5,380 research outputs found

    On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings

    Get PDF
    The problem of establishing the number of perfect matchings necessary to cover the edge-set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this paper we prove that deciding whether this number is at most 4 for a given cubic bridgeless graph is NP-complete. We also construct an infinite family F\cal F of snarks (cyclically 4-edge-connected cubic graphs of girth at least five and chromatic index four) whose edge-set cannot be covered by 4 perfect matchings. Only two such graphs were known. It turns out that the family F\cal F also has interesting properties with respect to the shortest cycle cover problem. The shortest cycle cover of any cubic bridgeless graph with mm edges has length at least 43m\tfrac43m, and we show that this inequality is strict for graphs of F\cal F. We also construct the first known snark with no cycle cover of length less than 43m+2\tfrac43m+2.Comment: 17 pages, 8 figure

    A Reciprocity Theorem for Monomer-Dimer Coverings

    Full text link
    The problem of counting monomer-dimer coverings of a lattice is a longstanding problem in statistical mechanics. It has only been exactly solved for the special case of dimer coverings in two dimensions. In earlier work, Stanley proved a reciprocity principle governing the number N(m,n)N(m,n) of dimer coverings of an mm by nn rectangular grid (also known as perfect matchings), where mm is fixed and nn is allowed to vary. As reinterpreted by Propp, Stanley's result concerns the unique way of extending N(m,n)N(m,n) to n<0n < 0 so that the resulting bi-infinite sequence, N(m,n)N(m,n) for nZn \in {Z}, satisfies a linear recurrence relation with constant coefficients. In particular, Stanley shows that N(m,n)N(m,n) is always an integer satisfying the relation N(m,2n)=ϵm,nN(m,n)N(m,-2-n) = \epsilon_{m,n}N(m,n) where ϵm,n=1\epsilon_{m,n} = 1 unless mm\equiv 2(mod 4) and nn is odd, in which case ϵm,n=1\epsilon_{m,n} = -1. Furthermore, Propp's method is applicable to higher-dimensional cases. This paper discusses similar investigations of the numbers M(m,n)M(m,n), of monomer-dimer coverings, or equivalently (not necessarily perfect) matchings of an mm by nn rectangular grid. We show that for each fixed mm there is a unique way of extending M(m,n)M(m,n) to n<0n < 0 so that the resulting bi-infinite sequence, M(m,n)M(m,n) for nZn \in {Z}, satisfies a linear recurrence relation with constant coefficients. We show that M(m,n)M(m,n), a priori a rational number, is always an integer, using a generalization of the combinatorial model offered by Propp. Lastly, we give a new statement of reciprocity in terms of multivariate generating functions from which Stanley's result follows.Comment: 13 pages, 12 figures, to appear in the proceedings of the Discrete Models for Complex Systems (DMCS) 2003 conference. (v2 - some minor changes

    Lower matching conjecture, and a new proof of Schrijver's and Gurvits's theorems

    Get PDF
    Friedland's Lower Matching Conjecture asserts that if GG is a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices, and mk(G)m_k(G) denotes the number of matchings of size kk, then mk(G)(nk)2(dpd)n(dp)(dp)np,m_k(G)\geq {n \choose k}^2\left(\frac{d-p}{d}\right)^{n(d-p)}(dp)^{np}, where p=knp=\frac{k}{n}. When p=1p=1, this conjecture reduces to a theorem of Schrijver which says that a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices has at least ((d1)d1dd2)n\left(\frac{(d-1)^{d-1}}{d^{d-2}}\right)^n perfect matchings. L. Gurvits proved an asymptotic version of the Lower Matching Conjecture, namely he proved that lnmk(G)v(G)12(pln(dp)+(dp)ln(1pd)2(1p)ln(1p))+ov(G)(1).\frac{\ln m_k(G)}{v(G)}\geq \frac{1}{2}\left(p\ln \left(\frac{d}{p}\right)+(d-p)\ln \left(1-\frac{p}{d}\right)-2(1-p)\ln (1-p)\right)+o_{v(G)}(1). In this paper, we prove the Lower Matching Conjecture. In fact, we will prove a slightly stronger statement which gives an extra cpnc_p\sqrt{n} factor compared to the conjecture if pp is separated away from 00 and 11, and is tight up to a constant factor if pp is separated away from 11. We will also give a new proof of Gurvits's and Schrijver's theorems, and we extend these theorems to (a,b)(a,b)--biregular bipartite graphs
    corecore