82 research outputs found

    Efficient and Accurate Disparity Estimation from MLA-Based Plenoptic Cameras

    Get PDF
    This manuscript focuses on the processing images from microlens-array based plenoptic cameras. These cameras enable the capturing of the light field in a single shot, recording a greater amount of information with respect to conventional cameras, allowing to develop a whole new set of applications. However, the enhanced information introduces additional challenges and results in higher computational effort. For one, the image is composed of thousand of micro-lens images, making it an unusual case for standard image processing algorithms. Secondly, the disparity information has to be estimated from those micro-images to create a conventional image and a three-dimensional representation. Therefore, the work in thesis is devoted to analyse and propose methodologies to deal with plenoptic images. A full framework for plenoptic cameras has been built, including the contributions described in this thesis. A blur-aware calibration method to model a plenoptic camera, an optimization method to accurately select the best microlenses combination, an overview of the different types of plenoptic cameras and their representation. Datasets consisting of both real and synthetic images have been used to create a benchmark for different disparity estimation algorithm and to inspect the behaviour of disparity under different compression rates. A robust depth estimation approach has been developed for light field microscopy and image of biological samples

    From Calibration to Large-Scale Structure from Motion with Light Fields

    Get PDF
    Classic pinhole cameras project the multi-dimensional information of the light flowing through a scene onto a single 2D snapshot. This projection limits the information that can be reconstructed from the 2D acquisition. Plenoptic (or light field) cameras, on the other hand, capture a 4D slice of the plenoptic function, termed the “light field”. These cameras provide both spatial and angular information on the light flowing through a scene; multiple views are captured in a single photographic exposure facilitating various applications. This thesis is concerned with the modelling of light field (or plenoptic) cameras and the development of structure from motion pipelines using such cameras. Specifically, we develop a geometric model for a multi-focus plenoptic camera, followed by a complete pipeline for the calibration of the suggested model. Given a calibrated light field camera, we then remap the captured light field to a grid of pinhole images. We use these images to obtain metric 3D reconstruction through a novel framework for structure from motion with light fields. Finally, we suggest a linear and efficient approach for absolute pose estimation for light fields

    Blur aware metric depth estimation with multi-focus plenoptic cameras

    Full text link
    While a traditional camera only captures one point of view of a scene, a plenoptic or light-field camera, is able to capture spatial and angular information in a single snapshot, enabling depth estimation from a single acquisition. In this paper, we present a new metric depth estimation algorithm using only raw images from a multi-focus plenoptic camera. The proposed approach is especially suited for the multi-focus configuration where several micro-lenses with different focal lengths are used. The main goal of our blur aware depth estimation (BLADE) approach is to improve disparity estimation for defocus stereo images by integrating both correspondence and defocus cues. We thus leverage blur information where it was previously considered a drawback. We explicitly derive an inverse projection model including the defocus blur providing depth estimates up to a scale factor. A method to calibrate the inverse model is then proposed. We thus take into account depth scaling to achieve precise and accurate metric depth estimates. Our results show that introducing defocus cues improves the depth estimation. We demonstrate the effectiveness of our framework and depth scaling calibration on relative depth estimation setups and on real-world 3D complex scenes with ground truth acquired with a 3D lidar scanner.Comment: 21 pages, 12 Figures, 3 Table

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Non-disruptive use of light fields in image and video processing

    Get PDF
    In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved.Im Zeitalter der computergestützten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal für fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestützten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollständige volumetrische Information einer Szene. Diese Technologie bietet dabei das größte Potenzial, immersive Erlebnisse zu mehr Realitätsnähe zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der Inkompatibilität derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen für 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die Kompatibilität zwischen Anwendungen und Geräten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken für eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollständige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen Ansätze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung

    Light Field compression and manipulation via residual convolutional neural network

    Get PDF
    Light field (LF) imaging has gained significant attention due to its recent success in microscopy, 3-dimensional (3D) displaying and rendering, augmented and virtual reality usage. Postprocessing of LF enables us to extract more information from a scene compared to traditional cameras. However, the use of LF is still a research novelty because of the current limitations in capturing high-resolution LF in all of its four dimensions. While researchers are actively improving methods of capturing high-resolution LF\u27s, using simulation, it is possible to explore a high-quality captured LF\u27s properties. The immediate concerns following the LF capture are its storage and processing time. A rich LF occupies a large chunk of memory ---order of multiple gigabytes per LF---. Also, most feature extraction techniques associated with LF postprocessing involve multi-dimensional integration that requires access to the whole LF and is usually time-consuming. Recent advancements in computer processing units made it possible to simulate realistic images using physical-based rendering software. In this work, at first, a transformation function is proposed for building a camera array (CA) to capture the same portion of LF from a scene that a standard plenoptic camera (SPC) can acquire. Using this transformation, LF simulation with similar properties as a plenoptic camera will become trivial in any rendering software. Artificial intelligence (AI) and machine learning (ML) algorithms ---when deployed on the new generation of GPUs--- are faster than ever. It is possible to generate and train large networks with millions of trainable parameters to learn very complex features. Here, residual convolutional neural network (RCNN) structures are employed to build complex networks for compression and feature extraction from an LF. By combining state-of-the-art image compression and RCNN, I have created a compression pipeline. The proposed pipeline\u27s bit per pixel (bpp) ratio is 0.0047 on average. I show that with a 1% compression time cost and 18x speedup for decompression, our methods reconstructed LFs have better structural similarity index metric (SSIM) and comparable peak signal-to-noise ratio (PSNR) compared to the state-of-the-art video compression techniques used to compress LFs. In the end, using RCNN, I created a network called RefNet, for extracting a group of 16 refocused images from a raw LF. The training parameters of the 16 LFs are set to (\alpha=0.125, 0.250, 0.375, ..., 2.0) for training. I show that RefNet is 134x faster than the state-of-the-art refocusing technique. The RefNet is also superior in color prediction compared to the state-of-the-art ---Fourier slice and shift-and-sum--- methods

    Orientation Analysis in 4D Light Fields

    Get PDF
    This work is about the analysis of 4D light fields. In the context of this work a light field is a series of 2D digital images of a scene captured on a planar regular grid of camera positions. It is essential that the scene is captured over several camera positions having constant distances to each other. This results in a sampling of light rays emitted by a single scene point as a function of the camera position. In contrast to traditional images – measuring the light intensity in the spatial domain – this approach additionally captures directional information leading to the four dimensionality mentioned above. For image processing, light fields are a relatively new research area. In computer graphics, they were used to avoid the work-intensive modeling of 3D geometry by instead using view interpolation to achieve interactive 3D experiences without explicit geometry. The intention of this work is vice versa, namely using light fields to reconstruct geometry of a captured scene. The reason is that light fields provide much richer information content compared to existing approaches of 3D reconstruction. Due to the regular and dense sampling of the scene, aside from geometry, material properties are also imaged. Surfaces whose visual appearance change when changing the line of sight causes problems for known approaches of passive 3D reconstruction. Light fields instead sample this change in appearance and thus make analysis possible. This thesis covers different contributions. We propose a new approach to convert raw data from a light field camera (plenoptic camera 2.0) to a 4D representation without a pre-computation of pixel-wise depth. This special representation – also called the Lumigraph – enables an access to epipolar planes which are sub-spaces of the 4D data structure. An approach is proposed analyzing these epipolar plane images to achieve a robust depth estimation on Lambertian surfaces. Based on this, an extension is presented also handling reflective and transparent surfaces. As examples for the usefulness of this inherently available depth information we show improvements to well known techniques like super-resolution and object segmentation when extending them to light fields. Additionally a benchmark database was established over time during the research for this thesis. We will test the proposed approaches using this database and hope that it helps to drive future research in this field

    Optical blur disturbs – the influence of optical-blurred images in photogrammtry

    Get PDF
    Photogrammetric processes such as camera calibration, feature and target detection and referencing are assumed to strongly depend on the quality of the images that are provided for the process. Consequently, motion and optically blurred images are usually excluded from photogrammetric processes to supress their negative influence. To evaluate how much optical blur is acceptable and how large the influence of optical blur is on photogrammetric procedures a variety of test environments were established. These were based upon previous motion blur research and included test fields for the analysis of camera calibration. For the evaluation, a DSLR camera as well as Lytro Illum light field camera were used. The results show that optical blur has a negative influence on photogrammetric procedures, mostly automatic target detection. With the intervention of an experienced operator and the use of semi-automatic tools, acceptable results can be established

    Plenoptic Signal Processing for Robust Vision in Field Robotics

    Get PDF
    This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic cameras offer an appealing alternative to conventional imagery by gathering significantly more light over a wider depth of field, and capturing a rich 4D light field structure that encodes textural and geometric information. The key contributions of this work lie in exploring the properties of plenoptic signals and developing algorithms for exploiting them. It lays the groundwork for the deployment of plenoptic cameras in field robotics by establishing a decoding, calibration and rectification scheme appropriate to compact, lenslet-based devices. Next, the frequency-domain shape of plenoptic signals is elaborated and exploited by constructing a filter which focuses over a wide depth of field rather than at a single depth. This filter is shown to reject noise, improving contrast in low light and through attenuating media, while mitigating occluders such as snow, rain and underwater particulate matter. Next, a closed-form generalization of optical flow is presented which directly estimates camera motion from first-order derivatives. An elegant adaptation of this "plenoptic flow" to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering novel views. Finally, the isolation of dynamic elements from a static background is considered, a task complicated by the non-uniform apparent motion caused by a mobile camera. Two elegant closed-form solutions are presented dealing with monocular time-series and light field image pairs. This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with predictable and constant runtimes, making them suitable for real-time embedded implementation in field robotics applications
    • …
    corecore