
 

 

 

AUTHOR(S): 

 
 
TITLE:  

 

 
YEAR:  
 

Publisher citation: 

 

 
 
OpenAIR citation: 

 

 

 

Publisher copyright statement: 

 

 

 

 

 

OpenAIR takedown statement: 

 

 This publication is made 
freely available under 
________ open access. 

 

 

 

 

 

This is the ___________________ version of proceedings originally published by _____________________________ 
and presented at ________________________________________________________________________________ 
(ISBN __________________; eISBN __________________; ISSN __________). 

This publication is distributed under a CC ____________ license. 

____________________________________________________ 

 

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will 
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for 
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of 
the item and the nature of your complaint. 

 



Personalised Human Activity Recognition Using
Matching Networks

Sadiq Sani1, Nirmalie Wiratunga1, Stewart Massie1, and Kay Cooper2

1 School of Computing Science and Digital Media,
2 School of Health Sciences,
Robert Gordon University,

Aberdeen AB10 7GJ, Scotland, UK
{s.a.sani,n.wiratunga,s.massie,k.cooper}@rgu.ac.uk

Abstract. Human Activity Recognition (HAR) is typically modelled as
a classification task where sensor data associated with activity labels are
used to train a classifier to recognise future occurrences of these activi-
ties. An important consideration when training HAR models is whether
to use training data from a general population (subject-independent), or
personalised training data from the target user (subject-dependent). Pre-
vious evaluations have shown personalised training to be more accurate
because of the ability of resulting models to better capture individual
users’ activity patterns. From a practical perspective however, collecting
sufficient training data from end users may not be feasible. This has made
using subject-independent training far more common in real-world HAR
systems. In this paper, we introduce a novel approach to personalised
HAR using a neural network architecture called a matching network.
Matching networks perform nearest-neighbour classification by reusing
the class label of the most similar instances in a provided support set,
which makes them very relevant to case-based reasoning. A key advan-
tage of matching networks is that they use metric learning to produce
feature embeddings or representations that maximise classification accu-
racy, given a chosen similarity metric. Evaluations show our approach
to substantially out perform general subject-independent models by at
least 6% macro-averaged F1 score.

1 Introduction

Human Activity Recognition (HAR) is the computational discovery of human
activity from sensor data and is increasingly being adopted in health, security, en-
tertainment and defense applications [10]. An example of the application of HAR
in healthcare is SelfBACK [2], a system designed to improve self-management
of low back pain (LBP) by monitoring users’ physical activity levels in order
to provide advice and guidance on how best to adhere to recommended physi-
cal activity guidelines. Guidelines for LBP recommend that patients should not
be sedentary for long periods of time and should maintain moderate levels of
physical activity. The SelfBACK system uses a wrist-worn sensor to continu-
ously recognise user activities in real time. This allows the system to compare



the user’s activity profile to the recommended guidelines for physical activity
and produce feedback to inform the user on how well they are adhering to these
guidelines. Other information in the user’s activity profile include the durations
of activities and, for walking, the counts of steps taken, as well as intensity e.g.
slow, normal or fast. The categorisation of walking into slow, normal and fast
allows us to better match the activity intensity (i.e. low, moderate or high) rec-
ommended in the guidelines. HAR is typically modelled as a classification task
where sensor data associated with activity labels are used to train a classifier to
predict future occurrences of those activities.

An important consideration for HAR is classifier training, where training ex-
amples can either be acquired from a general population (subject-independent),
or from the target user of the system (subject-dependent). Previous works have
shown using subject-dependent data to result in superior performance [19, 5,
7, 21]. The relatively poorer performance of subject-independent models can be
attributed to variations in activity patterns, gait or posture between different in-
dividuals [12]. However, training a classifier exclusively with user provided data
is not practical in a real-world configuration as this places significant burden
on the user to provide sufficient amounts of training data required to build a
personalised model.

In this paper, we introduce an approach to personalised HAR using matching
networks. Matching Networks are a type of neural network architecture intro-
duced for the task of one-shot learning [22] which is a scenario where an algorithm
is trained to recognise a new class from just a few examples of that class. Given
a (typically small) support set of labelled examples, matching networks are able
to classify an unlabelled example by reusing the class labels of the most simi-
lar examples in the support set. To apply matching networks for personalised
HAR, we require the user to provide a small number of examples for each type
of activity. Note that this is no different to the calibration approach which is
commonly employed in gesture control devices and is already in use in the Nike
+ iPod fitness device [12]. The examples provided by the user are treated as
the support set used by the matching network to classify future occurrences of
the user’s activities. In this way, the matching network generates a personalised
classifier that is better able to recognise the individual user’s activity pattern.

An advantage of matching networks is that they use metric learning in order
to produce feature embeddings or representations that maximise nearest neigh-
bour classification accuracy. At the same time, because classification is only
conditioned on the support set, matching networks behave like non-parametric
models and can reason with any set of examples that are provided at runtime,
without the need for retraining the network. This makes our system able to con-
tinuously adapt to changes in the user’s context easily which is an important
goal of CBR.

The rest of this paper is organised as follows: in Section 2, we discuss impor-
tant related work on personalised HAR and highlight the importance of CBR and
k-nearest neighbour in particular for personalisation. Section 3 presents technical
details of the steps for training a HAR classifier. In Section 4, we formally intro-



duce matching networks and in Section 5 we present how we apply this to the
task of personalised HAR. A description of our dataset is presented in Section 6,
evaluations are presented in Section 7 and conclusions follow in Section 8.

2 Related Work

The standard approach to classifier training for HAR involves using subject-
independent examples to create a general classification model. However, com-
parative evaluation with personalised models, trained using subject-dependent
examples, show this to produce more accurate predictions [5, 7, 21]. In [21], a
general model and a personalised model both trained using a C4.5 decision tree
classifier are compared. The general model produced an accuracy of 56.3% while
the personalised model produced an accuracy of 94.6% , an increase of 39.3%.
Similarly, [5] and [7] reported increases of 19.0% and 9.7% between personalised
and general models respectively which are trained using the same classification
algorithm. A more recent improvement on standard subject-dependent training
which uses online multi-task (OMT) learning is presented in [20]. Here, individ-
ual users are treated as separate tasks where each task only contains the respec-
tive user’s data. Personalised classifiers for each task are then trained jointly
which allows the models to influence one-another, thereby improving accuracy.
Evaluation shows OMT to perform better than personalised models trained in-
dependently. A common disadvantage of all subject-dependent approaches is
that they require access to significant amounts of good quality end-user data for
training. Such approaches have limited practical use for real-world applications
because of the burden they place on users to provide sufficient training data.

An alternative solution is to bootstrap a general model with a small set of ex-
amples acquired from the user through semi-supervised learning approaches. Dif-
ferent types of semi-supervised learning approaches have been explored for per-
sonalised HAR e.g. self-learning, co-learning and active learning, which bootstrap
a general model with examples acquired from the user [12]. Both self-learning
and co-learning attempt to infer accurate activity labels for unlabelled examples
without querying the user. This way, both approaches manage to avoid placing
any labelling burden on the user. In contrast, active learning selectively chooses
the most useful examples to present to the user for labelling using techniques such
as uncertainty sampling which consistently outperform random sampling [16].
Evaluations show semi-supervised approaches mainly produce improvements in
situations where baseline classification accuracy is low but no improvements were
observed in situations where baseline accuracy was already very high [12]. In ad-
dition, semi-supervised approaches require retraining of the classifier at runtime
every time new data needs to be incorporated into the model, which can be very
expensive, especially on mobile devices.

Case-based reasoning (CBR) offers a convenient solution to the problem of
model retraining at runtime. The k-nearest neighbour (kNN) retrieval approach
at the core of CBR does not learn a model, which makes it able to easily assim-
ilate new examples at runtime. However, performance of kNN largely depends



on the choice of similarity metric, and manually defining good similarity metrics
for specific problems is generally difficult [4].

Metric learning is an approach that is used to automatically learn a similar-
ity metric from data in a way that better captures the important relationships
between examples in that data [23]. An important point to note about metric
learning is that learning a similarity metric from data is equivalent to transform-
ing the data to a new representation and computing the similarity in this new
space using any standard metric e.g. Euclidean [4]. For a comprehensive review
of metric learning, we refer the reader to [4] and [9]. A more recent sub-field of
metric learning called deep metric learning uses deep learning algorithms to learn
this feature transformation, thereby taking advantage of the ability of deep learn-
ing algorithms to extract higher-level, abstract feature representations. Matching
networks are an example in this category that are able to incorporate any deep
learning architecture e.g. convolutional neural networks [11] or recurrent neural
networks [6].

Given the novelty of deep metric learning, very few applications of this are
available in case-based reasoning. A very recent work that uses deep metric learn-
ing in a Case-based reasoning system for adaptable clickbait detection is [14],
where a word2vec model [15] is used in combination with a deep convolutional
neural network to learn similarity between clickbait articles. Another CBR sys-
tem for image-based Web page classification which uses Siamese convolutional
neural networks is presented in [13]. Siamese neural networks learn a similar-
ity metric by minimising a contrastive loss which penalises dissimilar example
pairs being placed close in the representation space, and rewards similar pairs
being placed close together [8]. In this work, we focus on matching networks in
particular which have the ability to both learn appropriate feature transforma-
tions using metric learning, and at the same time perform nearest neighbour
classification using neural attention mechanism [3].

3 Human Activity Recognition

Fig. 1. Steps of human activity recognition.



The computational task of HAR consists of three main steps: windowing,
feature extraction and classifier training as illustrated in Figure 1. Windowing
is the process of partitioning continuous sensor data into discrete instances of
length l, where l is typically specified in seconds. Figure 2 illustrates how win-
dowing is applied to a tri-axial accelerometer data stream with channels: a, b
and c. Windows can be overlapped especially at train time in order have better
coverage of the data, which also increases the number of examples available for
training. We do not overlap windows at test time in order to simulate real-time
streaming data.

The length of windows is an important consideration where very short win-
dow lengths typically produce less accurate performance, while longer windows
produce latency at runtime due to the fact that several seconds worth of data
need to be collected before before making a prediction [18]. In this work, we
choose a window length of five seconds which provides a good balance be-
tween accuracy and latency. A tri-axial accelerometer partitioned in this way
produces a window wi is comprised of real-valued vectors ai, bi and ci, such
that ai = (ai1, . . . , ail).

Fig. 2. Illustration of accelerometer data windowing.

Once windows have been partitioned, suitable features need to extracted
from each window wi in order to generate examples xi used for classifier train-
ing. Many different feature extraction approaches have been applied for HAR.
These include hand-crafted time and frequency domain features, coefficients of
frequency domain transformations, as well as more recent deep learning ap-
proaches [17]. One feature extraction approach we have previously found to be
both inexpensive to compute and very effective, is Discrete Cosine Transform
(DCT) [17]. DCT is applied to each axis (ai, bi, ci) of a given window wi to
produce vectors of coefficients va, vb and vc respectively that describe the sinu-
soidal wave forms that constitute the original signal. In addition, we also include
the DCT coefficients of the magnitude vector m where each entry mj in m is



computed using the Euclidean norm of corresponding entries in aj , bj and cj as
defined in Equation 1.

mj =
√
a2j + b2j + c2j (1)

DCT produces an ordered vector of coefficients such that the most significant
information is concentrated at the lower indices of the vectors This means that
the vector of coeffcients can be truncated to the first n indices without loss
of information, making DCT ideal for compression. In this work, we truncate
vectors to a length of n = 60. The truncated coefficient vectors va, vb, vc and vm

are concatenated together to form a single example representation xi of length
240.

4 Matching Networks

Fig. 3. Illustration of matching network for HAR.

The aim of matching networks is to learn a model that maps an unlabelled
example x̂ to a class label ŷ using a small support set S of labelled examples.
To provide a formal definition of matching networks, we define a set of class



labels L and a set of examples X. We also define a support set S as shown in
Equation 2,

S = {(x, y)|x ∈ X, y ∈ Y ⊂ L}k (2)

i.e. S consists of a subset of classes Y with m examples in each class. Hence,
the cardinality of S is k = m × |Y |. A matching networks learns a classifier
Cs which, given a test instance x̂, provides a probability distribution over class
labels y ∈ Y i.e. P (y|x̂, S). Accordingly, the class label ŷ of x̂ is predicted as the
class with the highest probability i.e.

argmaxyP (y|x̂, S) (3)

Next we address the question of how to calculate P (y|x̂, S). This can be done
using an attention function a() which computes the probabilities in three oper-
ations. Firstly, we define an embedding function fθ, which is a neural network
that maps a given input to an embedded representation as shown in Equation 4.

fθ(x) = x′ (4)

The embedding function fθ is the embedding part of the matching net-
work and it’s goal is to produce representations that maximise similarity be-
tween examples belonging to the same class. Thus, we define a similarity metric
sim(x̂′, x′

i) which returns the similarity between the embedded representations
of our unlabelled example x̂ and any example xi ∈ S. Here, any standard simi-
larity metric e.g. Euclidean, dot product or cosine can be used. An example of
sim using cosine similarity is shown in Equation 5.

sim(x̂′, x′
i) =

∑
x̂′
jx

′
i,j√

x̂
′2
j

√
x

′2
i,j

(5)

The last operation of the attention function is to convert the similarity values
returned by sim into probabilities. This can be done using the softmax function
as shown in Equation 6.

a(x̂′, x′
i) = esim(x̂′,x′

i)/

k∑
esim(x̂′,x′

i) (6)

Using a loss function e.g. categorical cross-entropy, the entire matching net-
work can be trained end-to-end using gradient descent.

5 Personalised HAR using Matching Networks

In this section, we formally describe how we apply matching networks for per-
sonalised HAR. Recall that for personalised HAR, our aim is to obtain a network
that can classify a particular user’s activity using a small set of examples pro-
vided by the same user. Therefore, training such a network requires us to define



Fig. 4. Details of embedding network

a set of users U where each user uj ∈ U is comprised of a set of labelled examples
as follows:

uj = {(x, y)|x ∈ X, y ∈ L} (7)

Next we define a set of training instances Tj for each user uj as follows:

Tj = {(Sj , Bj)}l (8)

i.e., Tj is made up of user-specific support and target set pairs Sj and Bj
respectively, where Sj = {(x, y)|x ∈ ui, y ∈ L}k and Bj = {(x, y)|x ∈ uj , x 6∈
Sj}. Note that the set of labels in Sj is always equivalent to L because we are
interested in learning a classifier over the entire set of activity labels. Accordingly,
Sj contains m examples for each class y ∈ L and the cardinality of Sj is k =
m × |L|. Both Sj and Bj are sampled at random from uj l times to create Tj .
Each Bj is used with it’s respective Sj by classifying each instance in Bj using
Sj and computing loss using categorical cross entropy. The network is trained
using stochastic gradient descent and back propagation.

The embedding function used in this work is a neural network with one fully-
connected layer with 1200 units. Before examples are input into the embedding
network, they are passed through Discrete Cosine Transform (DCT) feature
extraction. The fully connected layer is followed by a Batch Normalisation layer



which reduces covariate shift and has been shown to result in faster training and
better accuracy. An illustration of the configuration of the embedding network
is presented in Figure 4.

6 Dataset

A group of 50 volunteer participants was used for data collection. The age range
of participants is 18 - 54 years and the gender distribution is 52% Female and
48% Male. Data collection concentrated on the activities provided in Table 1.

Table 1. Description of activity classes.

Activity Description

Lying Lying down relatively still on a plinth

Sitting Sitting still with hands on desk or thighs

Standing Standing relatively still

Walking Slow Walking at slow pace

Walking Normal Walking at normal pace

Walking Fast Walking at fast pace

Up Stairs Walking up 4 - 6 flights of stairs

Down Stairs Walking down 4 - 6 a flights of stairs

Jogging Jogging on a treadmill at moderate speed

The set of activities in Table 1 was chosen because it represents the range
of normal daily activities typically performed by most people. Three different
walking speeds (slow, normal and fast) were included in order to have an accurate
estimate of the intensity of the activities performed by the user. Identifying
intensity of activity is important because guidelines for health and well-being
include recommendations for encouraging both moderate and vigorous physical
activity [1]. We expect the distinction between different walking speeds to be
particularly challenging for subject-independent models because one person’s
slow walking speed might be closer to another person’s normal walking speed

Data was collected using the Axivity Ax3 tri-axial accelerometer 1 at a sam-
pling rate of 100Hz. Accelerometers were mounted on the right-hand wrists of
the participants using specially designed wristbands provided by Axivity. Activ-
ities are roughly evenly distributed between classes as participants were asked to
do each activity for the same period of time (3 minutes). The exceptions are Up
stairs and Down stairs, where the amount of time needed to reach the top (or
bottom) of the stairs was just over 2 minutes on average. This data is publicly
available on Github 2.

Recall that in order to apply the matching network, we require the user
to provide a small sample of data for each activity class which will be used

1http://axivity.com/product/ax3
2https://github.com/selfback/activity-recognition/tree/master/activity data



to create the support set. To simulate this with our dataset, we hold out the
first 30 seconds of each test user’s data for creating the support set. This leaves
approximately 150 seconds of data per activity which are used for testing, except
for ”Up Stairs” and ”Down Stairs” classes which have about 90 seconds of test
data each.

7 Evaluation

Evaluations are conducted using a hold-out methodology where 8 users were ran-
domly selected for testing and the remaining users’ data were used for training.
A time window of 5 seconds is used for signal segmentation and performance is
reported using macro-averaged F1 score, a measure of accuracy that considers
both precision (the fraction of examples predicted as class ci that correctly be-
long to ci) and recall (the fraction of examples truly belonging to class ci that
are predicted as ci) for each class. Discrete Cosine Transforms with features are
used for data representation.

Our evaluation is composed of two parts. Firstly we explore the performance
of our matching network against a number of baseline approaches. Accordingly
we compare the following algorithms:

– kNN: Nearest-neighbour classifier trained on the entire training set
– SVM: Support Vector Machines trained on the entire training set
– MLP: A Feed-forward neural network trained on the entire training
– MNet: Our personalised matching network approach

Note that MLP is equivalent to our embedding network with one hidden layer,
batch-normalisation and softmax classification layer. The comparison with MLP
is meant to provide evidence for the effectiveness of the personalisation approach
of MNet beyond it’s use of the embedding network. Note also that increasing the
number of hidden layers beyond one for both MNet and MLP did not produce
any improvement in performance. For MNet, we use n = 5 examples per class.
These parameter values are presented in Table 2.

Table 2. Parameter settings.

Parameter kNN SVM MLP MNet

Similarity metric/Kernel Cosine Gaussian - Cosine

Neighbours 5 - - 5

Hidden Layers - - 1 1

Hidden Units - - 120 120

Training Epochs - - 10 20

Batch Size - - 64 64

Loss function - - Cross Entropy Cross Entropy

Optimiser - - Adam Adam



Fig. 5. Evaluation of MNet against popular classifiers.

It can be observed from Figure 5 that MNet produces the best result SVM
and MLP have comparative performance while kNN comes in last. The poor
performance of kNN compared to SVM and MLP is consistent with our previous
evaluations [17]. MNet out performs both SVM and MLP by more than 6% which
shows the effectiveness of our matching network approach at exploiting personal
data for activity recognition.

Fig. 6. Results of MNet with different number of samples per class.



The second part of our evaluation explores the influence of the number of
examples per class n on classification performance. Recall that the amount ”user-
provided” data available to us are 30 seconds per activity. Considering our win-
dow length of 5 seconds, this provides us a maximum of 6 examples per class.
Hence, we explore sizes of n from 1 to 6. Results are presented in Figure 6. It
can be observed that results of MNet improve with increase in size of n. However
no improvement is observed between n = 5 and n = 6 which perhaps suggests
not much improvement will be gained with continued increase in size of n. Eval-
uating sizes of n greater than 6 is not feasible with our experiment design and
limited data, however, this can be explored further in future work.

A reasonable argument that can be made is that MNet has the added advan-
tage of using end-user supplied data. Therefore, we present a comparison with
versions of kNN, SVM and MLP (named kNN+, SVM+ and MLP+ respec-
tively) which are trained on all user provided samples in addition to the entire
training set. Results are presented in Figure 7.

Fig. 7. Evaluation number of examples per class.

As can be observed, addition of the small number of user samples does not
improve performance in kNN+, SVM+ and MLP+. In all three cases, results are
approximately the same as those of training on the training set only presented
in Figure 5. An obvious explanation for the lack of improvement is the small size
of the user provided data in which case, it can be expected that larger amounts
of user data may lead to improved performance. However, the point to note is
that the same size of data is sufficient to produce marked improvement in the
performance of MNet.



8 Conclusion

In this paper, we presented a novel approach for personalised HAR using match-
ing networks. Matching networks adopt principles from both metric learning and
attention in neural networks to perform effective k-nearest neighbour classifica-
tion using a small support set of examples. We demonstrated how this support
set can be constructed from a small set of labelled examples provided by the user
at runtime, which allows the matching network to effectively build a personalised
classifier for the user. Evaluation shows our approach to outperform a generals
model by at least 6% of F1 score.

There are two main advantages to the approach we presented in this paper.
Firstly, our approach is able to achieve high accuracy using only a small set of of
user provided examples (30 seconds in this work) which makes it more practical
for real-world applications compared to subject-dependent training which re-
quires the end user to provide large amounts (possible hours) of labelled training
data. Secondly, our approach does not require retraining the model at runtime
when new data becomes available which makes the approach very adaptable.

The ability of matching networks to learn similarity metrics for particular
domains as well as their ability to adapt at runtime make them very relevant for
case-based reasoning applications. We hope that this work will inspire further
work on adoption of these and similar approaches for application in CBR.
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