16,229 research outputs found

    Matching networks for personalised human activity recognition.

    Get PDF
    Human Activity Recognition (HAR) has many important applications in health care which include management of chronic conditions and patient rehabilitation. An important consideration when training HAR models is whether to use training data from a general population (subject-independent), or personalised training data from the target user (subject-dependent). Previous evaluations have shown personalised training to be more accurate because of the ability of resulting models to better capture individual users' activity patterns. However, collecting sufficient training data from end users may not be feasible for real-world applications. In this paper, we introduce a novel approach to personalised HAR using a neural network architecture called a matching network. Matching networks perform nearest-neighbour classification by reusing the class label of the most similar instances in a provided support set. Evaluations show our approach to substantially out perform general subject-independent models by more than 5% macro-averaged F1 score

    Study of similarity metrics for matching network-based personalised human activity recognition.

    Get PDF
    Personalised Human Activity Recognition (HAR) models trained using data from the target user (subject-dependent) have been shown to be superior to non personalised models that are trained on data from a general population (subject-independent). However, from a practical perspective, collecting sufficient training data from end users to create subject-dependent models is not feasible. We have previously introduced an approach based on Matching networks which has proved effective for training personalised HAR models while requiring very little data from the end user. Matching networks perform nearest-neighbour classification by reusing the class label of the most similar instances in a provided support set, which makes them very relevant to case-based reasoning. A key advantage of matching networks is that they use metric learning to produce feature embeddings or representations that maximise classification accuracy, given a chosen similarity metric. However, to the best of our knowledge, no study has been provided into the performance of different similarity metrics for matching networks. In this paper, we present a study of five different similarity metrics: Euclidean, Manhattan, Dot Product, Cosine and Jaccard, for personalised HAR. Our evaluation shows that substantial differences in performance are achieved using different metrics, with Cosine and Jaccard producing the best performance

    Personalised meta-learning for human activity recognition with few-data.

    Get PDF
    State-of-the-art methods of Human Activity Recognition(HAR) rely on a considerable amount of labelled data to train deep architectures. This becomes prohibitive when tasked with creating models that are sensitive to personal nuances in human movement, explicitly present when performing exercises and when it is infeasible to collect training data to cover the whole target population. Accordingly, learning personalised models with few data remains an open challenge in HAR research. We present a meta-learning methodology for learning-to-learn personalised models for HAR; with the expectation that the end-user only need to provide a few labelled data. These personalised HAR models benefit from the rapid adaptation of a generic meta-model using provided few end-user data. We implement the personalised meta-learning methodology with two algorithms, Personalised MAML and Personalised Relation Networks. A comparative study shows significant performance improvements against state-of-the-art deep learning algorithms and other personalisation algorithms in multiple HAR domains. Also, we show how personalisation improved meta-model training, to learn a generic meta-model suited for a wider population while using a shallow parametric model

    A knowledge-light approach to personalised and open-ended human activity recognition.

    Get PDF
    Human Activity Recognition (HAR) is a core component of clinical decision support systems that rely on activity monitoring for self-management of chronic conditions such as Musculoskeletal Disorders. Deployment success of such applications in part depend on their ability to adapt to individual variations in human movement and to facilitate a range of human activity classes. Research in personalised HAR aims to learn models that are sensitive to the subtle nuances in human movement whilst Open-ended HAR learns models that can recognise activity classes out of the pre-defined set available at training. Current approaches to personalised HAR impose a data collection burden on the end user; whilst Open-ended HAR algorithms are heavily reliant on intermediary-level class descriptions. Instead of these 'knowledge-intensive' HAR algorithms; in this article, we propose a 'knowledge-light' method. Specifically, we show how by using a few seconds of raw sensor data, obtained through micro-interactions with the end-user, we can effectively personalise HAR models and transfer recognition functionality to new activities with zero re-training of the model after deployment. We introduce a Personalised Open-ended HAR algorithm, MNZ, a user context aware Matching Network architecture and evaluate on 3 HAR data sources. Performance results show up to 48.9% improvement with personalisation and up to 18.3% improvement compared to the most common 'knowledge-intensive' Open-ended HAR algorithms

    Personalised human activity recognition using matching networks.

    Get PDF
    Human Activity Recognition (HAR) is typically modelled as a classification task where sensor data associated with activity labels are used to train a classifier to recognise future occurrences of these activities. An important consideration when training HAR models is whether to use training data from a general population (subject-independent), or personalised training data from the target user (subject-dependent). Previous evaluations have shown personalised training to be more accurate because of the ability of resulting models to better capture individual users' activity patterns. From a practical perspective however, collecting sufficient training data from end users may not be feasible. This has made using subject-independent training far more common in real-world HAR systems. In this paper, we introduce a novel approach to personalised HAR using a neural network architecture called a matching network. Matching networks perform nearest-neighbour classification by reusing the class label of the most similar instances in a provided support set, which makes them very relevant to case-based reasoning. A key advantage of matching networks is that they use metric learning to produce feature embeddings or representations that maximise classification accuracy, given a chosen similarity metric. Evaluations show our approach to substantially out perform general subject-independent models by at least 6% macro-averaged F1 score

    Learning to compare with few data for personalised human activity recognition.

    Get PDF
    Recent advances in meta-learning provides interesting opportunities for CBR research, in similarity learning, case comparison and personalised recommendations. Rather than learning a single model for a specific task, meta-learners adopt a generalist view of learning-to-learn, such that models are rapidly transferable to related (but different) new tasks. Unlike task-specific model training, a meta-learner’s training instance - referred to as a meta-instance - is a composite of two sets: a support set and a query set of instances. In our work, we introduce learning-to-learn personalised models from few data. We motivate our contribution through an application where personalisation plays an important role, mainly that of human activity recognition for self-management of chronic diseases. We extend the meta-instance creation process where random sampling of support and query sets is carried out on a reduced sample conditioned by a domain-specific attribute; namely the person or user, in order to create meta-instances for personalised HAR. Our meta-learning for personalisation is compared with several state-of-the-art meta-learning strategies: 1) matching network (MN), which learns an embedding for a metric function; 2) relation network (RN) that learns to predict similarity between paired instances; and 3) MAML, a model-agnostic machine-learning algorithm that optimizes the model parameters for rapid adaptation. Results confirm that personalised meta-learning significantly improves performance over non personalised meta-learners

    Indexing, browsing and searching of digital video

    Get PDF
    Video is a communications medium that normally brings together moving pictures with a synchronised audio track into a discrete piece or pieces of information. The size of a “piece ” of video can variously be referred to as a frame, a shot, a scene, a clip, a programme or an episode, and these are distinguished by their lengths and by their composition. We shall return to the definition of each of these in section 4 this chapter. In modern society, video is ver

    Personalised correction, feedback, and guidance in an automated tutoring system for skills training

    Get PDF
    In addition to knowledge, in various domains skills are equally important. Active learning and training are effective forms of education. We present an automated skills training system for a database programming environment that promotes procedural knowledge acquisition and skills training. The system provides support features such as correction of solutions, feedback and personalised guidance, similar to interactions with a human tutor. Specifically, we address synchronous feedback and guidance based on personalised assessment. Each of these features is automated and includes a level of personalisation and adaptation. At the core of the system is a pattern-based error classification and correction component that analyses student input
    • 

    corecore