500 research outputs found

    Interoperability of Enterprise Software and Applications

    Get PDF

    Gestion de métadonnées utilisant tissage et transformation de modèles

    Get PDF
    The interaction and interoperability between different data sources is a major concern in many organizations. The different formats of data, APIs, and architectures increases the incompatibilities, in a way that interoperability and interaction between components becomes a very difficult task. Model driven engineering (MDE) is a paradigm that enables diminishing interoperability problems by considering every entity as a model. MDE platforms are composed of different kinds of models. Some of the most important kinds of models are transformation models, which are used to define fixed operations between different models. In addition to fixed transformation operations, there are other kinds of interactions and relationships between models. A complete MDE solution must be capable of handling different kinds of relationships. Until now, most research has concentrated on studying transformation languages. This means additional efforts must be undertaken to study these relationships and their implications on a MDE platform. This thesis studies different forms of relationships between models elements. We show through extensive related work that the major limitation of current solutions is the lack of genericity, extensibility and adaptability. We present a generic MDE solution for relationship management called model weaving. Model weaving proposes to capture different kinds of relationships between model elements in a weaving model. A weaving model conforms to extensions of a core weaving metamodel that supports basic relationship management. After proposing the unification of the conceptual foundations related to model weaving, we show how weaving models and transformation models are used as a generic approach for data interoperability. The weaving models are used to produce model transformations. Moreover, we present an adaptive framework for creating weaving models in a semi-automatic way. We validate our approach by developing a generic and adaptive tool called ATLAS Model Weaver (AMW), and by implementing several use cases from different application scenarios.L'interaction et l'interopérabilité entre différentes sources de données sont une préoccupation majeure dans plusieurs organisations. Ce problème devient plus important encore avec la multitude de formats de données, APIs et architectures existants. L'ingénierie dirigée par modèles (IDM) est un paradigme relativement nouveau qui permet de diminuer ces problèmes d'interopérabilité. L'IDM considère toutes les entités d'un système comme un modèle. Les plateformes IDM sont composées par des types de modèles différents. Les modèles de transformation sont des acteurs majeurs de cette approche. Ils sont utilisés pour définir des opérations entre modèles. Par contre, il y existe d'autres types d'interactions qui sont définies sur la base des liens. Une solution d'IDM complète doit supporter des différents types de liens. Les recherches en IDM se sont centrées dans l'étude des transformations de modèles. Par conséquence, il y a beaucoup de travail concernant différents types des liens, ainsi que leurs implications dans une plateforme IDM. Cette thèse étudie des formes différentes de liens entre les éléments de modèles différents. Je montre, à partir d'une étude des nombreux travaux existants, que le point le plus critique de ces solutions est le manque de généricité, extensibilité et adaptabilité. Ensuite, je présente une solution d'IDM générique pour la gestion des liens entre les éléments de modèles. La solution s'appelle le tissage de modèles. Le tissage de modèles propose l'utilisation de modèles de tissage pour capturer des types différents de liens. Un modèle de tissage est conforme à un métamodèle noyau de tissage. J'introduis un ensemble des définitions pour les modèles de tissage et concepts liés. Ensuite, je montre comment les modèles de tissage et modèles de transformations sont une solution générique pour différents problèmes d'interopérabilité des données. Les modèles de tissage sont utilisés pour générer des modèles de transformations. Ensuite, je présente un outil adaptive et générique pour la création de modèles de tissage. L'approche sera validée en implémentant un outil de tissage appel

    Incremental schema integration for data wrangling via knowledge graphs

    Get PDF
    Virtual data integration is the current approach to go for data wrangling in data-driven decision-making. In this paper, we focus on automating schema integration, which extracts a homogenised representation of the data source schemata and integrates them into a global schema to enable virtual data integration. Schema integration requires a set of well-known constructs: the data source schemata and wrappers, a global integrated schema and the mappings between them. Based on them, virtual data integration systems enable fast and on-demand data exploration via query rewriting. Unfortunately, the generation of such constructs is currently performed in a largely manual manner, hindering its feasibility in real scenarios. This becomes aggravated when dealing with heterogeneous and evolving data sources. To overcome these issues, we propose a fully-fledged semi-automatic and incremental approach grounded on knowledge graphs to generate the required schema integration constructs in four main steps: bootstrapping, schema matching, schema integration, and generation of system-specific constructs. We also present NextiaDI, a tool implementing our approach. Finally, a comprehensive evaluation is presented to scrutinize our approach.This work was partly supported by the DOGO4ML project, funded by the Spanish Ministerio de Ciencia e Innovación under project PID2020-117191RB-I00, and D3M project, funded by the Spanish Agencia Estatal de Investigación (AEI) under project PDC2021-121195-I00. Javier Flores is supported by contract 2020-DI-027 of the Industrial Doctorate Program of the Government of Catalonia and Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico). Sergi Nadal is partly supported by the Spanish Ministerio de Ciencia e Innovación, as well as the European Union – NextGenerationEU, under project FJC2020-045809-I.Peer ReviewedPostprint (published version

    ON THE CHALLENGE OF A SEMI-AUTOMATIC TRANSFORMATION PROCESS IN MODEL DRIVEN ENTERPRISE INFORMATION SYSTEMS

    Get PDF
    Recently, Model Driven Engineering (MDE) approaches have been proposed for supporting the development, maintenance and evolution of software systems. Model driven architecture (MDA) from OMG (Object Management Group), “Software Factories” from Microsoft and the Eclipse Modelling Framework (EMF) from IBM are among the most representative MDE approaches. Nowadays, it is well recognized that model transformations are at the heart of these approaches and represent as a consequence one of the most important operations in MDE. However, despite the multitude of model transformation languages proposals emerging from university and industry, these transformations are often created manually. In this paper we present in the first part our previous works towards automation of the transformation process in the context of MDA. It consists on an extended architecture which introduces mapping and matching as first class entities in the transformation process, represented by models and metamodels. Our architecture is enforced by a methodology which details the different steps leading to a semi-automatic transformation process. In the second part, we propose the illustration of the architecture and methodology to the main case of transforming a PIM into PSM

    Structural Graph-based Metamodel Matching

    Get PDF
    Data integration has been, and still is, a challenge for applications processing multiple heterogeneous data sources. Across the domains of schemas, ontologies, and metamodels, this imposes the need for mapping specifications, i.e. the task of discovering semantic correspondences between elements. Support for the development of such mappings has been researched, producing matching systems that automatically propose mapping suggestions. However, especially in the context of metamodel matching the result quality of state of the art matching techniques leaves room for improvement. Although the traditional approach of pair-wise element comparison works on smaller data sets, its quadratic complexity leads to poor runtime and memory performance and eventually to the inability to match, when applied on real-world data. The work presented in this thesis seeks to address these shortcomings. Thereby, we take advantage of the graph structure of metamodels. Consequently, we derive a planar graph edit distance as metamodel similarity metric and mining-based matching to make use of redundant information. We also propose a planar graph-based partitioning to cope with large-scale matching. These techniques are then evaluated using real-world mappings from SAP business integration scenarios and the MDA community. The results demonstrate improvement in quality and managed runtime and memory consumption for large-scale metamodel matching

    Using the ResearchEHR platform to facilitate the practical application of the EHR standards

    Full text link
    Possibly the most important requirement to support co-operative work among health professionals and institutions is the ability of sharing EHRs in a meaningful way, and it is widely acknowledged that standardization of data and concepts is a prerequisite to achieve semantic interoperability in any domain. Different international organizations are working on the definition of EHR architectures but the lack of tools that implement them hinders their broad adoption. In this paper we present ResearchEHR, a software platform whose objective is to facilitate the practical application of EHR standards as a way of reaching the desired semantic interoperability. This platform is not only suitable for developing new systems but also for increasing the standardization of existing ones. The work reported here describes how the platform allows for the edition, validation, and search of archetypes, converts legacy data into normalized, archetypes extracts, is able to generate applications from archetypes and finally, transforms archetypes and data extracts into other EHR standards. We also include in this paper how ResearchEHR has made possible the application of the CEN/ISO 13606 standard in a real environment and the lessons learnt with this experience. © 2011 Elsevier Inc..This work has been partially supported by the Spanish Ministry of Science and Innovation under Grants TIN2010-21388-C02-01 and TIN2010-21388-C02-02, and by the Health Institute Carlos in through the RETICS Combiomed, RD07/0067/2001. Our most sincere thanks to the Hospital of Fuenlabrada in Madrid, including its Medical Director Pablo Serrano together with Marta Terron and Luis Lechuga for their support and work during the development of the medications reconciliation project.Maldonado Segura, JA.; Martínez Costa, C.; Moner Cano, D.; Menárguez-Tortosa, M.; Boscá Tomás, D.; Miñarro Giménez, JA.; Fernández-Breis, JT.... (2012). Using the ResearchEHR platform to facilitate the practical application of the EHR standards. Journal of Biomedical Informatics. 45(4):746-762. doi:10.1016/j.jbi.2011.11.004S74676245
    • …
    corecore