291 research outputs found

    A model-driven approach to broaden the detection of software performance antipatterns at runtime

    Full text link
    Performance antipatterns document bad design patterns that have negative influence on system performance. In our previous work we formalized such antipatterns as logical predicates that predicate on four views: (i) the static view that captures the software elements (e.g. classes, components) and the static relationships among them; (ii) the dynamic view that represents the interaction (e.g. messages) that occurs between the software entities elements to provide the system functionalities; (iii) the deployment view that describes the hardware elements (e.g. processing nodes) and the mapping of the software entities onto the hardware platform; (iv) the performance view that collects specific performance indices. In this paper we present a lightweight infrastructure that is able to detect performance antipatterns at runtime through monitoring. The proposed approach precalculates such predicates and identifies antipatterns whose static, dynamic and deployment sub-predicates are validated by the current system configuration and brings at runtime the verification of performance sub-predicates. The proposed infrastructure leverages model-driven techniques to generate probes for monitoring the performance sub-predicates and detecting antipatterns at runtime.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Performance assessment of an architecture with adaptative interfaces for people with special needs

    Get PDF
    People in industrial societies carry more and more portable electronic devices (e.g., smartphone or console) with some kind of wireles connectivity support. Interaction with auto-discovered target devices present in the environment (e.g., the air conditioning of a hotel) is not so easy since devices may provide inaccessible user interfaces (e.g., in a foreign language that the user cannot understand). Scalability for multiple concurrent users and response times are still problems in this domain. In this paper, we assess an interoperable architecture, which enables interaction between people with some kind of special need and their environment. The assessment, based on performance patterns and antipatterns, tries to detect performance issues and also tries to enhance the architecture design for improving system performance. As a result of the assessment, the initial design changed substantially. We refactorized the design according to the Fast Path pattern and The Ramp antipattern. Moreover, resources were correctly allocated. Finally, the required response time was fulfilled in all system scenarios. For a specific scenario, response time was reduced from 60 seconds to less than 6 seconds

    Are Smell-Based Metrics Actually Useful in Effort-Aware Structural Change-Proneness Prediction? An Empirical Study

    Get PDF
    Bad code smells (also named as code smells) are symptoms of poor design choices in implementation. Existing studies empirically confirmed that the presence of code smells increases the likelihood of subsequent changes (i.e., change-proness). However, to the best of our knowledge, no prior studies have leveraged smell-based metrics to predict particular change type (i.e., structural changes). Moreover, when evaluating the effectiveness of smell-based metrics in structural change-proneness prediction, none of existing studies take into account of the effort inspecting those change-prone source code. In this paper, we consider five smell-based metrics for effort-aware structural change-proneness prediction and compare these metrics with a baseline of well-known CK metrics in predicting particular categories of change types. Specifically, we first employ univariate logistic regression to analyze the correlation between each smellbased metric and structural change-proneness. Then, we build multivariate prediction models to examine the effectiveness of smell-based metrics in effort-aware structural change-proneness prediction when used alone and used together with the baseline metrics, respectively. Our experiments are conducted on six Java open-source projects with up to 60 versions and results indicate that: (1) all smell-based metrics are significantly related to structural change-proneness, except metric ANS in hive and SCM in camel after removing confounding effect of file size; (2) in most cases, smell-based metrics outperform the baseline metrics in predicting structural change-proneness; and (3) when used together with the baseline metrics, the smell-based metrics are more effective to predict change-prone files with being aware of inspection effort

    applying design patterns to remove software performance antipatterns a preliminary approach

    Get PDF
    Abstract: Patterns and antipatterns represent powerful instruments in the hands of software designers, for improving the quality of software systems. A large variety of design patterns arose since decades, as well as several performance antipatterns have been defined. In this paper we propose a preliminary approach for antipattern-based refactoring of software systems, driven by design patterns application. The approach is focused on refactoring software artifacts (i.e., models, code) by applying design patterns, with the aim of removing possible performance antipatterns occurring on such artifacts. Based on our approach, design patterns are ranked in order to drive the refactoring choice. We also provide an illustrative example as a preliminary validation of our approach, showing how the ranking method works over three design patterns for removing the Empty Semi-Trucks performance antipattern, and we finally identify future research directions of our work

    Software Perfomance Assessment at Architectural Level: A Methodology and its Application

    Get PDF
    Las arquitecturas software son una valiosa herramienta para la evaluación de las propiedades cualitativas y cuantitativas de los sistemas en sus primeras fases de desarrollo. Conseguir el diseño adecuado es crítico para asegurar la bondad de dichas propiedades. Tomar decisiones tempranas equivocadas puede implicar considerables y costosos cambios en un futuro. Dichas decisiones afectarían a muchas propiedades del sistema, tales como su rendimiento, seguridad, fiabilidad o facilidad de mantenimiento. Desde el punto de vista del rendimiento software, la ingeniería del rendimiento del software (SPE) es una disciplina de investigación madura y comúnmente aceptada que propone una evaluación basada en modelos en las primeras fases del ciclo de vida de desarrollo software. Un problema en este campo de investigación es que las metodologías hasta ahora propuestas no ofrecen una interpretación de los resultados obtenidos durante el análisis del rendimiento, ni utilizan dichos resultados para proponer alternativas para la mejora de la propia arquitectura software. Hasta la fecha, esta interpretación y mejora requiere de la experiencia y pericia de los ingenieros software, en especial de expertos en ingeniería de prestaciones. Además, a pesar del gran número de propuestas para evaluar el rendimiento de sistemas software, muy pocos de estos estudios teóricos son posteriormente aplicados a sistemas software reales. El objetivo de esta tesis es presentar una metodología para el asesoramiento de decisiones arquitecturales para la mejora, desde el punto de vista de las prestaciones, de las sistemas software. La metodología hace uso del Lenguaje Unificado de Modelado (UML) para representar las arquitecturas software y de métodos formales, concretamente redes de Petri, como modelo de prestaciones. El asesoramiento, basado en patrones y antipatrones, intenta detectar los principales problemas que afectan a las prestaciones del sistema y propone posibles mejoras para mejoras dichas prestaciones. Como primer paso, estudiamos y analizamos los resultados del rendimiento de diferentes estilos arquitectónicos. A continuación, sistematizamos los conocimientos previamente obtenidos para proponer una metodología y comprobamos su aplicabilidad asesorando un caso de estudio real, una arquitectura de interoperabilidad para adaptar interfaces a personas con discapacidad conforme a sus capacidades y preferencias. Finalmente, se presenta una herramienta para la evaluación del rendimiento como un producto derivado del propio ciclo de vida software

    A Bi-Level Multi-Objective Approach for Web Service Design Defects Detection

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152453/1/JSS_WSBi_Level__Copy_fv.pd

    The 10th Jubilee Conference of PhD Students in Computer Science

    Get PDF

    Critiquing Antipatterns In Novice Code

    Get PDF
    Students in introductory computer science courses, are learning to program. Indeed, most students perceive that learning to code is the central topic explored in the courses. Students spend an enormous amount of time struggling to learn the syntax and understand semantics of a particular language. Instructors spend a similar amount of time reading student code and explaining the meaning of the cryptic error messages displayed by compilers. Messages provided by compilers are intended to give feedback on the adherence of one’s code to the language specification and conventions. Unfortunately, these message are geared towards experts who have a clear understanding of the language syntax and semantics and a deep model of what comprises a program and how a program is developed. These students are novices who lack fundamental understanding of the structure of a program and have no basic mental model of how a program works. Novices make different kinds of mistakes than experts. Instructors need to spend a lot of time simply assisting novices in using compilers and understanding their output. In addition to mastering the syntax and semantics of their first programming language, novices are exposed to the question of what constitutes good design. Instructors can identify virtuous design choices and articulate areas of improvement. But contact time with students is limited, and waiting for in-person feedback or replies to personal messages can be a critical delay. Novices, still struggling to use the compiler, have not yet developed the sophisticated analytical processes employed by experts and this is reflected in their design choices and the kinds of mistakes they make. When a novice approaches an instructor with a question, the instructor must often provide a balanced critique that assists the student with understanding both the structure and the design aspects of their own code. My research has focused on whether we can identify examples of early programming antipatterns that have arisen from our teaching experience, and describe different ways of detecting them automatically. Novice students may produce code that is close to a correct solution but contains syntactic errors; code critiquers attempt to salvage the promising portions of the students submission and suggest repairs in ways more meaningful than typical compiler error messages. Alternatively, a student misunderstanding may result in well-formed code that passes unit tests yet contains clear design flaws; through additional analysis, code critiquers can detect and flag these flaws. Finally, certain types of antipatterns can be anticipated and flagged by the instructor, based on the context of the course and the programming activity; code critiquers allow for customizable critique triggers and messages. This dissertation presents several key contributions to our understanding of novice misconceptions and their representation, diagnosis and repair using antipatterns. My research focuses on identifying antipatterns and detecting them in novice code, then using this information to provide the student with a meaningful critique of their work. I have developed WebTA, a tool to critique student programs in introductory computer science courses. WebTA is used to teach students test-driven agile development methods through small cycles of teaching, coding integrated with testing, and immediate feedback.Through the use of WebTA in introductory computer science courses since 2014, I have amassed a significant corpus of novice programmer submission data. Lastly, I have compiled a library of antipatterns found in novice code

    Detection of microservice smells through static analysis

    Get PDF
    A arquitetura de microsserviços é um modelo arquitetural promissor na área de software, atraindo desenvolvedores e empresas para os seus princípios convincentes. As suas vantagens residem no potencial para melhorar a escalabilidade, a flexibilidade e a agilidade, alinhando se com as exigências em constante evolução da era digital. No entanto, navegar entre as complexidades dos microsserviços pode ser uma tarefa desafiante, especialmente à medida que este campo continua a evoluir. Um dos principais desafios advém da complexidade inerente aos microsserviços, em que o seu grande número e interdependências podem introduzir novas camadas de complexidade. Além disso, a rápida expansão dos microsserviços, juntamente com a necessidade de aproveitar as suas vantagens de forma eficaz, exige uma compreensão mais profunda das potenciais ameaças e problemas que podem surgir. Para tirar verdadeiramente partido das vantagens dos microsserviços, é essencial enfrentar estes desafios e garantir que o desenvolvimento e a adoção de microsserviços sejam bem-sucedidos. O presente documento pretende explorar a área dos smells da arquitetura de microsserviços que desempenham um papel tão importante na dívida técnica dirigida à área dos microsserviços. Embarca numa exploração de investigação abrangente, explorando o domínio dos smells de microsserviços. Esta investigação serve como base para melhorar um catálogo de smells de microsserviços. Esta investigação abrangente obtém dados de duas fontes primárias: systematic mapping study e um questionário a profissionais da área. Este último envolveu 31 profissionais experientes com uma experiência substancial no domínio dos microsserviços. Além disso, são descritos o desenvolvimento e o aperfeiçoamento de uma ferramenta especificamente concebida para identificar e resolver problemas relacionados com os microsserviços. Esta ferramenta destina-se a melhorar o desempenho dos programadores durante o desenvolvimento e a implementação da arquitetura de microsserviços. Por último, o documento inclui uma avaliação do desempenho da ferramenta. Trata-se de uma análise comparativa efetuada antes e depois das melhorias introduzidas na ferramenta. A eficácia da ferramenta será avaliada utilizando o mesmo benchmarking de microsserviços utilizado anteriormente, para além de outro benchmarking para garantir uma avaliação abrangente.The microservices architecture stands as a beacon of promise in the software landscape, drawing developers and companies towards its compelling principles. Its appeal lies in the potential for improved scalability, flexibility, and agility, aligning with the ever-evolving demands of the digital age. However, navigating the intricacies of microservices can be a challenging task, especially as this field continues to evolve. A key challenge arises from the inherent complexity of microservices, where their sheer number and interdependencies can introduce new layers of intricacy. Furthermore, the rapid expansion of microservices, coupled with the need to harness their advantages effectively, demands a deeper understanding of the potential pitfalls and issues that may emerge. To truly unlock the benefits of microservices, it is essential to address these challenges head-on and ensure a successful journey in the world of microservices development and adoption. The present document intends to explore the area of microservice architecture smells that play such an important role in the technical debt directed to the area of microservices. It embarks on a comprehensive research exploration, delving into the realm of microservice smells. This research serves as the cornerstone for enhancing a microservice smell catalogue. This comprehensive research draws data from two primary sources: a systematic mapping research and an industry survey. The latter involves 31 seasoned professionals with substantial experience in the field of microservices. Moreover, the development and enhancement of a tool specifically designed to identify and address issues related to microservices is described. This tool is aimed at improving developers' performance throughout the development and implementation of microservices architecture. Finally, the document includes an evaluation of the tool's performance. This involves a comparative analysis conducted before and after the tool's enhancements. The tool's effectiveness will be assessed using the same microservice benchmarking as previously employed, in addition to another benchmark to ensure a comprehensive evaluation
    • …
    corecore