, which capture
the left and right images of an object to obtain the disparity as Figure 6 shows, while
Figure 7(a and b) shows a typical configuration of a stereo vision system. The 3D point
P on the surface of a real object is projected into the image planes of the cameras.
Therefore, two 2D points, W1 and W2, on the image planes are the projections of
point P. The correspondence problem is to find the coordinates of points W1 and W2
between stereo images. The 3D coordinates of the point P can be obtained from the
following equations [4]:

b b
Z:f'm:f'g (3)
x:xl-§orb+xr-§ 4)
yzyz?oryr-% (&)

where (z,y,z) are the 3D coordinates of the point P, f is the focal length, the
corresponding image points are (x;, y;) and (x,, y,), b is the baseline, and d is the
disparity of the point P.

As described previously, the typical pipeline for the correspondence problem
involves finding the stereo matches. But recently, the convolutional neural networks
(CNNs) have been utilised to learn how to find corresponding point. CNNs yields
significant gains compared to traditional methods in terms of both speed and accuracy.
However, finding accurate corresponding points positions in inherently ill-posed
regions such as repeated patterns, occlusion areas, reflective surfaces, and textureless
regions is still hard. Consequently, the stereo matching needs to include local
support from global context information. Some studies used CNNs to compute
patch-wise similarity scores [20][21], with conventional cost aggregation and disparity
computation methods. These approaches achieved a state of the art accuracy, but they
are limited by the conventional matching cost aggregation step, frequently produced
faulty predictions in reflective regions, occluded regions, and around object edges.
Other studies seemed to improve the performance of conventional cost aggregation
[22][23].

Recently, end to end deep neural network models have become popular. For
example, GCNet [24] included the feature extraction, disparity estimation, and
matching cost aggregation into a single end to end deep neural network model to
get state of the art accuracy on various benchmarks. PSMNet [25] used a pyramid
stereo matching network consisting of two main modules that are 3D CNN and spatial
pyramid pooling (SPP). The 3D CNN module learns to regularize cost volume using
a stacked hourglass block. In contrast, the SPP module takes the advantage of the
capacity of global context information by aggregating context in multiple scales and
locations to form a cost volume.

14

Figure 6. (a) Left image; (b) Right image; (c) The measured
disparity from left and right images.

(a)

P(x,y, z)

Left Image Plane

1left Camera

Right Camera

(b)

Image Plane X

Pix.y)

H

S
Left Camera

Right Camera

Figure 7. (a) A typical stereo vision system; (b) Simple model of optical axes of two

parallel cameras.

2.3. 3D Technology Comparison

In this section, a general comparison of the different 3D imaging and sensing
technologies is presented in Table 1. The comparison comprises of three different
3D sensing technologies ranging from stereo vision to structured light and Time of
Flight. Moreover, an overview of common 3D sensors is presented in Table 2.

Table 1. Comparison of 3D imaging techniques.
Stereo Vision Time of Flight | Structured Light
(ToF)
Latency Medium Low Medium
Power Consumption Low Medium/High Medium
Bright Light Performance | Good Medium Medium/Weak
Low Light Performance Weak Good Good
Depth Accuracy mm to cm mm to cm mm to cm
Resolution Camera Dependent | Roadmap to VGA | Camera Dependent
Range Mid range Short to long range | short to mid range
Scanning Speed Medium Fast Fast

Active Illumination

No

Yes

Yes

Table 2. Comparison of 3D sensors.

15

Sensor Technique Resolution Frame rat Range
ZED camera Stereo vision 4416x1242 15 fps 0.3-25m
Bumblebee?2 Stereo vision 648x488 48 fps 0.1-20 m
Bumblebee XB3 Stereo vision 1280x960 16 fps 0.1-20 m
DUO3D stereo camera Stereo vision 640x480 30 fps —
RealSense R200 Structure light 640x480 60 fps 3-4m
RealSense R300 Structure light 640x480 60 fps 0.2-1.2 m
RealSense ZR300 Structure light 480x360 60 fps 0.5-2.8 m
Microsoft Kinectl Structure light 320x240 30 fps 1.2-3.5m
Microsoft Azure Kinect TOF 320x288 30 fps 0.5-546 m
MESA SR4000 TOF 176x144 54 fps 5/10 m
MESA SR4500 TOF 176x144 30 fps 0.8-9m
Microsoft Kinect2 TOF 512x484 30 fps 0.54.5m
Argos3D P100 TOF 160x120 160 fps 3m
Argos3D P330 TOF 352x287 40 fps 0.1-10 m
Sentis3D M520 TOF 160x120 160 fps 0.1-5m

16

3. LEARNING-BASED SEMANTIC SEGMENTATION

In this chapter, we present an overview of relevant background knowledge, techniques
and algorithms used in semantic segmentation that forms the basis of this research.
In the first part, we present the computer vision pipeline, some details about deep
learning, CNN architecture, and the most common CNN backbones (inception and
ResNet), which are currently being used as backbones for many semantic segmentation
models. As well as, we review some deep learning techniques, which are transfer
learning and data augmentation. In the second part, we present some details about
semantic segmentation and its state-of-the-art networks.

3.1. Computer Vision Pipeline

There are various applications in Computer Vision, but usually, a typical vision system
uses a similar process of distinct steps to analyze image data. These are referred as
a computer vision pipeline. This pipeline starts by receiving images and data, then
processing that data, performing some analysis and recognition, and finally makes a
prediction based on the extracted information, as Figure 8 shows.

The input image passes through the classification pipeline as follows: first, a
computer receives visual input as an image or a sequence of images forming a
video. Each image is then sent into some pre-processing steps in the purpose of
standardizing each image. Standard pre-processing steps include resizing an image,
rotating, blurring, and converting the image from one colour to another like converting
RGB images to grayscale. Only by standardizing each image, for instance making
them of the same size, it is possible to further analyze them in the same way. Next,
the feature extraction step starts. Features are unique properties and information in the
image that are used to classify its objects. For example, some features that distinguish
a motorcycle are the shape of the wheel, mudguards, and more. The product of this
process is a feature vector that identifies the object.

As a final step, the features vector is fed into a classification model that predicts the
class of the image. The classification step is done by either traditional ML algorithms
such as SVM and Random Forest, or deep neural network algorithms like CNNs. The
traditional ML algorithms might achieve excellent results for some CV problems, but
CNN s do better in the classification task. Neural networks automatically extract useful
features from the images and act as a classifier at the same time. Thus CNN is what
we will discuss in the next section.

3.2. Deep Learning and Neural Networks

Deep learning is a subset of methods in the machine learning toolbox, primarily using
artificial neural networks (ANNs), which are a class of learning algorithms loosely
inspired by the human brain. DL approaches use many layers of nonlinear processing
units for transformations and representations. The input of each layer is the output
of the previous layer, and the hierarchical representations can be obtained by different
levels of abstraction. These algorithms use neural networks to perform both supervised

17

1. Input data }——Dl 2. Pre-processing }—{3. Feature extraction }—{ 4. ML Model]

- Geometric transformation
= Image blurring [‘motorcvele)
_ P n_.r.&r.\g,:;e_ /
. o/
oo - 80 (%O =
i

Picar) =0.14

P{dog) = 0.01

features vector ~

Figure 8. A typical computer vision pipeline with an example.

and unsupervised prediction, and their applications include classification (supervised)
and pattern analysis (unsupervised). Nowadays, the accelerated development of deep
learning has been achieved by three main reasons that are powerful computation ability,
massive data, and innovative algorithms. Many applications of DL are used to solve a
wide variety of real-life problems, as well, more and more fields will be facilitated by
DL in the future. The basic type of DL approaches are based on neural networks that
consist of different layers; each layer contains several units (neurons) that are typically
of the form:

y = f(wz +b) (6)

where y is the activation of each unit that represents a linear combination of input
vector x, learnable parameters w, and a basis b, followed by a nonlinear activation
function f(-) that can be a sigmoid function or restricted linear unit. Figure 9 shows a
typical Neural Network and its building block of a neuron.

The deep neural networks stack multiple layers with different connection structures,
which are called as architectures. There are various DL architectures, such as
recurrent neural networks (RNNs), convolutional neural networks (CNNs), deep belief
networks (DBNs), generative adversarial networks (GANSs), and stacked autoencoders
(SAEs) that have been proposed and successfully used in many domains, and they
have achieved state-of-the-art results on many tasks [26][27]. These architectures
are considered fundamental ones and can be combined or extended to produce new
structures for some specific tasks.

After defining the network architecture, a loss function must be defined, which
describes the relationship between the output of the model and the real data. The
loss function is used to assess how good the model is at making predictions. The deep
neural network learns to map a set of inputs to a set of outputs from training data.
The learning process is cast as an optimization problem and an algorithm is used to
navigate the space of possible sets of weights the model may use to obtain good or
good enough predictions. Typically, a neural network is trained using the gradient
descent optimization algorithm and the weights are updated using the backpropagation
of the loss function. The gradient descent optimization algorithm seeks to adjust the
weights so that the next evaluation reduces the error, meaning that the optimization

18

algorithm is navigating down the slope of the error function, as Figure 10 shows. The
parameter update step of the gradient descent looks as follows:

0
w; = wj — aa—ij(w) (7

where the parameter « is the learning rate, w is the parameter updated, and J(w) is the
cost function.

Neural Network Neuron

activation

f Y

Inputs

Input Layer QOutput Layer

Hidden Layers

Layers of Neurons

Figure 9. A simple representation of an artificial neuron and Neural Network.

; e T R
iy s et L
“\ Zi S AL

60 1 8 ok o
At T
s ttt‘,‘i.

Figure 10. Gradient descent algorithm over the error function.

19

3.3. Convolutional Neural Networks Basics

Convolutional Neural Networks are the fundamental building blocks of modern
computer vision, and the CNNs consist of a sequence of layers, each transforming
one volume of activations to another one through linear or non-linear operators. The
three main different types of layers to build CNNs are convolutional layer, pooling
layer, and fully-connected layer. Figure 11 shows an example of the CNN architecture
proposed by Zisserman and Simonyan called VGG16 [28].

- (D s s - — -
[Input
[Convolution + ReLU
[1 Max Pooling

] Fully Connected
Ml softmax

Figure 11. The basic architecture of a CNN (VGG16 Architecture).

3.3.1. Convolutional Layer

The convolutional layer is the fundamental building block of a CNN. It acts like a
feature finder window that slides over the image pixel by pixel to extract features that
distinguish the objects in the image. The layer’s parameters consist of a set of kernels,
which have a small receptive field that extends within the full depth of the input size.

At the forward pass, each filter is convolved over the width and height of the input
size, calculating the dot product between the entries of the filter and the input producing
a two-dimensional activation map of that filter. Therefore, the network learns filters
that activate when they see some specific type of feature at some spatial position in
the input. Especially, when dealing with high dimensional inputs like images, it is
unreasonable to connect neurons to all neurons in the preceding layer because such a
network architecture does not consider the spatial structure of the data.

There are three parameters that control the size of the output volume that are the
depth, stride and zero padding. First, the depth corresponds to the number of filters
that are used. Second, the stride controls how columns around the spatial dimensions
are allocated. Third, the size of zero padding allows controlling the spatial size of
the output volumes. Figure 12 shows an example of the convolution operation in the
convolutional layer, which is applied in a small region of the input data, where the
input image dimension is 1x5x5. The number of filters is 1 (K= 1). The convolution
filter size is 3 (F'= 3). The zero-padding is 1 (P= 1), and the stride is 2 (S= 2).

20

Hence, by using the equation for calculating how many neurons fit, is given by (V-
F +2P) /S + 1, the output size has a spatial size (5 — 3 +2)/2+ 1 = 3.

Input Image (+pad 1) (1x7x7) Filter (3x3) Output (3x3)

olojolo]|o 0__9--—""’ 1101 13| 3
0] 2 1____2-"1" 0___9»""‘ 01 o0 46 |1
o1 2121 o 1101 2 |20
o111 lz2]2 o7

0 1 2 1 2 1 0 Bias (1x1}

0 0 9 0 0 9 0 1

Figure 12. An example of the convolutional layer in a CNN architecture.

3.3.2. Pooling Layer

A different fundamental part of CNN is pooling, which is a form of nonlinear down-
sampling. There are different nonlinear functions to implement pooling (POOL) layer.
The most common one is Max-pooling, which splits the input image into a set of
non-overlapping rectangles and for each such sub-region yields the maximum value.
Alike to convolutional kernels, pooling kernels are windows with a specific size that
slide over the input image with a stride value. The difference is that they do not
have weights. All they do is slide over the feature map generated by the preceding
convolutional (CONV) layer and pick the max pixel value to move along to the next
layer and ignore the remaining values. The pooling layer operates separately on every
depth slice of the input image and resizes it spatially. The typical form is a pooling
layer with a filter of size 2x2 used with a stride of 2 that downsamples at every depth
slice of the input image.

Another type of pooling layers is average pooling which was often used in the past
but has recently fallen out of favour compared to the max-pooling layer, which has
been observed to operate better in practice. Because of the excellent dimensionality
reduction, the current trend in the research is towards discarding the pooling layer
altogether [29] or using smaller filters [30].

3.3.3. Fully-Connected Layer

After passing the image through the feature learning process using the CONV+POOL
layers, the high-level reasoning in the CNN is done through fully connected layers (FC
layer). The FC layer neurons have full connections to all neurons of the preceding
layer. The activations of a FC layer can be calculated using a matrix multiplication
plus a bias offset.

21

In CNNs, FC layers encode the feature volume produced by CONV layers to a long
tube of features called a feature vector. Usually, FC layers result in the highest number
of parameters in CNNs, which is likely to lead to overfitting. Hence, some recent
approaches [31] [32] remove the full connections between the final CONV layer and
the following FC layer. Therefore, the total amount of parameters is largely reduced.

3.3.4. Activation Function

Activation functions are proposed to further ensure the nonlinearity of the network
[33] because they transform the linear combination of the weighted sum into nonlinear
models. There are many types of activation functions. The most common types of them
are rectified linear unit (ReLU), Leaky ReLLU, Parametric ReLU, Sigmoid, Hyperbolic
Tangent Function (tanh), Softsign, and Softmax function. Sigmoid function is
commonly used in binary classification. As pointed out in [34], using Sigmoid function
on the back-propagated gradients can be easily saturated, which make it difficult for
updating the weights of the network. On the other hand, ReLLU preserves information
about relative intensities as information passes through many layers of feature detectors
[35]. Leaky ReLLU [36] is a variant of ReL.U to fix the dying ReLLU problem by having a
small negative slope.. Later on, to overcome the limitations of leaky ReLU and ReL.U,
PReLLU [37] has demonstrated a new method in learning the slopes of the negative part
from data rather than predefined.

3.3.5. Weight Initialization

There is no unique method of initializing the network weights. Glorot et al. [34]
proposed the Xavier initialization as a new weight initialization method such that the
variance of the backpropagated gradients is roughly constant across layers. Whereas
the gradients have initially approximately the same magnitude, they diverge from each
other as the training progresses. Thus, this is one of the advantages of this method,
since having gradients of different magnitudes at different layers may yield to a slower
training process. The variances of gradients are used as essential criteria in measuring
the learning step during the training process. He et al. [37] introduced MSRA/He
Initialization as another weight initialization regarding PReLU. The motivation for
proposing this method is by considering the asymmetric distribution of the activation
function.

3.3.6. Regularization Solutions

Regularization is a way to prevent the overfitting problem. The purpose of
regularization is to modify the learning algorithm to make the model perform well. One
of the most widely used regularization solutions to the overfitting problem is known as
Dropout, that was proposed by Srivastava et al. [38]. The idea of Dropout is to train
a group of neural networks and average the results rather than training only a single

22

neural network. Dropout builds new neural networks, by dropping out units with a
predefined dropping out rate.

Ioffe and Szegedy [39] proposed the batch normalization, which is another
regularization technique. Batch normalization is a good method to speed up and
increase the stability of the training process by decreasing the oscillation of the loss
function. Batch normalization normalizes the layer’s output by subtracting the batch
mean and dividing it by the batch standard deviation. After that, Batch normalization
adds the standard deviation parameter v and the mean parameter (5.

3.4. Convolutional Neural Networks Backbones
3.4.1. Inception

The inception network was invented in 2014, when Szegedy et al. [40] proposed a 22-
layers deep network using inception modules, as shown in Figure 13. This network is
called GoogleNet. The idea of the inception module is to act as a multi-level feature
extractor by using 1x1, 3x3, and 5x5 CONV with the same module of the network.
The output of these filters (feature extractor) is stacked along the channel dimension
and before being fed into the next layer in the CNN. The overall number of weights
is smaller than both in VGG and ResNet, and they are further reduced in the work
inspired by inception, called Xception [41]. GoogleNet is deeper than VGGNet while
reducing the number of parameters by 12 times, from around 138 million to 13 million
parameters, and achieving significantly more accurate results.

3.4.2. ResNet

Residual Neural Network was developed in 2015 by Kaiming He et al.[42], in order to
avoid the problem of vanishing and exploding gradients [34], and to allow to train
very deep neural networks with 50, 101, and 152 layers while still having lower
complexity than smaller networks like VGGNet of 19 layers. As shown in [42],
when the CNN depth increases, accuracy gets saturated and then degrades rapidly,
which hampers convergence from the beginning. To overcome this problem, a novel
architecture with shortcut connections called residual module was proposed, where
these shortcut connections simply perform identity mapping, and their outputs are
added to the outputs of the stacked layers, as shown in Figure 13. The ResNet features
heavy batch normalization for the hidden layers. Moreover, ResNet was able to achieve
a top-5 error rate of 3.57% in ILSVRC15 [43], which beats the performance of all prior
CNNés.

23

Inception CNN ResNet CNN

oftmax

Residual block

Residual block

Residual block

o wm wmowm e

inception module

Fiiter Concat :
E

@]@Q { 3,3%"\, | | 5,5%0.“, | BB c;omr]

.

X identity

{ 1x1 CONV] 1x1 CONV] [3)(3 max POOL] f

i f i X

"
e -

Figure 13. The inception module and the Residual learning block.

.

o om o™ T oM om o m oA o oW oM o oM om o

3.5. Deep Learning Techniques
3.5.1. Transfer Learning

Training an entire CNN from scratch usually requires a massive dataset such as
ImageNet, and computing power. Since it is time-consuming and expensive work that
has already been done, it is a bright idea to use parts of the trained model to solve the
classification problem. Actually, it is possible to transfer what the CNN has learned
from one dataset to a new one, through transferring the knowledge. Transfer learning
(TL) is the method of learning a new task by relying on an earlier learned task. The
learning process can be much faster, more accurate, and needs less training data.

The transfer learning idea is smart, and it is one of the most important techniques
of deep learning as it can be successfully applied when using CNNs. TL uses a neural
network that was already built and trained on a large dataset in a certain domain
and using this pre-trained CNN as a starting point to train the CNN on a new task.
Transferring the knowledge of a network that has been previously trained (pre-trained
model) to a new one requires us to remove the classifier part of the network and freeze
the feature extraction part. After that, we attach the new classification layers to the
network. In this way, we can train a CNN by reusing the knowledge learned on a
massive dataset and embedding it into the model. Therefore, transfer learning leads to

24

two significant advantages, which are speeding up the training process, and potentially
mitigating the overfitting problem.

3.5.2. Data Augmentation

Data augmentation is a simple way to extend the size of the dataset. It is done by
applying a set of transformations on the training data. It aims to avoid the overfitting
problem, and to make the model aware that certain input variations are possible.
Therefore, it improves the performance of the model on a variety of input data.
There are many image augmentation techniques that can be used. To mention a few
flipping, rotation, zooming, scaling, lighting condition, and many other techniques can
be applied to a dataset to make the network learn with a variety of training images.
However, before applying any of these techniques to a dataset, we have to be sure that
those transformation techniques are meaningful for data type, and the task at hand.

3.6. Semantic Segmentation

Object recognition is a fundamental task in computer vision. Humans have a
remarkable ability to analyse an image and separate all the components present in
an image, thoroughly parsing it and easily recognising and localising the objects.
However, building machines that can achieve the object recognition effortlessly is
particularly challenging. Object recognition can be divided into three sub-problems
from easy to hard based on the level of complexity as follows: The first one is the image
classification task which is identifying objects within an image and providing image-
level labels. The output labels are independent of object locations. The second one is
the object detection task which is identifying objects within an image and creating
a bounding box surrounding each detected object. The third one is the semantic
segmentation task which is identifying objects within an image and providing a label
of a known semantic class to each pixel present in that image.

Among these three tasks, semantic segmentation is the most challenging and critical
task in object recognition, and it covers the way towards complete scene understanding.
Many essential applications are provided from the task of semantic segmentation,
such as medical imaging [44][45], autonomous driving [46][47], and human-machine
interaction [48]. Image segmentation is the most widely studied task by far in computer
vision, where each pixel is annotated using the identifier of a particular object to
generate a segmentation map, so that each pixel is assigned a class label. Image
segmentation sorts pixels into larger segments, eliminating the need to consider single
pixels as units of observation.

Most of the recent semantic segmentation works are focused on recognizing and
partitioning image into meaningful classes of objects like for example, person, dog,
cat in the PASCALVOC 2012 challenge [49]. Some classes have specific shapes, sizes,
and identifiable parts. For example, a person has a head, two legs and two arms. In
recent works, more attention has been given to the stuff classes, such as water, cloud,
and sky but also another side of classes based on material types such as skin, plastic,
and wood which are amorphous and have no distinct parts [SO][5S1][47]. Recently,

25

CNNs are widely used for semantic segmentation. They achieved state-of-the-art
performance, for instance, using the fully convolutional network [52][53][54][55].
However, the current class segmentation approach still suffers from the common
problems of global context embedding, image quality variations, and imbalanced
training set [56][57].

3.6.1. Related Work

In this section, we review advances and related works in semantic segmentation,
where encoder-decoder deep learning methods have become the standard approach
for semantic segmentation problems.

Earlier studies rely on pre or post-processing and encode segmentation relations
using Conditional Random Fields (CRFs) [58][59][60]. Maire et al. [58] presented
an alternative framework for people detection and segmentation, in which it integrates
the outputs of a top-down part-based person detector in a generalized eigen problem,
producing pixel groupings. Plath et al. [59] introduced an approach that joins local
image features with a CRF and an image classification approach to combine global
image classification with local segmentation. A different category of CRFs called
Hierarchical Conditional Random Fields (HCRF) has been introduced in [60].

The era of using fully convolutional networks (FCNs) started with [61] and [62],
where FCNs were applied to detection [61] and semantic segmentation [62]. Sermanet
et al. [61] proposed a CNN sliding window approach which recognizes, detects and
locates objects. All these mentioned methods while being effective to their tasks
still were restricted to be patch-based, which can be inefficient for massive inputs
data. Pinheiro and Collobert [62] used a recurrent neural network (RNN) for scene
segmentation, which also works on image patches.

On the other hand, the model proposed by Long et al. [54] allows training
the network end-to-end for semantic segmentation tasks using the entire image as
input. The proposed approach does not need any pre or post-processing method
compared to earlier approaches. The concept of this approach presents a state-of-
the-art performance in generic semantic segmentation tasks. It replaces the FC layers
of a CNN by convolutional layers that produce coarse score maps. As well as, another
FCN architectures like [63][64][65] were important for semantic segmentation. Liu et
al. [63] presented the ParseNet, which focuses on global pooling and can model global
context information directly. Ronneberger et al. [64] proposed a new architecture
called U-Net, which is an up-convolutional architecture for image Segmentation of
microscopy images. Badrinarayanan et al. [65] proposed a different FCN architecture
called SegNet which focuses on computational efficiency. Their main contribution is
enhancing the performance of the network by the use of pooling indices computed in
the max-pooling step at the decoder.

Another group of semantic segmentation research is more focused on scene
understanding for the autonomous vehicle. For such scenarios, the drivable area needs
to be obtained. The state-of-the-art benchmarks of autonomous vehicle segmentation
are deep learning approaches such as [66][67]. Other works on semantic segmentation
were designed to incorporate context explicitly like Deeplab-V2 [68] and ParseNet
[69]. DeeplabV2 proposes Atrous Spatial Pyramid Pooling (ASPP), which includes

26

several parallel atrous convolutions with filters at different sampling rates and effective
fields-of-views, while, ParseNet involves global pooling features to explicitly add
context information.

3.7. Semantic Segmentation Networks

Currently, the most successful state-of-the-art semantic segmentation tasks are driven
by the recent progress in classification with CNNs, pixel-level prediction achieved
great success inspired by the FCN approach. The insight of this approach is to
transform the existing and well-known classification networks like VGG, Inception,
and ResNet, into FCN by replacing the FC layers with the convolutional layers to
output the spatial maps instead of classification scores. Those spatial maps are later
upsampled to create dense per-pixel labelled outputs. In general terms, the FCN-based
semantic segmentation models consist of two main parts that are the encoder and the
decoder. The encoder usually is the part of the classification network like ResNet
with its FC layers removed. The encoder produces feature maps, and then decoder
upsamples those maps to pixel-wise predictions.

In the next subsections, we will review some of the state-of-the-art FCN-based
(encoder-decoder) semantic segmentation networks.

3.7.1. DeepLab

DeepLab is a state-of-art and one of the most successful deep learning model for
semantic segmentation designed by Google, where the aim is to assign semantic
labels (for example, person, cat, dog) to every pixel in the input image. The current
implementation of DeepLab includes the following features: From DeepLabv1 [70],
they use atrous convolution to explicitly control the resolution at which feature
responses are computed within Deep CNN. From DeepLabv2 [68], they use atrous
spatial pyramid pooling module (ASPP) to robustly segment objects at different scales
with filters at different sampling rates and effective fields-of-views. Figure 14 shows
the ASPP module. From DeepLabv3 [52], they include batch normalization parameters
to facilitate the training. Besides, they augment the ASPP module with the image-level
feature to capture longer range information. Especially, they apply atrous convolution
to extract output features at different output strides during training and evaluation,
which efficiently allows training batch normalization (BN) at output stride equal 16
(OS =16) and achieves high performance at output stride equal 8 (OS =8) during
evaluation. From DeepLabv3+ [53], they extend DeepLabv3 model to include a simple
yet effective decoder to improve the segmentation results, especially along object
boundaries.

3.7.2. SegNet

In 2017, Badrinarayanan et al. [65] proposed a new FCN architecture called SegNet
for semantic segmentation. The encoder of this architecture is based on VGG-16, and

27

output
F

|

concatenation
F

Atrogs Spaliad Pyreinid Pooling (ASPP) module

Cony Cony Conv Conv
Kernel 3x3 Kernel 3x3 Kernel 3x3 Kernel 3x3
rate: & rate: 12 rate: 18 rate: 24

H

Figure 14. Atrous Spatial Pyramid Pooling (ASPP) module.

its decoder is formed by a set of upsampling and convolutional layers which are at last
followed by a softmax classifier to predict pixel-wise labels. The novelty of SegNet
lies in the way in which the decoder upsamples its lower resolution input feature maps,
where the decoder uses pooling indices calculated in the max-pooling step of the
corresponding feature maps in the encoder phase to perform non-linear upsampling.
At the final step, when the decoder network maps the low-resolution encoder feature
maps to the original input resolution, they are fed to the softmax classifier to produce
the dense feature maps.

3.7.3. GCN

Peng et al. [71] introduced Global Convolutional Network (GCN) for semantic
segmentation. They followed two design principles. The first principle is: From
the localization design, where the network structure should be fully convolutional to
retain the localization performance without using FC or global pooling layers because
these layers will discard the localization information. The second principle is: From
the classification design, where large kernel size should be used in the network to
allow densely connections between feature maps and dense per-pixel classifier, which
improves the capability to handle various transformations.

28

3.8. Material Recognition and Segmentation

Material recognition is an inherently challenging problem in computer vision,
primarily because of the wide variation in form between different instances of a given
material and between different materials. But recently, there has been significant
progress in terms of accuracy on benchmark datasets. Most existed methods proposed
treat material recognition as object recognition with different classes. Those methods
often use large image patches that cover parts or whole objects and scenes similar to
performing object recognition, which combines visual cues of materials and image
context.

Material recognition is different from object recognition. Adelson [72] mentioned
this distinction in his study of THINGS vs STUFFE. The fundamental difference
between them highlights the critical difference between materials and objects. STUFF
refers to materials, and THINGS refers to objects. Materials (STUFF) may not
necessarily be recognized by having a special shape. For example, a cup is an object
with a typical cylindrical shape. It is often made of ceramic. The cup as an object can
be used as a cue to recognize the material as ceramic, and likewise, the ceramic can
be used as a cue to recognize that an object might be a cup. However, not all ceramic
THINGS are cups and relying on shape cues to recognize ceramic, like earlier methods
do is a limited approach.

Most of the existing works on material recognition usually make the recognition at
an image patch level. They use a significant part of the scene, sometimes even the
whole image. Sharan et al. [73] proposed the earliest design of such classification
with the Flickr Materials Database (FMD). FMD use the entire image as the image
patch, and each image on the dataset contains a single primary material of interest
similar to image classification dataset. Recently, Bell et al. [55] demonstrated per-
pixel material classification and segmentation using large-scale annotated training
images, the Materials in context (MINC) dataset. They used an architecture based
on a combination of CNN and CRF networks for classification. They used a large
image patch for each pixel. The patch is about a quarter of the whole image, which
mix in the object or location context to the material nature.

Material recognition would require a large training dataset that contains the product
space of objects and materials. Zhang et al. [74] have recently presented an
impressive performance on the FMD, but their model concentrated only on single patch
predictions. Wang et al. [75] also introduced a model for accurate dense per-pixel
material recognition using 4D light field images. These methods combine materials
and context of the image throughout the recognition pipeline. Therefore, the use of
context as a property to decrease ambiguity seems promising. On an unrelated study,
lizuka et al. [76] use scene place predictions to improve the accuracy of the greyscale
image.

29

4. DATASET GENERATION
4.1. Data Collection

Data plays a significant role in all major advancements of computer vision where
annotated benchmark datasets serve many goals such as providing training data,
evaluating progress, and helping the community to focus the efforts on the next steps
towards developing visual intelligence. We rely on access to large collections of
annotated images that cover the variability of the visual world. Collecting this large-
scale labelled data is challenging and expensive, demanding the development of new
techniques for data collection and annotation. In the collecting process, the important
question is what annotations should be collected, and answering this question needs to
make decisions about the type of images and annotations, and the scale of annotation.
Different types of data come with different associated costs, including formulating the
desired dataset, developing the annotation procedure and user interface design, and
annotator time.

The task of semantic image classification is a fundamental task in semantic
image understanding. There are two types of segmentation annotations: semantic
segmentation and instance segmentation. Semantic segmentation datasets provide an
outline around contiguous areas that share a similar semantic property while instance
segmentation datasets provide an outline of every instance of the objects.

Some examples of instance segmentation datasets include PASCAL VOC [77],
LabelMe [78], and MS-COCO [79]. PASCAL VOC has 20 classes in around 7
thousand images. LabelMe was created by recruiting volunteers to draw polygons
around object instances. Another dataset called Semantic Boundaries Dataset [80]
extends the annotations of the PASCAL VOC by five times. The COCO dataset is one
of the largest instance segmentation datasets with around 2.5 million object instances
manually segmented within more than 328,000 images. Semantic segmentation
datasets provide semantic labels for every pixel in the image. Some examples of
semantic segmentation datasets include SIFT Flow [81] and PASCAL-context dataset
[82]. SIFT Flow is a dataset of 2,688 images and 33 classes labelled using the LabelMe
annotation tool. The PASCAL-context dataset annotates the original PASCAL VOC
images with 520 new classes.

Some works add more detail to the segmentations like the works that was
introduced by Bell et al. [83][55], that segment and annotate material characteristics.
OpenSurfaces [83] has more than 22 thousand images accurately labelled, and it
provides named objects, named materials, rectified textures, and other characteristics.
Materials in Context Database [55] has around three million material images that were
annotated by using the three-stage Mechanical Turk pipeline. These datasets help
achieving a deeper understanding of the pixel-level segmentation.

Collecting segmentation datasets is very time-consuming and particularly expensive.
However, such detailed annotations facilitate the development of computer vision
algorithms that can understand the image at a more accurate level.

30

4.2. Data Annotation

In image segmentation, well-annotated image and video ground truth are necessary for
performance evaluation, and those labelled images are used in supervised learning.
Accurate and fast image annotation is a well-known problem in computer vision.
Image annotation tools look for maximize labelling accuracy and minimizing human
effort and time. The existing image annotation tools can be divided into three classes:
bounding box-based labelling, boundary-based labelling, pixel-level labelling.

Bounding box labelling is usually used in object recognition and tracking. It is easy
to implement because each simple bounding box is defined by two corners. Vondrick
et al. developed a crowdsourcing video annotation tool called VATIC, which proposes
inter-frame interpolation to create bounding boxes semiautomatically [84]. Doermann
and Mihalcik developed a video annotation called ViPER, which allows users to do
annotation frame by frame [85].

On the other hand, pixel-wise labelling provides detailed shape descriptions of target
objects such as graph cuts, and segmentation, which have been proposed to reduce the
need for user intervention. The pixel-wise labelling performs well when the annotated
images have relatively flat backgrounds and remarkable foreground. Otherwise, the
generated masks are often inaccurate and noisy.

Closed boundaries (boundary-based labelling) are used in most of the image
annotation tools, and polygons usually approximate them. The annotation accuracy
depends on two factors that are the number of control points and their localization
error. Therefore more control points provide more accurate closed boundaries, and for
the second factor, the labellers should localize each point very accurately.

There are several state-of-the-art of image annotation tools. Some of them are
presented next. LabelMe [78] is a free online annotation tool for computer vision
purposes, developed by researchers from MIT Laboratory. It has two types of markers
which are polygons and masks. Its annotation result can be exported to XML format.
VGG Image Annotator (VIA) [86] is an open-source and offline web-based annotation
tool developed by researchers from Visual Geometry Group, University of Oxford.
The main advantage of this tool is that it has more marker types, which are dot, line,
rectangle, ellipse, circle, polygon, and polyline, while its disadvantage is that it has
only one annotation colour for all objects. Its annotation result can be exported only as
a CSV file. Labelbox [87] is a commercial online annotation tool for computer vision
tasks. It has many types of marker, which are a dot, line, brush, and superpixel. It
has the best user experience so far and makes the annotation easier when a polygon
marker is drawn on the object, the marker will move near the object border. The
annotation result of this tool can be exported into different formats such as CSV, JSON,
and COCO.

4.3. Data Analysis and Visualization
Data analysis is a task that tries to discover meaningful information from a dataset. It

includes a huge range of activities, from looking for trends and implementing statistical
analyses, to analysing different types of data to extract thematic relationships.

31

Data visualisation refers to any task of presenting information so that it can be
described visually. The data visualisation process is to put data into things like charts or
diagrams, graphs, animations, or infographics. It helps us to recognise trends, patterns
and relationships to extract meaningful information from a dataset. There are many
types of visualisations to choose for displaying data, and there are many tools that can
be used to create visualisations.

4.4. Dimensionality Reduction

Many machine learning problems include a large number of features, which lead to
produce many problems. The most well-known problems are: They make the training
very slow and hard to find a good solution. The dimensionality reduction is the
process of decreasing the large number of features to the most relevant ones in simple
terms. Reducing the dimensionality leads to losing some information and make the
system operate slightly worse as most compressing processes it comes with some
disadvantages. However, reducing the dimensionality makes the training faster and
can filter out some of the noise and some of the unnecessary information.

Most dimensionality reduction applications are used for data visualization, data
compression, and data classification. Data Visualization is one of the essential aspects
of dimensionality reduction. We can visualize the data on a 2D or 3D plot by
dropping down the dimensionality to two or three, and the critical information can
be obtained by cluster analysis. There are many techniques that can be used for
dimensionality reduction, such as PCA and TSNE. There are two main approaches
for dimensionality reduction that are projection and manifold learning. Projection
is an approach that deals with projecting every data point of a high dimension,
onto a subspace suitable lower-dimensional space. Manifold learning is an approach
for dimensionality reduction to non-linear structure data where algorithms for this
approach are based on the idea that the dimensionality of many data points is only
artificially high.

4.4.1. Principal Component Analysis

Principal Component Analysis or PCA is a linear feature extraction technique and
one of the best known dimensionality reduction technique. It works by identifying
the hyperplane which is located in close to the data, and then projecting the data
into that hyperplane while retaining most of the variance of the original data. The
axis that explains the maximum value of variance in the data set is called the
principal components (PC1). The axis orthogonal to the PC1 axis is called the second
principal component PC2. PCA would find a third component orthogonal to the other
two components (PC1 and PC2) if we go for higher dimensions and so on. The
visualization of this method always sticks to 2 or 3 principal components, as shown
in Figure 15.

32

F)
PC1
P
x X x
PC2
X x
x
X, X %™ x
X X
x
>
X1

Figure 15. Graphical representation of PCA transformation in two dimensions.

4.4.2. T-Distributed Stochastic Neighbor Embedding

The T-distributed stochastic neighbour embedding or TSNE is a non-linear technique
for dimensionality reduction created by Maaten and Hinton. [88] for the visualization
of high-dimensional datasets. TSNE brings high-dimensional datasets and degrades its
dimensionality to a low-dimensional graph that holds important original information.
Each data point has a location in a 2D or 3D map. Thus this technique forms clusters
in the data. TSNE decreases dimensionality while trying to keep similar patterns of the
data close and dissimilar patterns apart.

4.4.3. TSNE versus PCA

Although both PCA and TSNE have their own pros and cons, some critical differences
between PCA and TSNE are: PCA is a mathematical method, but TSNE is a
probabilistic one. TSNE is computationally expensive and can take many hours
on large datasets while PCA will finish in seconds or minutes. PCA is a linear
dimensionality reduction algorithm that focuses on placing dissimilar data points apart.
However, in order to represent high dimensional data on low dimension using a non-
linear manifold, it is important that similar data points must be kept close together,
which is something TSNE does but not PCA. Since PCA is a linear algorithm, it will
not be able to describe the complicated polynomial relationship between features while
TSNE does. Sometimes different runs of TSNE with the same hyperparameters can
provide different results. Hence various plots must be observed before making any
evaluation with TSNE, while this does not happen with PCA.

33

5. EXPERIMENTAL EVALUATION

In this chapter, we will present the details of the implementation and evaluation process
of the material segmentation that is based on beam profile analysis technology, that
was introduced and discussed over the course of this thesis. The segmentation process
pipeline, shown in Figure 16, reaches from dataset generation to the DL architecture
and finally to the quantitative and qualitative results.

The segmentation process pipeline shown in Figure 16 is a sequential process of
problem-solving using supervised CNN. Collecting data is the first step to be carried
out after understanding the nature of the problem. Generally, CNNs need a massive
amount of data to reach its best performance. The next step is data preparation and
validation. This step should not be ignored as this gives a significant improvement to
the performance. This step also tells us that the need for CNNs to be powerful does
not only depend on a massive amount of data but also the valid one. Then, building
the model and refining its algorithm is the next step after the data preparation step. An
effective CNN model is built for the semantic segmentation problem, where improving
the model architecture can significantly improve the final results. Next step is the
training step, we show in this section the details of the training process. The speed
of the training process takes a primary concern. The training speed depends on the
computational capabilities (GPU, CPU, and RAM...) and the model architecture. The
last step is testing or evaluation of the results and we present in this section the final
results of the proposed models. The results are both quantitative and qualitative, where
the quantitative results are based on some evaluation metrics, while the qualitative
results are visually compared to the ground truth images.

: Data T 1 r
Data Collection Preparation Model Building Training

Figure 16. The pipeline of our experiment.

5.1. Implementation Environment

Our Beam Profile Analysis (BPA) sensing solution differs from the conventional
technologies. It uses a grid of laser beams projected to the scene and a CMOS sensor
for observing the reflected beams. The grid has 2005 spots in a rectangular shape of
40x50 points. The sensor produces image pairs consisting of greyscale images with
and without the laser spots (greyscale and laser images) and at full CMOS resolution
of 1440x1080. Analysis of the beam profile provides 3D coordinates (X, y, z) as well as
feature vectors associated with the points that describe the scene of the frame. These

34

feature vectors (metadata) are represented as a data point structure, which contains
many features saved on a JSON file. Also, these feature vectors have been successfully
used to derive statistical models, which allows classifying materials based on specific
scattering/reflection properties.

We utilize a Windows 10 Pro (x64) LEGION Lenovo laptop with Intel Core i7 @2.6
GHz, 32 GB RAM, and an NVIDIA GeForce RTX 2070 GPU card for developing
and testing the system. The experiments carried out in this work were built under
TensorFlow in Python. Most of our development is done in Anaconda distribution
of Python version 3.7. Python-based open-source tools: Pandas, Numpy, OpenCV,
Scikit-learn, TensorFlow, PyQt and other libraries are used to develop the algorithms.
Besides, we used the Visual Studio Code as our IDE and Jupyter notebook to run
Python scripts that use the mentioned libraries.

5.2. Data Collection

Training a deep learning algorithm to classify objects and materials requires annotated
training and test data. Because the aim in this project is to perform pixel-level material
and semantic segmentation, it is necessary to collect a dataset to the material of interest
where the images are the grayscale and laser images are obtained with a beam profile
analysis (BPA) sensing device, and where those images have been manually annotated
and labelled.

In general terms, this section discuss about dataset generation, starting from
analyzing the features of the laser spots to choosing the classes that the CNNs can
learn from and distinguish between them. Then, we discuss about images collection
process, image annotation process, and lastly discuss about dividing and organizing
the final dataset.

5.2.1. Data Analysis

The data analysis and the study of the features is a starting point for us to create our
dataset and learn the characteristics of our laser spot images on different materials. The
data analysis in our case include cluster analysis and classification. Because currently,
we lack of knowledge and understanding what are the important characteristics as well
as limitations to discriminate between different materials, it basically shows what kind
of materials we can use in our dataset and what kind of accuracy to expect at the
final stage. In addition, the reasoning behind the study of the features comes from the
difficulty to know which materials to include in our dataset. So we have to take this
into account when selecting classes because as we mentioned previously in Chapter
3, that material recognition is an inherently challenging problem in computer vision,
primarily because of the wide variation in form between different instances of a given
material and between different materials. As well as, material recognition is different
from object recognition, like what we mentioned before as the difference between
THINGS and STUFF. Materials (STUFF) may not necessarily be recognized by having
a special shape.

35

As we know that our BPA sensing technology provides us feature vectors (metadata)
associated with the points that describe the scene of the taken frame. This metadata is
a data point structure, which contains several features, which are saved on a JSON file.
Some of the features describe the information extracted from the grayscale images and
other information else. Our data analysis focuses only on the features (information),
which are extracted from the grayscale and laser images. Those features are briefly
described as follows:

e Colour [GBR]:is the average colour values of the spot’s pixels. This feature has
three dimensions because it is a vector of 3 colour values, which are green, blue,
and red (3 dimensions).

e Brightness:is the normalized sum of pixel values inside a circular region of a
spot (1 dimension).

e Background:is the average brightness of the background pixels around the spot
(1 dimension).

Choosing the suitable material classes for our dataset is a bit challenging because
we should carefully check that the chosen materials are distinguishable between each
other, and there is no significant similarity among classes. In our study case, we find
that materials like glass and metal (except aluminum) are probably not very good
materials to detect, because they have very high specular reflection and tiny diffuse
reflection. So we do not consider reflective materials like metal (except aluminum)
and glass in our material detection. Some of the classes are very wide and diverse,
which will make it difficult to recognise them as the same class. For instance "plastic"
or "food" could be anything with very different reflective properties.

Our strategy is to narrow the proposed classes down to more fine-grained categories
that are expected to have low intra-class variance and high inter-class variance. For
example, we could choose "cotton" that appears to have a similar texture and reflective
properties, or choosing just one type of fruit (banana, orange, etc.). So, in general
terms, we aim to reduce intra-class variance as much as possible and limit our
experiments to a few very distinct materials. After studying and testing different types
of materials carefully with the help of cluster analysis and material classification, we
ended up choosing 10 classes that are shown in Table 3.

Table 3. The material classes that have been chosen.

Material class | Aluminum | Apple | Broadcard | Cotton | Orange
Label 0 1 2 3 4

Material class | Banana | Potato Skin Wood | Paper
Label 5 6 7 8 9

In this study case, we have around 14500 data points, which have been taken from
different images and classes. Each data point related to its corresponding spot was
labelled individually to its material class. Also, each data point (feature vector) used
has the features: brightness, background, colour B, colour G, and colour R.

36

Cluster Analysis:

The data analysis environment is set up and conventional cluster analysis is performed
with the laser spot feature vectors (metadata) to test how different materials included
in the dataset can be separated in the feature space. Each laser spot data point has
5 dimensions in total (Colour [GBR], Brightness, and Background). Therefore, we
utilise PCA and TSNE as our dimensionality reduction techniques to reduce our data
points from 5D to 2D representation and visualise it in 2D plots as Figure 17 and
18 show. Also, we utilise PCA and TSNE to find out if the feature representation
can be compressed without sacrificing the classification performance. The results
of this cluster analysis, as shown in Figure 17 and 18, are primarily used to choose
distinguishable materials and improve the data collection process.

34

LABEL
alaminum
apple
broadcard
cotton
orange

Dim_2
LN B B

panana
paper
potato
skin
wood

-2 4

Figure 17. The results of the PCA analysis.

Data Classification:

In the classification process the aim is to classify each data point to one of the material
labels that have been chosen before (banana, cotton, wood...) using six different kinds
of classifiers that are SVM, Random Forest (RF), Decision Tree (DT), Naive Bayes
(NB), K Nearest Neighbors (KNN), and Multi-layer Perception classifier (MLP).

The data points have been taken from different images and classes. We have around
14500 data point that were divided into a training set containing 13000 data points and
1500 data points were included to a testing set. The training and testing samples were
taken from all the classes. The results of the data point classification are shown in
Table 4.

Discussion:

Depending on the cluster analysis of PCA and TSNE from Figure 17 and 18, we
can see that the 10 selected material classes provide us good distinct clusters like

37

100

7 S
Pl a2
. \.vf-,a"

~ .
& e apple
' - p - ® broadcard
~ 1‘. -* e cotton
3 0 ‘ ». & orange
o .
s o "Q ﬁi“;‘, ® panana
. S
4 paper
-25 "s:_} @ potato

skin
viood

-100

100 15 50 25 0 s 50 3 100

Figure 18. The results of the TSNE analysis.

Table 4. The results of the data points classification.

RF Classifier Accuracy | MLP Classifier Accuracy | SVM Classifier Accuracy
45.69% 53.54% 48.27%

DT Classifier Accuracy | KNN Classifier Accuracy | NB Classifier Accuracy
48.06% 43.76% 42.58%

between skin and cotton or between aluminium and apple. However, some materials
appear overlapped in the feature space like skin, apple, orange, banana, and potato.
On the other hand,the classification results from Table 4 demonstrate a satisfactory
classification accuracy from all the classes ranging from 40% to 55%, which supports
our cluster analysis observations. We should also take into consideration that there
are some outliers and wrong manually labelled data points because of the difficulty
of the labelling process and camera limitations. Generally, the data analysis shows us
promising results about the distinguishability of the chosen materials, which makes our
dataset useful, and let the CNNs learn from it pretty well and give us good accuracy at
the end.

5.2.2. Collecting Process

Performing all stages of data collection, annotation, and preparation takes a lot of time
and effort, because, the validity is the main concern of those stages and the number of
data samples has an important role as well. Those stages have to be performed by a
manual operation. They are the hardest parts of this work and their result is crucial to
the result of the CNN model.

As we know that our BPA sensing device produces image pairs consisting of
grayscale and laser images. Collecting those images is challenging because there is a

38

misalignment between those image pairs images. The misalignment occurs since there
is only one image sensor that introduces a delay between the two frames. We need to
remove or minimize this misalignment since we use both types of images in our final
CNN model. To remove this misalignment, we have to fix the camera till image pair is
captured. Therefore, we collect images by capturing each frame individually by fixing
the camera because using the streaming video to capture images does not work.

In the purpose of taking many images and to speed up the capturing process, we
modified the python SDK code that generates the frames from the camera. So the
code always re-runs after capturing each paired image. Re-running the code takes
some seconds with a notification sound, that gives us time and notification to change
the position of the camera to capture new images. We fix the camera by putting it
on a tripod while capturing. We put the tripod on a serving trolley, so it gives us
many possibilities to move the camera when taking each frame. Figure 19 shows
our capturing setup. Our procedure for taking each frame is as follows: 1) We start
changing the position of the camera. 2) We fix the camera and waiting seconds till we
hear the sound. 3) We change the position of the camera again and so on.

Figure 19. The image capturing setup.

In the capturing process, we take images for the selected materials from different
angles and distances by moving the entire camera and tripod manually. Black curtains
are used as background to avoid detecting the laser spots of materials that are not
concerned. Most of the projected laser spots of this type of black curtains do not
appear in the laser images if we fix the exposure parameters (Laser, Flood, and Gain)
at specific values. We fixed the exposure parameters to the following values: (Laser =

39

4000 ps , Flood = 1500 ps, Gain = 18 dB) to avoid detecting the background spots and
the saturation effect on the grayscale images.

5.2.3. Annotation Process

After finishing the data collection, the next stage is annotating the collected images.
Annotation involves drawing a polygon approximation along the boundaries of the
objects as the Figure 21 shows. Hence, a tool with a graphical user interface is needed
to perform the annotation. The annotation tool that we utilise for the project is called
Labelbox. The annotation result of this tool can be exported as a JSON file.

We create a python script to generate masks from polygons, which are saved to
the JSON file. The generated masks are so important because they will represent
as ground truth (GT) for our CNN model. Our annotation process depends on the
grayscale images. Because those images look challenging to identify the objects, we
used the contrast stretching technique to get clear edges and boundaries of the objects
to facilitate the annotation process. Contrast stretching is a simple image enhancement
technique that tries to improve the contrast in an image by stretching the range of
intensity values to extend them to a desired range of values. The total time of the
annotation process was around 122 hours. The average time for each image was 3.2
minutes. Other statistics about our annotation process is shown in Figure 20 an Table
5.

Table 5. the count and share of the labelled objects for each class.

Object Count | Share (approx)
Banana 1849 21%
Apple 1767 20%
Paper 1662 19%
Orange 1336 15%
Potato 847 9%
Cotton 499 6%
Wood 428 5%
Broadcard | 198 2%
Aluminum | 149 2%
Skin 50 1%
150

z i : : i . O
Mar 9 Mar 11 Mar 13 Mar 18 Mar 22 Mar 24 Mar 27 Apr2 Apr8

Figure 20. The count of the labelled objects versus time (days).

40

Figure 21. The count of the labelled objects versus time (days).

5.3. Data Preparation and Validation

Our dataset focuses on the local appearance (local image context) of materials and
tries as possible to reduce the global context information like what object it makes up
or where the material is, can be crucial to recognize materials. The materials included
in this dataset have different shapes and forms like orange, apple, and potato have
approximately the same spherical shape. The same thing happens for board-card,
wood, and paper have a rectangular shape. However, we don’t deny of availability
of other global context information that the CNNs can learn from it like colour and
some specific shapes like the banana shape. In general, we did all our best to focus on
materials characteristics and not objects.

The dataset has two types of images, which are the grayscale and laser images, in
addition to the ground truth (GT). The dataset has about 2300 samples of images where
each image in the dataset comes at a 1080 x 1440 resolution. The dataset was split into
around 70% training, 25% validation and 5% test datasets as Table 6 shows. Figure 22
shows examples of the dataset.

Table 6. The classes of the dataset with its RGB and index value.
Training | Validation | Testing

1650 550 100

The grayscale images were saved as 3 channel RGB images in JPG format with a 24
bit unsigned integer depth. The laser images were copied from 1 channel to 3 channels,
and saved in JPG format with a 24 bit unsigned integer depth. The GT images were
saved as 3 channel RGB images in PNG format, where the background class of the
GT images is black RGB(0,0,0) and the other classes have different colours as Table 7
shows. In order to decrease the number of dimensions our CNN model has to process,
we convert each RGB colour in the GT images to an indexed colour value, for example,
the apple class RGB(255,0,0) to (2). All the values are shown in Table 7. Finally, we
saved the dataset as TensorFlow Records format (tfrecord or TFR) that makes storing
training data more efficient.

Table 7. The classes of the dataset with their RGB and index values.

Class Number and Value | Class Name RGB Value
1 Background (0,0,0)
2 Apple (255,0,0)
3 Orange (255,165,0)
4 Banana (255,255,0)
5 Paper (127,255,0)
6 Aluminium | (135,206,235)
7 Potato (0,250,154)
8 Cotton (30,144,255)
9 Wood (205,133,63)
10 BoardCard (128,0,128)
11 Skin (255,192,203)

» &

i
h
\
1N
‘”
E—

41

Figure 22. Some samples of the dataset: on the left side are laser images, on the middle
side are the grayscale images, and on the right side are the GT.

5.4. Model Building

We adopt two different types of architectures in this work. Our first proposed
architecture belongs to the family of the encoder-decoder approaches, as illustrated in
Figure 23. The model is based on DeepLabv3+, where the encoder module gradually

42

degrades the feature maps and catches higher semantic information, and the decoder
module gradually recovers the spatial information.

At the encoder level, the encoder applies atrous convolutions to extract the features
computed by CNNs at an arbitrary resolution. We adopt output stride = 16 for denser
feature extraction by removing the striding in the last block and applying the atrous
convolution correspondingly. Furthermore, the encoder augments the ASPP module,
which uses convolutional features at multiple scales with filters at multiple sampling
rates. For the feature extraction part, the proposed model uses ResNet as its network
backbone that allows us to train different deeper versions of the same architecture,
which will provide a consistent metric gain over the addition of more layers.

At the Decoder level, we use a simple yet effective decoder module, where the
encoder features are first bi-linearly upsampled by a factor of 4 and then concatenated
with the corresponding low-level features from the network backbone that have the
same spatial resolution. Before the concatenation, we apply 1 x 1 convolution on the
low-level features to decrease the number of channels. After concatenation, we apply
3 x 3 convolutions to improve the features followed by simple upsampling by a factor
of 4.

On the other hand, our second proposed architecture as illustrated in Figure 24 is the
same as the first architecture except for some modification in the input types where the
input grayscale image is concatenated with its corresponding laser image to form a 4
channel tensor rather than 3 channels the first proposed architecture.

DA N A
D

H
i ! h i 1
Laser or Gray image - | roa : 1
" M. - L ' 4
;. Decoder n

ﬁ Conv & 4x :

Segmentation

Figure 23. The first proposed architecture.

5.5. Training

We primarily concentrate on two research questions: (I) how to obtain segmented
material maps; and (II) how the laser spots contribute and to the segmentation results?

43

input

Gray image

L}
Laser image 7 . S s
.~ Decoder Y
i 4x E Output

ﬁ Conv & 4x

Segmentaticn

Figure 24. The second proposed architecture.

Therefore, the main focus of our work is to offer segmented material maps with a
comparative analysis across different types of architectures to observe how the laser
spots contribute to the whole segmentation. We built our experiments on 3 main types
of models, and for each model, we apply different types of backbone architectures, as
described in the following:

Gray Model: We use only grayscale images as input to the architecture shown
in Figure 23. We implement ResNet-18, ResNet-34 as different backbones for the
network to see the effect of the network depth on the results. Both ResNet-18 and
ResNet-34 models have been trained from scratch.

Laser Model: We use only laser images as input to the architecture shown in Figure
23. We implement ResNet-18, ResNet-34, and ResNet-50 as different backbones for
the network to see how the network depth would effect on the results. ResNet-18
and ResNet-34 models have been trained from scratch while ResNet-50 network was
fine-tuned from the pre-trained ResNet-50 network, which has been trained on the
ImageNet dataset.

GrayLaser Model: We use both grayscale and laser images as input to the
architecture shown in Figure 24. We implement ResNet-18, ResNet-34, and ResNet-50
as different backbones for the network. ResNet-18 and ResNet-34 models have been
trained from scratch. ResNet-50 network was fine-tuned from the pre-trained ResNet-
50 network, which has been trained on the ImageNet dataset. This would go beyond
ordinary transfer learning because we train the model to take in new input features.
The solution is to expand the convolution filters in the first layer so that they have 4
channels instead of regular 3 channels (RGB channels). The RGB channels (first 3
channels) of these filters are initialized with the ResNet-50 pretrained weights, while
the new channels start learning from scratch.

We perform all our experiments in TensorFlow [55], and train using Stochastic
Gradient Descent (SGD) with a momentum of 0.9, weight decay of 0.0001 and

44

adaptive learning rates. For all networks, we start with the initial learning rate of
7e-3. We keep batch norm statistics frozen during the training. The loss function used
is the sum of cross-entropy terms for each spatial position in the CNN output map.
For benchmarking, we use a workstation with 32 GB RAM with Intel Core 17
@2.6GHz processor, and 3 types of GPUs that are NVIDIA GeForce RTX 2070,
NVIDIA T4, and NVIDIA P100 GPUs. We conduct our experiments on our generated
dataset that was discussed before. This dataset comprises of 2300 samples of grayscale
and laser images with 11 segmented class labels, of which 1650 are used for training
and 550 for testing, respectively. We keep training until 150 epochs with different
batch sizes depending on the network, and we use the poly learning rate policy [68],
where the initial learning rate is multiplied by (1 — —2¢_)Power with power = 0.9 and

mazx;ter

the number of training iterations is 30000 for all experiments.

5.6. Results
5.6.1. Metrics

In our experimentation, Mean Intersection over Union (MIoU) and Pixel accuracy (PA)
metrics were used to measure how accurate the result is compared to the Ground truth
(GT) data. Mean Intersection over Union (MIoU) is the area of overlap between the
predicted segmentation and the GT divided by the area of union between the predicted
segmentation and the ground truth. MIoU is calculated using the following equation:
1 < TP
MIOU =3 5T FPy FN ®

i=1

where:n is the number of classes, TP is true positive pixels, FP is false positive
pixels, FN is false negative pixels. Another metric, pixel accuracy (PA) is the percent
of pixels in the image that are classified correctly. PA is calculated using the following
equation:
TP+ TN

PA =
TP+TN+ FP+FN

)

5.6.2. Evaluation Results
Our analysis is based on quantitative and quantitative results.

Quantitative results:

e At the first level, our quantitative results on validation sets that are based on
Mean IoU, and the training time PA are given in Table 8 for all models (Gray,
Laser, and GrayLaser) with different networks that were implemented in this
work.

e At the second level, we compare the mloU for each class on ResNet-18 and
ResNet-34 network for all models: Gray, Laser, and GrayLaser. The results are
shown in Table 9.

45

At the third level, we compare the mloU for each class on ResNet-50 network
for Laser and GrayLaser. The results are shown in Table 10.

Qualitative results:

At the first level, we visualize some results of both networks of Gray model
(ResNet-18 and ResNet-34) with Ground truth (GT) images. The results are
shown in Figure 25.

At the second level, we visualize some results of all networks of Laser model
(ResNet-18, ResNet-34, and ResNet-50) with Ground truth (GT) images. The
results are shown in Figure 26.

At the third level, we visualize some results of all networks of GrayLaser model
(ResNet-18, ResNet-34, and ResNet-50) with Ground truth (GT) images. The
results are shown in Figure 27.

At the fourth level, we visualize results of some testing samples for ResNet-18
based model of Gray, Laser, and GrayLaser architectures. The results are shown
in Figure 28.

At the fifth level, we visualize results of some testing samples for ResNet-34
based model model of Gray, Laser, and GrayLaser architectures. The results are
shown in Figure 29.

At the sixth level, we visualize results of some testing samples for ResNet-50
based model model of Gray, Laser, and GrayLaser architectures. The results are
shown in Figure 30.

Table 8. Performance comparison between all implemented models.

Type of model | Architecture PA MIoU | Training Time
Gray ResNet-18 | 95.56% | 40.18% %h
Gray ResNet-34 | 93.66% | 31.30% 11h
Laser ResNet-18 | 95.75% | 52.14% %h
Laser ResNet-34 | 94.77% | 41.87% 10h
Laser ResNet-50 | 98.93% | 85.38% 15h

GrayLaser ResNet-18 | 97.09% | 62.91% 14h
GrayLaser ResNet-34 | 96.43% | 51.52% 18h
GrayLaser ResNet-50 | 99.52% | 94.03% 20h

46

Table 9. Intersection over Union for each class on ResNet-18 and ResNet-34 of all
models.

ResNet-18 ResNet-34

Class | Class Name | Gray Laser GL Gray Laser GL

Number IoU IoU IoU IoU IoU IoU

1 Background | 97.69 97.32 98.85 |95.10 96.79 98.70
2 Apple 29.18 40.26 4872 | 36.72 34776 42.13
3 Orange 4639 46.63 55.63 | 46.34 4263 5093
4 Banana 45.63 5245 6575 | 4546 48.61 61.46
5 Paper 67.67 6396 7249 |5191 55.04 70.17
6 Aluminium | 03.84 2861 61.65 | 04.15 18.41 31.51
7 Potato 35774 4228 5696 |26.61 29.13 39.19
8 Cotton 4759 51.09 5823 | 16.19 36.64 46.77
9 Wood 4634 46.74 5326 | 14.05 2845 4190
10 BoardCard | 16.17 68.86 7194 | 07.05 5095 55.26
11 Skin 05.79 3537 48.55 | 00.74 19.15 28.71

Table 10. Intersection over Union for each class on ResNet-50 of Laser and GrayLaser
models.

Class Number | Class Name | Laser [oU | GrayLaser loU
1 Background 98.98 99.56
2 Apple 85.23 90.39
3 Orange 85.09 90.92
4 Banana 85.81 92.12
5 Paper 92.78 96.31
6 Aluminium 62.94 92.80
7 Potato 90.23 96.55
8 Cotton 92.41 97.76
9 Wood 92.86 96.81
10 BoardCard 85.08 96.90
11 Skin 67.81 84.16

47

- Background
D Aluminium

Board-card

Figure 25. Visualisation results of Gray model from one testing sample. A:laser image.
B:Grayscale image. C:Ground Truth GT from our generated dataset. D:Result of
ResNet-18 based model. E:Result of ResNet-34 based model.

48

-4
- Background - Apple D Orange D Banana D Paper

Figure 26. Visualisation results of Laser model from one testing sample. A:Laser
image. B:Grayscale image. C:Ground Truth GT from our generated dataset. D:Result
of ResNet-18 based model. E:Result of ResNet-34 based model. F:Result of ResNet-
50 based model with transfer learning.

49

P oy [0
o R =

- Background

Aluminium

Figure 27. Visualisation results of GrayLaser model from one testing sample. A:Laser
image. B:Grayscale image. C:Ground Truth GT from our generated dataset. D:Result
of ResNet-18 based model. E:Result of ResNet-34 based model. F:Result of ResNet-
50 based model with transfer learning.

Figure 28. Visualisation results of ResNet-18 based models from one some testing
samples. A:Laser image. B:Grayscale image. C:Ground Truth GT from our generated
dataset. D:Result of Gray model. E:Result of Laser model. F:Result of GrayLaser
model.

- Board-card

Figure 29. Visualisation results of ResNet-34 based models from one some testing
samples. A:Laser image. B:Grayscale image. C:Ground Truth GT from our generated
dataset. D:Result of Gray model. E:Result of Laser model. F:Result of GrayLaser
model.

5

[\

D somene D et
D e D .

- Board-card

Figure 30. Visualisation results of ResNet-50 based models with transfer learning from
one some testing samples. A:Laser image. B:Grayscale image. C:Ground Truth GT
from our generated dataset. D:Result of Laser model. E:Result of GrayLaser model.

53

6. DISCUSSION

There are quite a few interesting observations that can be made from the results. So
we will discuss our quantitative and qualitative results on how the laser spots affect the
performance of a convolutional neural network.

6.1. Depends on the Quantitative Results

We first start by analysing Table 8, which summarise all the results of the implemented
architectures in this work. It is very clear that the networks of the GrayLaser model
type gives the best results compared to Laser model and Gray model with the same
backbone network. So from ResNet-18 networks, we see that GrayLaser model gives
the best results by achieving an MIoU of 62.91% and PA 97.09% and in the second
place is the Laser model achieving an MIoU of 52.14% and 95.75% PA, and the
Gray model with 40.18% MIoU and 95.56% PA. The second observation from this
cooperation is that the difference of MIoU is about 10% between GrayLaser model and
Laser, and about 12% between Laser and Gray model. We see the same arrangement
if we compare the results, on ResNet-34 networks. The GrayLaser model is first,
then Laser model, and finally Gray, with a difference of MIoU is about 10% between
GrayLaser model and Laser, and also 10% between Laser and Gray model.

Our explanation of the decreasing performance of all the models when we used
ResNet-34 which is deeper network than ResNet-18 is the lack of data, and it is not
that deeper CNNs perform worse because Deep CNNs have more degrees of freedom
(DoF) and each layer can be seen as a cognitive step. So we need a large dataset to
properly train deeper CNNs. However, the arrangement of which model do the best
performance still does not change.

The ResNet-50 network of the GrayLaser model has the top performance with MIoU
0f 94.03% and 99.52% PA. This result is not surprising since the weights are pretrained
on the huge ImageNet dataset and it is a deeper network than ResNet-18 and Resnet-
34, which were trained from scratch. While the network of the Laser model that has
the same deep network (ResNet-50) achieved 85.38% MIoU and 98.93% PA which is
less than the GrayLaser model by around 9% MIoU and 0.5% PA. Here we want to
mention that we always get high PA accuracy because the background class dominate
the image and it is well predicted by our models so the PA increase while other classes
cover some small portion of the image. Thus the small variation in PA really matters
but we mainly focus on MIoU metric, which helps us clearly see the difference between
the performance.

From Table 9 and 10 that show the IoU accuracy for each class, we can observe again
that the GrayLaser model has the best accuracy for each class among the 11 classes
compared to the Laser and Gray. As a second observation from Table 9 and 10, we see
that the "skin" and "aluminium" classes have lower accuracy at Gray and Laser models
where Gray model is the worse and not even close to other two models. The reason
behind this result is perhaps because of low availability of "skin" and "aluminium" data
on the dataset compared to the other classes, but those classes have similar accuracy
to other classes or even better than some of them on the GrayLaser model. However,

54

the "apple" class achieved low accuracy compared to other classes although its data is
abundance in the dataset.

6.2. Depends on the Qualitative Results

From Figure 25, 28 and 29 that represents the visualisation results of the Gray
networks, it is clear that gray images do proper recognition of the boundaries and
edges of materials included in the image. However, it is not good at all in our main
purpose of segmenting and recognising materials.

From Figure 26, 28, 29 and 30 that represents the visualisation results of the Laser
networks, we can see that the laser images are doing well in recognising materials due
to the laser spot characteristics. However, we can see from images that some parts of
materials were cut off because of the limited area that the laser spots cover. Those cut
parts have an effect on the final results because of missing laser spot information.

From Figure 27, 28, 29 and 30 that represents the visualisation results of the
GrayLaser networks, we see that using laser and gray images together gives better
results in recognising materials and produces good segmentation and identifying the
edges of the materials inside the images. Therefore we can see that the ability of
recognising and segmenting materials came mainly from the laser images (which
means laser spots). At the same time, this model gets the information of the missing
areas that the laser images have from the gray images.

We conclude our discussion of this thesis in four main points that are as follows:

e All those results and observation support the idea that the laser spots have
significant contribution on material and object segmentation results.

e Using laser and gray images provided from our BPA sensing device is the best
solution because it combines the advantages and features of the laser and gray
images.

e Using our moderate-sized dataset that focuses on the local appearance of
materials and tries to eliminate the global context information, and with using a
CNNs that were fed by both laser and gray images (or even only laser images)
produces good segmentation results.

e Using a pretrained model really helps for initialising the network weights that
produces excellent results at the final stage.

6.3. Limitations

Although our generated dataset was enough to train the implemented networks, it is
considered medium or small compared to the current existing dataset in computer
vision. As a second point about the dataset, we have to take into consideration the
error during forming this dataset and its effect on the final results. Some of those errors
and limitation include the incorrectly annotated pixels during the manual polygon
approximation process, the limitation of the existing misalignment between laser and

55

gray images that was discussed previously in this thesis. Finally, we also have to
mention the requirement of computational resources because some of the top methods
in computer vision require heavy usage of near-supercomputers for the training phase
which is not available in our context.

6.4. Future Work and Improvements

For improving the segmentation results, we suggest refining the collection of images
by capturing only objects with a black background and the objects have to take most
of the image size (no small objects), and in addition removing images that have far
view and noisy background from the training data. We also suggest testing the option
that we feed the handcrafted features that the BPA generate, as a tensor to the network
along with the image information for guiding the segmentation. That would give some
kind of a baseline. After that, we could take the patches covered by the laser spots
and use them as inputs directly, but in that case, we probably need more training data.
Finally as a good way of improving the performance one should try to find solutions
to the limitations mentioned above.

56

7. CONCLUSION

We introduce a new pixel-wise material segmentation dataset in this thesis. Our dataset
is the first one collected with BPA sensing camera for semantic segmentation task,
and it contains 2300 high-resolution images, where the grayscale images have been
annotated and labelled to the material of interest. We exploited the recent success
in DL approaches, and trained many CNNs on this dataset to perform pixel-wise
material segmentation. Additionally, we performed a detailed investigation into the
ideal input type provided by the BPA sensing solution in material recognition. The
experimental results conclusively demonstrate that pixel-wise material segmentation
based on only the explicit integration of the local appearance of the laser spots achieves
improved accuracy. These results constitute important baselines that can encourage
further research in the use of CNNs for other material recognition and segmentation
applications. Our dataset also enables other similar or novel applications of pixel-wise
material segmentation.

57

8. REFERENCES

[1] Sharma A.K. & Kumari K. (2017) Human depth perception. International Journal
of Advance Research, Ideas and Innovations in Technology 3, pp. 864—869.

[2] Kim S., Nam J. & Ko B. (2019) Fast depth estimation in a single image using
lightweight efficient neural network. Sensors 19, p. 4434.

[3] Sanz PR., Mezcua B.R. & Pena J.M.S. (2012) Depth estimation-an introduction.
In: Current Advancements in Stereo Vision, IntechOpen.

[4] He Y. & Chen S. (2018) Advances in sensing and processing methods for three-
dimensional robot vision. International Journal of Advanced Robotic Systems 15,
p- 1729881418760623.

[5] Gandhi V., Cech J. & Horaud R. (2012) High-resolution depth maps based
on tof-stereo fusion. In: 2012 IEEE International Conference on Robotics and
Automation, IEEE, pp. 4742—4749.

[6] Chen C.S., Hung Y.P., Chiang C.C. & Wu J.L. (1997) Range data acquisition
using color structured lighting and stereo vision. Image and Vision Computing
15, pp. 445-456.

[7] Wei B., Gao J., Li K., Fan Y., Gao X. & Gao B. (2009) Indoor mobile robot
obstacle detection based on linear structured light vision system. In: 2008 IEEE
International Conference on Robotics and Biomimetics, IEEE, pp. 834-839.

[8] Johnson-Roberson M., Bryson M., Friedman A., Pizarro O., Troni G., Ozog P. &
Henderson J.C. (2017) High-resolution underwater robotic vision-based mapping
and three-dimensional reconstruction for archaeology. Journal of Field Robotics
34, pp. 625-643.

[9] Silberman N. & Fergus R. (2011) Indoor scene segmentation using a structured
light sensor. In: 2011 IEEE international conference on computer vision
workshops (ICCV workshops), IEEE, pp. 601-608.

[10] Song T.H. & Ha J.E. (2016) Visual surveillance using wide-angle camera and
laser range finder. Electronics Letters 52, pp. 445—447.

[11] Zhang Z. (2012) Microsoft kinect sensor and its effect. [IEEE MultiMedia 19, pp.
4-10.

[12] Han J., Shao L., Xu D. & Shotton J. (2013) Enhanced computer vision with
microsoft kinect sensor: A review. IEEE Transactions on Cybernetics 43, pp.
1318-1334.

[13] Marzani F., Voisin Y., Voon L.EL.Y. & Diou A. (2002) Calibration of a
three-dimensional reconstruction system using a structured light source. Optical
Engineering 41, pp. 484—-493.

[14] Dipanda A. & Woo S. (2005) Towards a real-time 3d shape reconstruction using
a structured light system. Pattern recognition 38, pp. 1632-1650.

58

[15] Bhoi A. (2019) Monocular depth estimation: A survey. arXiv preprint
arXiv:1901.09402 .

[16] Fu H., Gong M., Wang C. & Tao D. (2017) A compromise principle in deep
monocular depth estimation. arXiv preprint arXiv:1708.08267 .

[17] Smolyanskiy N., Kamenev A. & Birchfield S. (2018) On the importance of stereo
for accurate depth estimation: An efficient semi-supervised deep neural network
approach. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 1007-1015.

[18] Zhao C., Sun Q., Zhang C., Tang Y. & Qian F. (2020) Monocular depth estimation
based on deep learning: An overview. arXiv preprint arXiv:2003.06620 .

[19] Zhang S. (2013) Handbook of 3D machine vision: Optical metrology and
imaging. CRC press.

[20] Chen Z., Sun X., Wang L., Yu Y. & Huang C. (2015) A deep visual
correspondence embedding model for stereo matching costs. In: Proceedings of
the IEEE International Conference on Computer Vision, pp. 972-980.

[21] Flynn J., Snavely K., Neulander I. & Philbin J. (2018), Deepstereo: learning to
predict new views from real world imagery. US Patent 9,916,679.

[22] Seki A. & Pollefeys M. (2017) Sgm-nets: Semi-global matching with neural
networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 231-240.

[23] Schonberger J.L., Sinha S.N. & Pollefeys M. (2018) Learning to fuse proposals
from multiple scanline optimizations in semi-global matching. In: Proceedings
of the European Conference on Computer Vision (ECCV), pp. 739-755.

[24] Kendall A., Martirosyan H., Dasgupta S., Henry P., Kennedy R., Bachrach A.
& Bry A. (2017) End-to-end learning of geometry and context for deep stereo
regression. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 66-75.

[25] Chang J.R. & Chen Y.S. (2018) Pyramid stereo matching network. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5410-5418.

[26] Deng L. & Yu D. (2014) Deep learning: methods and applications. Foundations
and trends in signal processing 7, pp. 197-387.

[27] LeCun Y., Bengio Y. & Hinton G. (2015) Deep learning. nature 521, pp. 436—444.

[28] Simonyan K. & Zisserman A. (2014) Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556 .

[29] Springenberg J.T., Dosovitskiy A., Brox T. & Riedmiller M. (2014) Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806 .

59

[30] Graham B. (2014) Fractional max-pooling. arXiv preprint arXiv:1412.6071 .

[31] Zeiler M.D., Taylor G.W. & Fergus R. (2011) Adaptive deconvolutional networks
for mid and high level feature learning. In: 2011 International Conference on
Computer Vision, IEEE, pp. 2018-2025.

[32] Zeiler M.D. & Fergus R. (2013) Stochastic pooling for regularization of deep
convolutional neural networks. arXiv preprint arXiv:1301.3557 .

[33] Hinton G.E., Srivastava N., Krizhevsky A., Sutskever I. & Salakhutdinov
R.R. (2012) Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580 .

[34] Glorot X. & Bengio Y. (2010) Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp. 249-256.

[35] Nair V. & Hinton G.E. (2010) Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th international conference on machine
learning (ICML-10), pp. 807-814.

[36] Xu B., Wang N., Chen T. & Li M. (2015) Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853 .

[37] He K., Zhang X., Ren S. & Sun J. (2015) Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In: Proceedings of the IEEE
international conference on computer vision, pp. 1026—-1034.

[38] Srivastava N., Hinton G., Krizhevsky A., Sutskever I. & Salakhutdinov R. (2014)
Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research 15, pp. 1929-1958.

[39] loffe S. & Szegedy C. (2015) Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 .

[40] Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D.,
Vanhoucke V. & Rabinovich A. (2015) Going deeper with convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 1-9.

[41] Chollet F. (2017) Xception: Deep learning with depthwise separable
convolutions. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1251-1258.

[42] He K., Zhang X., Ren S. & Sun J. (2016) Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770-778.

[43] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z.,
Karpathy A., Khosla A., Bernstein M., Berg A.C. & Fei-Fei L. (2015) ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV) 115, pp. 211-252.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

60

Guo D., Fridriksson J., Fillmore P., Rorden C., Yu H., Zheng K. & Wang S.
(2015) Automated lesion detection on mri scans using combined unsupervised
and supervised methods. BMC medical imaging 15, p. 50.

Seghier M.L., Ramlackhansingh A., Crinion J., Leff A.P. & Price C.J. (2008)
Lesion identification using unified segmentation-normalisation models and fuzzy
clustering. Neuroimage 41, pp. 1253-1266.

Ess A., Miiller T., Grabner H. & Van Gool L.J. (2009) Segmentation-based urban
traffic scene understanding. In: BMVC, vol. 1, Citeseer, vol. 1, p. 2.

Cordts M., Omran M., Ramos S., Rehfeld T., Enzweiler M., Benenson R., Franke
U., Roth S. & Schiele B. (2016) The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3213-3223.

Oquab M., Bottou L., Laptev 1. & Sivic J. (2014) Learning and transferring mid-
level image representations using convolutional neural networks. In: Proceedings

of the IEEE conference on computer vision and pattern recognition, pp. 1717—
1724.

Everingham M. & Winn J. (2011) The pascal visual object classes challenge
2012 (voc2012) development kit. Pattern Analysis, Statistical Modelling and
Computational Learning, Tech. Rep .

Brostow G.J., Fauqueur J. & Cipolla R. (2009) Semantic object classes in video:
A high-definition ground truth database. Pattern Recognition Letters 30, pp. 88—
97.

Caesar H., Uijlings J. & Ferrari V. (2018) Coco-stuff: Thing and stuff classes in
context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1209-1218.

Chen L.C., Papandreou G., Schroff F. & Adam H. (2017) Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 .

Chen L.C., Zhu Y., Papandreou G., Schroff F. & Adam H. (2018) Encoder-
decoder with atrous separable convolution for semantic image segmentation. In:

Proceedings of the European conference on computer vision (ECCV), pp. 801-
818.

Long J., Shelhamer E. & Darrell T. (2015) Fully convolutional networks for
semantic segmentation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3431-3440.

Bell S., Upchurch P., Snavely N. & Bala K. (2015) Material recognition in
the wild with the materials in context database. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3479-3487.

Huang C., Li Y., Change Loy C. & Tang X. (2016) Learning deep representation
for imbalanced classification. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5375-5384.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

61

Guo D., Zhu L., Lu Y,, Yu H. & Wang S. (2018) Small object sensitive
segmentation of urban street scene with spatial adjacency between object classes.
IEEE Transactions on Image Processing 28, pp. 2643-2653.

Maire M., Stella X.Y. & Perona P. (2011) Object detection and segmentation
from joint embedding of parts and pixels. In: 2011 International Conference on
Computer Vision, IEEE, pp. 2142-2149.

Plath N., Toussaint M. & Nakajima S. (2009) Multi-class image segmentation
using conditional random fields and global classification. In: Proceedings of the
26th Annual International Conference on Machine Learning, pp. 817-824.

Boix X., Gonfaus J.M., Van de Weijer J., Bagdanov A.D., Serrat J. & Gonzalez
J. (2012) Harmony potentials. International journal of computer vision 96, pp.
83-102.

Sermanet P., Eigen D., Zhang X., Mathieu M., Fergus R. & LeCun Y. (2013)
Overfeat: Integrated recognition, localization and detection using convolutional
networks. arXiv preprint arXiv:1312.6229 .

Pinheiro P.H. & Collobert R. (2014) Recurrent convolutional neural networks for
scene labeling. In: 31st International Conference on Machine Learning (ICML),
CONF.

Liu M.Y,, Lin S., Ramalingam S. & Tuzel O. (2015) Layered interpretation of
street view images. arXiv preprint arXiv:1506.04723 .

Ronneberger O., Fischer P. & Brox T. (2015) U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical image
computing and computer-assisted intervention, Springer, pp. 234-241.

Badrinarayanan V., Kendall A. & Cipolla R. (2017) Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on
pattern analysis and machine intelligence 39, pp. 2481-2495.

Mohan R. (2014) Deep deconvolutional networks for scene parsing. arXiv
preprint arXiv:1411.4101 .

Brust C.A., Sickert S., Simon M., Rodner E. & Denzler J. (2015) Convolutional
patch networks with spatial prior for road detection and urban scene
understanding. arXiv preprint arXiv:1502.06344 .

Chen L.C., Papandreou G., Kokkinos I., Murphy K. & Yuille A.L. (2017)
Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and
machine intelligence 40, pp. 834-848.

Liu W., Rabinovich A. & Berg A.C. (2015) Parsenet: Looking wider to see better.
arXiv preprint arXiv:1506.04579 .

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

62

Chen L.C., Papandreou G., Kokkinos I., Murphy K. & Yuille A.L. (2014)
Semantic image segmentation with deep convolutional nets and fully connected
crfs. arXiv preprint arXiv:1412.7062 .

Peng C., Zhang X., Yu G., Luo G. & Sun J. (2017) Large kernel matters—improve
semantic segmentation by global convolutional network. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 4353-4361.

Adelson E.H. (2001) On seeing stuff: the perception of materials by humans and
machines. In: Human vision and electronic imaging VI, vol. 4299, International
Society for Optics and Photonics, vol. 4299, pp. 1-12.

Sharan L., Rosenholtz R. & Adelson E. (2009) Material perception: What can
you see in a brief glance? Journal of Vision 9, pp. 784-784.

Zhang Y., Ozay M., Liu X. & Okatani T. (2016) Integrating deep features
for material recognition. In: 2016 23rd International Conference on Pattern
Recognition (ICPR), IEEE, pp. 3697-3702.

Wang T.C., Zhu J.Y., Hiroaki E., Chandraker M., Efros A.A. & Ramamoorthi R.
(2016) A 4d light-field dataset and cnn architectures for material recognition. In:
European Conference on Computer Vision, Springer, pp. 121-138.

lizuka S., Simo-Serra E. & Ishikawa H. (2016) Let there be color! joint end-to-
end learning of global and local image priors for automatic image colorization

with simultaneous classification. ACM Transactions on Graphics (ToG) 35, pp.
1-11.

Everingham M., Eslami S.A., Van Gool L., Williams C.K., Winn J. &
Zisserman A. (2015) The pascal visual object classes challenge: A retrospective.
International journal of computer vision 111, pp. 98-136.

Russell B.C., Torralba A., Murphy K.P. & Freeman W.T. (2008) Labelme:
a database and web-based tool for image annotation. International journal of
computer vision 77, pp. 157-173.

Lin T.Y., Maire M., Belongie S., Hays J., Perona P., Ramanan D., Dollar P. &
Zitnick C.L. (2014) Microsoft coco: Common objects in context. In: European
conference on computer vision, Springer, pp. 740-755.

Hariharan B., Arbeldez P., Bourdev L., Maji S. & Malik J. (2011) Semantic
contours from inverse detectors. In: 2011 International Conference on Computer
Vision, IEEE, pp. 991-998.

Liu C., Yuen J. & Torralba A. (2011) Nonparametric scene parsing via label
transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence 33,
pp- 2368-2382.

Mottaghi R., Chen X., Liu X., Cho N.G., Lee S.W., Fidler S., Urtasun R. & Yuille
A. (2014) The role of context for object detection and semantic segmentation
in the wild. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 891-898.

63

[83] Bell S., Upchurch P., Snavely N. & Bala K. (2013) Opensurfaces: A richly
annotated catalog of surface appearance. ACM Transactions on graphics (TOG)
32, pp. 1-17.

[84] Vondrick C., Patterson D. & Ramanan D. (2013) Efficiently scaling up
crowdsourced video annotation. International journal of computer vision 101, pp.
184-204.

[85] Doermann D. & Mihalcik D. (2000) Tools and techniques for video
performance evaluation. In: Proceedings 15th International Conference on
Pattern Recognition. ICPR-2000, vol. 4, IEEE, vol. 4, pp. 167-170.

[86] Dutta A., Gupta A. & Zissermann A. (2016) Vgg image annotator (via). URL:
http://www. robots. ox. ac. uk/~ vgg/software/via .

[87] (2018) "labelbox: a collaborative training data software to create and manage
labeled data for computer vision applications" available: https://labelbox.com/ .

[88] Maaten L.v.d. & Hinton G. (2008) Visualizing data using t-sne. Journal of
machine learning research 9, pp. 2579-2605.

	
	
	
	
	

	
	
	

	

	
	
	
	
	
	
	
	
	
	

	
	
	

	
	
	

	
	

	
	
	
	

	

	
	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	

	
	REFERENCES

