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Abstract—Bad code smells (also named as code smells) are
symptoms of poor design choices in implementation. Existing
studies empirically confirmed that the presence of code smells
increases the likelihood of subsequent changes (i.e., change-
proness). However, to the best of our knowledge, no prior studies
have leveraged smell-based metrics to predict particular change
type (i.e., structural changes). Moreover, when evaluating the ef-
fectiveness of smell-based metrics in structural change-proneness
prediction, none of existing studies take into account of the
effort inspecting those change-prone source code . In this paper,
we consider five smell-based metrics for effort-aware structural
change-proneness prediction and compare these metrics with
a baseline of well-known CK metrics in predicting particular
categories of change types. Specifically, we first employ univariate
logistic regression to analyze the correlation between each smell-
based metric and structural change-proneness. Then, we build
multivariate prediction models to examine the effectiveness of
smell-based metrics in effort-aware structural change-proneness
prediction when used alone and used together with the baseline
metrics, respectively. Our experiments are conducted on six
Java open-source projects with up to 60 versions and results
indicate that: (1) all smell-based metrics are significantly related
to structural change-proneness, except metric ANS in hive and
SCM in camel after removing confounding effect of file size;
(2) in most cases, smell-based metrics outperform the baseline
metrics in predicting structural change-proneness; and (3) when
used together with the baseline metrics, the smell-based metrics
are more effective to predict change-prone files with being aware
of inspection effort.

I. INTRODUCTION

Flower et al. [1] coined the term “code smells” and defined
the concept as symptoms of bad design and implementation
choices in source code. Since then, many empirical studies
have investigated the impact of code smells on software
quality properties, such as program understandability [2],
change-/fault-proneness [3]–[6] and code maintainability [7]–
[9]. These studies indicated that, when appeared in source
code alone or together, code smells could significantly increase
change-proneness.

Furthermore, the empirical results in the study of Romano
et al. [10] have shown that some smells could even result in
certain types of structural code changes (instead of changing
arbitrary lines in the code), e.g., API changes (a category of

change types, see Table II) are more likely to occur in the
classes affected by Swiss Army Knife smell.

To the best of our knowledge, these results only indicated
qualitatively that certain code smells could lead to textual
changes or a particular type of structural changes. Software
practitioners were not readily instructed on how to predict
these change-prone modules (such as files or classes) based on
the code smells, although it is obviously beneficial to do so.
For example, if developers were aware of likely API changes
due to code smells they could plan ahead of time to allocate
resources for system-wide integration tests on the dependent
modules. On the contrary, if only minor changes to statements
inside a method’s body were predicted, unit testing would be
sufficient because no further change impact can be expected.
Differentiating the effort of such predicted would-be changes
would add to the effective planning to be more prepared.

To achieve these goals, in this work, we consider mining
the structural change history of files to build an effort-aware
structural change-proneness prediction model based on five
code smell metrics. Specifically, we employ univariate logistic
regression approach to analyze the correlations between each
smell-based metric and structural change-proneness (without
discriminating particular change types); then we build mul-
tivariate prediction models to examine the effectiveness of
smell-based metrics, when used alone and together with the
baseline metrics (i.e. CK metrics), respectively, in predicting
effort-aware structural change-proneness.

The experiments are conducted on six typical Java open-
source projects with up to 60 versions. Our results show
that: (1) smell-based metrics are significantly correlated to
structural change-proneness; (2) in most cases, smell-based
metrics outperform the baseline metrics in predicting structural
change-proneness; and (3) when combined with the baseline
metrics, smell-based metrics are more effective in predicting
change-prone files with large LOC to inspect.

Our study provides valuable insight for researchers and
practitioners to better understand the usefulness of five smell-
based metrics in predicting structural change-prone files under
the scenarios of ranking and classification, being aware of the



effort to inspect LOC in the files-to-change.
The rest of the paper is organized as follows. Section II

discusses the related work. Section III introduces the study
design including research questions, subject selection, data
collection and prediction model construction, as well as model
evaluation. Section IV reports the experimental results, an-
swers our research questions. Section V examines the threats
to validity of our study. Section VI concludes.

II. RELATED WORK

In this section, we introduces three aspects that mostly
related to our research topic which consist of smell detection
techniques, smell’s impact on quality and change prediction
models.

A. Smells Detection

Code smells are symptoms of poor design and implemen-
tation choice. Fowler et al. [1] gave a brief description to
22 code smells and presented some refactoring techniques
for their removal. After that, many approaches have been
proposed for automatic smell detection, e.g., metrics-based
techniques, visualization-based techniques and search-based
techniques, as stated in recent literature reviews [11]–[14].
These literatures reveal that a notable portion (around 37%) of
detection approaches are metrics-based, although this approach
has its limitation. Based on aforementioned approaches, many
smell detection tools (up to 84) have been developed [11],
[12]. These tools include open-source tools, e.g., iPlasma
[15], JDeodrant [16], CBSDetector [17] and AJCSD1,
and closed-source tools, e.g., Borland Together2 and
InCode3. In contrast to open-source tools, closed-source tools
have the limitation that it is usually hard to know what smell
detection strategies are employed behind them. However, none
of these tools can detect all 22 code smells defined by Fowler
[1].

B. Impact of Smells on Quality

Due to our topic focusing on change-proneness prediction,
we only introduce studies of how smells affect code change-
proneness. Khomh et al [5] investigated more than 12 smells
on several projects and their results showed that the classes
affected by code smells have higher change-proneness than
other smell-free classes. Particularly, recent study by Palomba
et al. [6] further confirmed this result. Moreover, they also
highlighted that the change-proneness of smelly classes would
significantly decrease after removing corresponding smells
contained in these classes. Olbrich et al [3], [4] conducted
similar experiments focusing on God Class, Shotgun Surgery
and Brain Class, and concluded that these smells did had
higher change-proneness than smell-free components. Howev-
er, this conclusion did not hold when the change size (sum
of lines modified, added and deleted) was normalized by
source lines of code. Besides, several researchers paid more

1https://github.com/MelihAltintas/AutomaticJavaCodeSmellDetector
2http://borland.com/products/together
3http://intooitus.com/products/incode

attention on the effect of combined smells on the quality.
Abbes et al. [18] conducted three experiments on 24 subjects
and investigated whether the occurrence of antipatterns (alias
to code smells) affected code understandability during the
period of code comprehension and maintenance tasks. They
concluded that although the occurrence of one antipattern did
not significantly decrease developers’ performance, a combi-
nation of two antipatterns significantly hindered developers’
performance during code comprehension and maintenance
tasks. Furthermore, Yamashita et al. [7], [9] reported that
“coupled-smells” across different files could result in com-
parable negative maintenance issues as “collocated-smells” in
the same file. In particular, some studies also investigated
the relationship between code smells and structural change-
proneness, rather than textual change-proneness [5], [10], [19].
Their empirical results indicated that code smells also had
significant correlation with structural changes and even some
smells could be more structurally change-prone as compared
with other smells for a particular change category (see Table
II).

C. Change Prediction Models

Tollin et al. [20] used coding rules violations to predict
code changes through a set of machine learning models. Their
results indicated that these classification models achieved
satisfactory performance, especially when predicting changes
in the next version. Lu et al. [21] used statistical meta-analysis
to investigate the predictive capability of 62 OO metrics by
performing empirical validation on 102 Java systems. Their
study indicated that size metrics showed moderate predictive
capability, inheritance-based metrics had the least predictive
capability for change-prone class prediction. The predictive
ability of coupling and cohesion metrics was lower than size
metrics for change prediction tasks. In contrast to textual
change-proneness prediction, Romano and Pinzger [22] used
code metrics to predict change-prone Java interfaces. Soon
after that, Giger et al. [23] employed code metrics (i.e., CK
metrics) and network measures built on code dependency
graph to predict particular type of changes (similar to change
categories in Table II). Their results showed that the model
built on CK metrics and network measures in combination
achieved good prediction performance in terms of AUC,
precision and recall indicators.

III. STUDY DESIGN

The goal of this experimental study is to construct a change-
proneness prediction model using smell-based metrics and
to evaluate the contribution of these metrics with respect
to effort estimations such as LOC of changed files. In the
following subsections, we propose three research questions
and criteria to choose subject projects, illustrate the procedure
of data collection, construct the effort-aware change-proneness
prediction models using logistic regression and evaluate their
performance under the scenarios of ranking and classification.



A. Research Questions and Subjects Selection

To investigate the effectiveness of smell-based metrics in
effort-aware change-proneness prediction, we set up three
research questions as follows:

RQ1: How are smell-based metrics correlated with struc-
tural change-proneness?

RQ2: Are smell-based metrics more or less effective than
the commonly used code metrics in predicting change-prone
files regarding each change category?

RQ3: Are the combination of smell-based metrics and
commonly-used metrics more effective in predicting change-
prone files regarding each change category?

The purpose of RQ1 is to determine whether or not each
of five smell-based metrics is potentially a useful predictor
for change-proneness prediction. If so, those useful metrics
can be employed alone or together with commonly used code
metrics. As did in Giger et al’s work [23], we choose the CK
metrics [24] as the commonly used code metrics (i.e., baseline
metrics), i.e., Weighted methods per class (WMC), Coupling
between object classes (CBO), Lack of cohesion in methods
(LCOM), Depth of inheritance tree (DIT), Number of children
(NOC) and Response for class (RFC), since existing studies
have shown that they are powerful to distinguish which files
are more change-prone [21], [22]. RQ2 and RQ3 are set to
assess the across-version predictive ability in the scenarios of
ranking and classification.

Our empirical study is conducted on six typical Java open
source projects, namely camel, derby, elasticsearch,
hive, pig and lucene, with up to 60 releases hosted in
GitHub. We use the following criteria to select subject projects:
(1) long software version history with more than 2 years; (2)
sizes ranging from 100 KLOC to 1MLOC; (3) the availability
of mature releases from GitHub; (4) different domains that
projects belong to, e.g., DataBase system, search engine, and
data analyzer. Due to limited space, more data information for
replication, including release IDs and download URLs, can
refer to our online appendix [25].

B. Data Collection

This section mainly introduces some techniques including
how code metrics, code changes and smells are extracted from
source code of a measured project with multiple releases. Fig.
1 shows the procedure of collecting these data. Specifically, all
remote repositories of studied subjects are needed to be down-
loaded from GitHub and stored as local repositories, because
accessing local repository not only promotes code parsing
speed for calculating code metrics, but also is the requirement
to extract structural changes using tool ChangeDistiller
[26].

(1) Code Metrics Extraction and Smells Detection
The CK metrics values mentioned in section III-A can be

obtained using the tool ck4 that are developed based on JDT5

and is reliable by our manual testing on several large projects.

4https://github.com/mauricioaniche/ck
5http://www.eclipse.org
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Fig. 1: Procedure of data collection

TABLE I: Fourteen kinds of code smells and their description

Smell Type Short Smell Description
Public Field A class contains more than one public field.
Data Class A class contains data but not behavior related to the data.
Large Class A class has grown too large with more than specified LOC.
Middle Man A class delegating to other classes most of their methods.
Refused Parent Bequest A subclass not using the protected methods of its superclass.
Speculative Generality An unused class, method, field or parameter.
Data Clump Some fields together appeared in a couple of classes.
Divergent Change Different parts occur changes in class for different reasons.
Feature Envy A method is more interested in other class than its own.
Long Method A long method exists if it has extreme LOC.
Long Parameter List A method having a long list of parameters.
Message Chains A long chain of method call to implement a complex role.
Shotgun Surgery A single change in a method needs many scattered changes.
Switch Case A switch-case was misused to implement polymorphism.

In this paper, we consider 14 code smells listed in Table I,
where the first column describes smell types and the second
column shows their short descriptions. Noting that some smells
have their aliases, e.g., Large Class is also named as God
Class in some literatures [15]. We choose these smells for
two reasons. First, they can be well measured based on the
combination of code metrics and hence can be automatically
identified by tools. Second, several systematic review papers
[11]–[14] revealed that these smells were widely investigated
by researchers in the past decade. In this paper, two open-
source smell detection tools, namely BSDectector [17] and
AJCSD6 are employed to identify these 14 kinds of code
smells for Java programs. The smell detection strategies behind
two tools above are described in [15], [17].

(2) Structural Changes Extraction
The procedure of fine-grained change extraction is divided

into two steps. First, JGit7 tool is employed to extract each
pair of modified files having identical name from any two
successive versions vi and vi+1 of a given project (denoted
by fi and fi+1 in Fig. 1, respectively). Second, we utilize
ChangeDistiller tool [26] to extract fine-grained changes
from file fi and fi+1. We choose this tool to detect fine-grained
structural changes due to its powerful capability of identifying
up to 48 types of fine-grained changes for Java code.

(3) Smell-based Metrics Calculation
In this paper, we use smell-based metrics as predictors

in prediction model. A point to note that, these smell-based
metrics are all derived from the evolutionary history of smelly
files, rather than only one version snapshot. In previous
study, Taba et al proposed [27] four smell-based metrics
(originally namely antipattern-based metrics), i.e., Average

6https://github.com/MelihAltintas/AutomaticJavaCodeSmellDetector
7http://www.eclipse.org/jgit/



Number of Smells (ANS), Smell Complexity Metric (SCM),
Smell Recurrence Length (SRL) and Smell Cumulative Pair-
wise Differences (SCPD). In the context of our study, the
first three smell-based metrics are selected and SCPD metric
is not considered due to highly relevance to metric ANS.
In addition, we newly define two smell-based metrics which
leverage structural change information during the period of file
evolution. The first one is Average Structural Changes (ASC)
representing the average changes over the file’s evolutionary
history where only changes occurred in a smelly file belonging
to a certain version are taken into account. The other smell
metric is Number of Distinctive Contributors (NDC). More
definition details about these smell metrics refer to a technical
report in our online appendix [25].

C. Model Construction and Evaluation

(1) Variable Description
The goal of this study is to assess the actual predictive pow-

er of smell-based metrics for effort-aware change-proneness
prediction towards each fine-grained change type. However,
the number of fine-grained change types considered in tool
ChangeDistiller [26] reaches up to 48 in total and
our initial investigation reveals that some change types have
very lower occurrences in our dataset e.g., adding attribute
modifiability. As a result, in order to have higher frequencies
of some change types in our experiments, we combine several
change types into one change type category according to
their semantics. Specifically, all fine-grained change types
are classified into four change (type) categories: api, state,
functionality and statement, showed in Table II. In this paper,

TABLE II: Categories of fine-grained source code changes

Category Ingredients Description

api
Changes that involve the declaration of a class (e.g., class renaming and
class API changes) and signature of method (e.g., modifier changes,
method renaming, return type changes, changes of the parameter list).

state Changes that affect object states of a class (e.g., fields addition and
deletion).

functionality Changes that affect the functionality of a class (e.g., methods addition
and deletion).

statement
Changes that modify executable statements (e.g., statements insertion
and deletion) amd alter condition expressions in control structures and
the modification of else-parts.

the modeling technique we choose is logistic regression where
the dependent variable is binary. While each of four change
categories is continuous type as it is aggregated from some
fine-grained change types. Therefore, prior to model appli-
cation, as suggested in [22], [23], each change category Y
needed to be transformed into a binary variable sign(Y ), i.e.,
sign(Y ) = 1, if Y > α, otherwise sign(Y ) = 0; where α
represents the median value of all files of that studied project
for a change category Y .

The independent variables in this study are composed of
two categories of metrics: CK metrics and five smell-based
metrics (i.e., ANS, SCM, SRL, ASC and NDC). All these
metrics are collected at the file level. Hence, when a file
contains more than one top-level classes, CK metrics need
to be aggregated at the file level. Noting that LOC of file is

also taken into account as an independent variable, due to its
moderate predictive ability in discriminating between change-
prone and not change-prone files in previous studies [21].
With these variables, we can build a corresponding change
prediction model.

(2) Modeling Technique
We choose logistic regression technique mainly for the

following reasons. First, logistic regression does not make
any assumption about normality, linearity, or homogeneity of
variance for the independent variables [28]. Therefore, the
distribution of the independent variables will not influence the
regression model, and consequently not affect the prediction
results. Second, the results derived from logistic regression
is easy to interpret to what extend each independent variable
(metric) affects the dependent variable (change-proneness to-
wards one change category classified in Table II).

There are two types of logistic regression, i.e., univari-
ate logistic regression and multivariate logistic regression.
Univariate analysis is used to find the individual effect of
the independent variable on the dependent variable, while
multivariate analysis is used to find the combined effect of
the independent variables on the dependent variable. The
multivariate logistic regression model is defined as follows:

Pr(Y = 1|X1, X2, ..., Xn) =
eβ0+β1X1+β2X2+...+βnXn

1 + eβ0+β1X1+β2X2+...+βnXn
(1)

where independent variables X1, X2, . . . , Xn represent the
metrics considered in this paper; while dependent variable
Y only takes binary value of 1 or 0. βi (i = 0, 1, ..., n) is
the regression coefficient and can be estimated through the
maximization of log-likelihood. Pr(Y = 1|X1, X2, ..., Xn)
stands for the probability of Y = 1, which indicates a
file (class) being structurally change-prone with respect to
a particular change category. Similar to work in [28], [29],
we use the adjusted OR, the odds ratio associated with one
standard deviation increase, to provide an intuitive insight
into the impact of the dependent variable Xi. OR(Xi) can
be used to compare the relative magnitude of the effects of
different independent variables, as the same unit is increased.
For a given independent variable Xi (i.e., one metric in this
paper), OR > 1 means that the independent variable Xi is
positively associated with the dependent variable Y ; OR = 1
means that independent variable does not affect the dependent
variable, while OR < 1 indicates that independent variable
is negatively associated with the dependent variable. The
univariate logistic regression model is a special case of the
multivariate logistic regression model, where there is only one
independent variable.

(3) Analysis Method
In this paper, univariate logistic regression is used to evalu-

ate the correlation between individual smell-based metrics and
change-proneness. Meanwhile, multivariate logistic regression
is employed to build three kinds of models based on CK
metrics, smell-based metrics or these metrics in combination,
respectively, when the particular change category is chosen as
dependent variable.



(3.1) Univariate logistic regression analysis for RQ1
For RQ1, our goal is preliminarily to find which smell-based

metrics are potentially useful variables in change-proneness
prediction models. Therefore, we do not discriminate the
specific change types and particular versions, that is, all kinds
of fine-grained change types (i.e., 48 in total) are accumulated
in a file and the data from multiple versions of a considered
project are combined as a unique dataset In this study, a
smell-based metric is considered to be significantly related
with change-proneness at the significance level α of 0.05,
as suggested in [28]. When performing univariate logistic
regression analysis for RQ1, we use Cook’s distance to identify
the influential observations [30]. If the Cook’s distance of
an observation is equal to or more than 1, such observation
is considered as influential and is recommended to removed
from dataset [30]. Moreover, for each smell-based metric,
we use OR to quantify its effect on the change-proneness.
This OR allows us to compare the relative magnitude of
the effects of individual metrics on the change-proneness. In
previous study, module size (i.e., file’s LOC in this study)
might have a potential effect on the relationships between
smell-based metrics and change-proneness [4], [8]. Therefore,
there is a need to remove the potentially confounding effect of
module size in order to understand their actual relationships,
as suggested by Zhou et al [31]. For each smell-based metric,
if corresponding p-value is less than 0.05 and OR is larger
than 1, such metric is regarded as having significant positive
correlation with change-proneness.

(3.2) Multivariate logistic regression analysis for RQ2 and
RQ3

In order to answer RQ2 and RQ3, we perform a forward
stepwise variable selection procedure to build three kinds
of multivariate logistic regression models, i.e., “B” model
built on CK metrics, “S” model built on smell-based metrics
and “B+S” model built on their combination. One common
problem in multivariate logistic regression analysis is mul-
ticollinearity in which two or more independent variables
are highly linearly related. These highly correlated predictors
may lead to inaccurate coefficient estimation in logistic re-
gression model. Variance inflation factor (VIF) is a widely
used indicator of multicollinearity. In this study, cut-off 10
is recommended to deal with multicollinearity in a regression
model [32]. In addition, similar to analysis in RQ1, all raw
data are checked for the presence of influential observations
using Cooks distance [30]. After building the above models,
we compare the prediction effectiveness for two pairs of
models, i.e., “S” vs “B” and “B+S” vs “B”. In this paper, we
only use across-version prediction to generate effectiveness
data, because such method is supposed to be more suitable
and practical for industrial software practitioners. Specifically,
across-version prediction uses a model trained on earlier
versions to predict change types in follow-up versions within
the same project.

Ranking and classification are two typical scenarios of
applying change-proneness prediction. In both scenarios, we
evaluate the effectiveness of smell-based metrics in the context
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Fig. 2: LOC-based Alberg diagram

of effort-aware change-proneness prediction where we use
LOC of a file to measure the effort required to inspect it.
The intuition is that a larger file takes a longer time to
review than a smaller one, hence smaller files should be
inspected earlier if the possibility of being change-prone is
the same. Therefore, in the ranking scenario, files are ranked
in descending order according to their relative change risk,
which is defined as the ratio of the predicted possibility of
change-proneness to its LOC. In the classification scenario,
files are first classified into two categories: high-risk and
low-risk. After that, those files classified as high-risk are
targeted for software quality enhancement. Due to the limited
space, only condensed points are introduced and more details
about following two performance indicators are described in
a technique report in our online appendix [25].

• CE in Ranking Scenario
We borrowed the cost-effectiveness measure CE from Ar-

isholm et al.’s work [33] to evaluate the effort-aware ranking
effectiveness of a change-proneness prediction model. CE
measure is based on the concept of the LOC-based Alberg
diagram showed in Fig. 2, where the x-axis is the cumulative
percentage of LOC of the files selected from the file ranking
list and the y-axis correspondingly represents the cumulative
percentage of changes for a given change category. Conse-
quently, each change-proneness prediction model corresponds
to a curve in the diagram. Fig. 2 shows the ranking perfor-
mance of a prediction model m, where, m may represent in our
context the “B” model, the “S” model or the “B+S” model. To
compute CE, we also consider two additional curves, which
respectively correspond to “random” model and “optimal”
model. In the “random” model, files are randomly selected to
inspect. In the “optimal” model, files are sorted in decreasing
order according to their actual change densities (the ratio of
overall changes about a particular change category occurred
in the file to the LOC of that file). Based on this diagram, the
effort-aware ranking effectiveness of the prediction model m
is defined as follows:

CEπ(m) =
Areaπ(m)−Areaπ(randommodel)

Areaπ(optimalmodel)−Areaπ(randommodel)
(2)

where Areaπ(x) is the area under the curve corresponding
to model x (m, random model, optimal model) for a given
π percentage of LOC. The range of CEπ(m) is [−1, 1]
and larger value means a better ranking effectiveness while
a negative CEπ(m) indicates that the model is inferior to
the random model. The cut-off value π varies between 0



and 1, depending on the amount of available resource for
inspecting files. In practice, practitioners are more interested
in the ranking performance of a prediction model at the top
fraction. Therefore, we choose the CEπ(m) at π = 0.1 and
π = 0.2 to evaluate the performance of each model.
• ER in Classification Scenario
We use the effort reduction (ER) measure, originally called

LOC inspection reduction (LIR) [34], to evaluate the effort-
aware classification effectiveness of a change-proneness pre-
diction model. The ER measure represents the ratio of the
reduced LOC to inspect by using a classification model
compared with a random selection to achieve the same recall
of changes. To simplify the presentation, we assume that the
system under analysis consists of n files. Let li be the LOC
of file fi and ci be the number of changes about a change
category occurred in it, 1 ≤ i ≤ n. For a given prediction
model m, let pi (1 ≤ i ≤ n) be 1 if the file fi is predicted as
high-risk by m, and 0 otherwise. In the classification scenario,
only those files predicted to be high-risk will be inspected for
software quality enhancement. In this context, the effort-aware
classification effectiveness of the prediction model m can be
formally defined as follows:

ER(m) =
Effort(randommodel)− Effort(m)

Effort(randommodel)
(3)

where Effort(m) is the ratio of the total LOC in those
predicted high-risk files to the total LOC in the system, i.e.,
Effort(m) = (

∑n
i=1 (li × pi))/

∑n
i=1 li; while Effort(random

model) is the proportion of LOC needed to inspect to the total
LOC in the system that a random selection model needs to
achieve the same recall of changes as the prediction model
m, i.e., Effort(randommodel) = (

∑n
i=1 (ci × pi))/

∑n
i=1 ci.

Noting that our aim in classification scenario is to classify
each file into two categories, while logistic regression model
returns a prediction probability. Thus, we need to choose a
threshold for the prediction model m. In the literature, there are
two popular methods to determine the classification threshold.
The first method is called balanced-pf-pd (BPP) method. This
method employs the ROC curve corresponding to model m
to determine the classification threshold. More details about
BPP can be found in [35]. The second method is balanced-
classification-error (BCE) method. Unlike BPP, BCE chooses
the threshold to roughly equalize two classification error rates:
false positive rate and false negative rate. As stated by Schein
et al. [36], such an approach has the effect of giving more
weight to errors from false positives in imbalanced data sets.
This is especially important for change data, as they are
typically imbalanced, i.e. most files do not occur any structural
changes. For the simplicity of presentation, the effort reduction
metrics under the BPP and BCE thresholds are respectively
called “ER-BPP” and “ER-BCE”. For a given model, we use
them to evaluate the effort-aware classification effectiveness of
a prediction model. To avoid obtain misleading ER metric, we
also use an additional metric “ER-AVG”, proposed by Zhou et
al. [31], which represents the average effort reduction of the
model over all possible thresholds on the test data set.

IV. RESULTS AND ANALYSIS

In this section, we try to answer three research questions
proposed in section III-A based on experimental results. Due
to limited space, we only report evaluation results of CEπ

at π = 0.2 for effort-aware api prediction model in ranking
scenario and ER-AVG in classification scenario. Results from
other prediction models where dependent variable respectively
takes on remainder change categories (i.e., state, functionality,
statement) can refer to our online appendix [25].

RQ1: How are the smell-based metrics correlated with
structural change-proneness?

We use results from univariate regression analysis to answer
RQ1. For each smell-based metric, we test its correlation
with structural change-proneness for each analyzed project.
Noting that we only carry out correlation analysis at project
level, i.e., do not discriminate specific version data. In Table
VI, the column “Metric” represents the name of smell-based
metrics, the column “Coeff.”, “p-value” and “OR” represent
the estimated regression coefficient, the statistical significance
of the coefficient from Z test and the odds ratio associated
with one standard deviation increase, respectively. From Table
VI, we can see that all smell-based metrics have significant
correlation with structural change-proneness because their p-
values are all less that 0.05 and OR values are more than 1.
This indicates that files with a higher value of smell-based
metric tend to be change-prone. Particularly, the OR values
from metrics ANS and SRL are mostly larger than 2 in studies
projects.

A representative example is the class MulticastProcessor
from project camel. This class implements the multicast
pattern to send a message exchange to a number of endpoints
in which each endpoint receives a copy of the message
exchange. In the starting version 2.0M2, the LOC of this
class is 292 and it is affected by two smell instances, i.e.,
Speculative Generality(1) and Shotgun Surgery(1). When it
evolves from version 2.0M2 to 2.3.0 through 2.1.0,
the number of smells affecting it increases to 6 by adding
4 instances of Message Chains, accordingly, the structural
changes underwent during this period are 7, 35 and 75,
respectively. In subsequent version 2.6.0, the magnitude
of LOC quickly reaches to 1016 (two times as many as
prior one) and 7 new smell instances are newly added, i.e.,
Large Class(1), Speculative Generality(1), Message Chains(1),
Divergent Change(2), Long Parameter List(2), which lead
to average 45 structural changes in follow-up versions (i.e.,
2.6.0→2.7.0→2.10.5→2.14.0). From the evolution-
ary history of this file, we can find that, the more smells a
file contains, the more likely it will be subject to structural
changes, which confirmed previous findings in [10], [19].
Therefore, the metric of Average Number of Smells (ANS)
is indeed a suitable indicator for potentially change-prone
files. On the other hand, we also find that once the smells
are introduced, the developers may be aware of code smells,
but are not willing to remove these smells by refactoring
operations, which is consistent to findings by Peters and



Zaidman [37] as well as Tufano et al. [38]. Such long lifespan
of smells (because of delayed refactoring behaviour) may
also explain the significant relation between metric Smell
Recurrence Length (SRL) and structural changes with OR
ranging from 1.6 to 2.3, indicated in Table VI and VII.

However, the results shown in Table VI may not reflect
the true correlations of the investigated metrics with structural
change-proneness, as the potentially confounding effect of
file size is not taken into account [31]. Table 10 reports
the univariate analysis results after removing the confounding
effect of file size. As can be seen, most smell-metrics except
ANS and SCM in camel and hive, are still significantly related
to structural change-proneness. For example, the smell metric
ASC (Average Structural Changes) is significantly correlated
to structural changes due to OR > 1. This result is expected
and also confirms the basic assumption towards “modules
changing often in the past will be most likely change-prone in
the future as well”. However, for smell metric ANS (Average
Number of Smells) and SCM (Smell Complexity Metric), their
significant correlations with structural changes disappear in
project hive after removing confounding effect of file size.
We do not find extreme biased distribution about these two
metrics and LOC of files in all versions of hive after manually
inspecting their source code. The probable reason is due
to other factors driving structural changes, rather than code
quality enhancement, for example, user’s requirement for new
features. These results suggest that the characteristics captured
by smell-metrics are mostly different from file size and can
be used as change-proneness indicators.

Overall, our univariate logistic regression analysis results
indicate that smell-based metrics are, in most cases, signifi-
cantly related to structural changes occurred in files regardless
of whether the confounding effect of file size is removed or
not.

RQ2: Are the smell-based metrics more effective to
predict change-prone files regarding each change category
than CK metrics?

In order to answer RQ2, we first build corresponding models
“B” and “S” as described in section III-C. Then we com-
pare the prediction effectiveness of the “B” and “S” models
in ranking and classification scenarios under across-version
prediction. Fig. 3a shows a series of boxplots which describe
the distribution of the CE values at cutoff π=0.2 and ER-AVG
values generated from the across-version api change-proneness
predictions for models “B” and “S”. From Fig. 3a, the model
built on smell-based metrics tends to perform generally better
than the model built using CK metrics, specifically, we can
obtain the following observations:
• Ranking Performance
For derby, hive and pig, their “S” models gain significant

advantage over “B” models towards CE0.2 with p-value <
0.05 when predicting api change-proneness. The effect sizes
are all large in terms of Cliff’s δ (0.51 < δ < 1.68). For
camel, the median CE of “S” model is larger than “B” model,
but not significantly due to the p-value more than 0.05 in
Wilcoxon signed-rank test and trivial Cliff’s δ (δ = 0.19). In

particular, for elasticsearch and lucene, we can observe that the
“S” model has a comparable median CE than “B” model and
their median values are fluctuating around zero, indicating the
ranking performance of these two models is similar to random
model.

• Classification Performance
For camel, derby, hive and pig, the “S” model has a higher

median ER-AVG as compared with “B” model. The p-values in
Wilcoxon signed-rank test are all less than 0.05 and their effect
sizes are all large in terms of Cliff’s δ (0.56 < δ < 1.23). For
elasticsearch, the median ER-AVG of “S” model is slightly
lower than “B” model with p-value more than 0.05 and
trivial Cliff’s effect size (δ = 0.11). For lucene, although
the model “S” model has significantly ER-AVG than the one
of “B” model (p-value < 0.05), the effect size in terms of
Cliff’s δ is moderate (δ = 0.36). After deeply investigating
the causes behind the improvement of performances, we did
found that the model built by smell-based metrics was able
to classify more than 75% of smell instances in studied
projects. These results highlight that these smell-based metrics
are actually useful when predicting the change-proneness
(particularly, the api change-proneness) of a smelly file. An
interesting example regarding this characteristic is represented
by class MapReduceOper (from version 0.11.0 of pig),
Reply and BinaryOperatorNode (from version 10.10.1.1
of derby), as showed in Table III. These three classes are
all affected by code smells. As expected, they all suffer
from Large Class and Shotgun Surgery, particularly, class
Reply also contains smells Data Clump(1), Long Method(1)
and Switch Case(2), while class BinaryOperatorNode contains
smells Message Chains(1) and Divergent Change(1). Noting
that, the api changes occurred in these classes account for
more than 13%, 50% and 51%, respectively. However, the
basic model classifies these three classes as not change-prone
based on CK metrics, showed in Table III, but the model “S”
using smell-based metrics can classify these classes as change-
prone. More interestingly, we also find that the model “S” even
can correctly classify 76% of non-smelly files from predicted
version as change-prone, shifting by 8% as compared with
model “B”. This classification ability could be explained by
the fact that smell-based metrics leverage information from
evolutionary history of files, especially regarding structural
changes occurred in the past. However, we also observe that,
for elasticsearch, their median ER-AVG values are around zero,
which indicates their classification performance is similar to
random model.

In general, smell-based metrics provide an improvement
over CK metrics under ranking and classification scenarios
for effort-aware api change-proneness prediction.

RQ3: Are the combination of smell-based metrics and
commonly used code metrics more effective to predict
change-prone files regarding each change category than
CK metrics alone?

In order to answer to RQ3, we first use the method described
in section III-C to build the models “B” and “B+S” on each
version data set. Then, we use the similar way did for RQ2



TABLE III: Comparison among class MapReduceOper (from
pig), Reply (derby) and BinaryOperatorNode (from derby) in
terms of CK and smell-based metrics

Class† LOC WMC DIT NOC CBO RFC LCOM ANOS SCM SRL ASC NODC
MRO 542 74 2 1 10 80 1942 2.13 0.07 66.50 11.00 9
REPLY 1441 116 1 1 5 103 1419 7.43 0.10 46.04 10.43 6
BON 835 34 4 5 17 78 190 5.50 0.09 53.25 24.50 9
†org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceOper
†org.apache.derby.client.net.Reply
†org.apache.derby.impl.sql.compile.BinaryOperatorNode

to compare the prediction effectiveness of the “B” and “B+S”
models in ranking and classification scenarios under across-
version change-proneness prediction. Fig. 3b shows paralleled
boxplots which describe the distribution of the CEs at cutoff
π=0.2 and ER-AVGs generated from the across-version api
change-proneness predictions for “B” and “B+S” models.
Table IV quantitatively describes the performance comparison
results in ranking scenario. In Table IV, the second and
third columns represent the median CE0.2 for the “B” model
and the “B+S” model, respectively. The fourth and the fifth
columns are respectively the percentage of the improvement
for the “B+S” model over the ”B” model and the effect sizes in
terms of the Cliff’s δ. The sixth column represents the p-value
in the Wilcoxon tests. The meanings of columns in Table V
are similar to the ones in Table IV. From Fig. 3b, Table IV
and Table V, we have the following observations:
• Ranking Performance
It is obvious that the “B+S” model significantly outperforms

the “B” model for all subject projects due to their p-values
less than 0.05. Specifically, for all studied projects, the “B+S”
model has larger median CE0.2 than the “B” model. For
camel, derby, hive and pig, the effect sizes are large in terms of
Cliff’s δ is moderate (0.47 < δ < 1.65), while for elasticsearch
and lucene, their effect sizes are small (|δ| < 0.2). On average,
the “B+S” model leads to about 90% improvement over the
“B” model. Noting that, in Table IV, the entries in column
of “improve” with underline means that the corresponding
baseline “B” model has negative median CE0.2, indicating
inferior to random model, and hence its median CE0.2 is
replaced with the median CE0.2 of “S” model.
• Classification Performance
From Fig. 3b and Table V, we find that, for all studied

projects, the “B+S” model has a larger ER-AVG as compared
with “B” model with p-values less than 0.05. Their effect sizes
are large (0.49 < δ < 1.16) except in elasticsearch (δ = 0.37).
Although the performance of model “B+S” for elasticsearch
is not very satisfactory, it is still better than the ones of model
“B” and “S”. The class TransportIndexAction from package
org.elasticsearch.action.index belongs to such
case. The performance achieved by model “B+S” is shifted
by +44% (from 0.45 to 0.65, while 0.27 achieved by model
“B”). This indicates that smell-based metrics can provide
supplementary information in comparison to traditional CK
metrics. Besides, on average, the “B+S” model provides an
improvement by 193.84%. Again, for camel, lucene and pig,
their median ER-AVGs in Table V are not from “B” model

but from “S” model because their “B” models are inferior to
random model (ER-AVG<0).

Overall, the above observations indicate that the “B+S”
model outperforms the “B” model in effort-aware api change-
proneness prediction under ranking and classification scenar-
ios. This demonstrates that the smell-based metrics considered
in this paper is actually useful predictors in effort-aware
change-proneness prediction.

Finally, it is worth noting that, we only report results
and analysis of api change-proneness prediction in ranking
and classification scenarios. For other change categories, we
generally achieve similar conclusions. More details about their
prediction results can refer to our online appendix [25].

TABLE IV: Comparison results of CEπ=0.2 (ranking perfor-
mance) between B and B+S api change-proneness prediction
models

project B B+S improve |δ| p-value
camel 0.0213 0.0277 29.57% 0.4735 0.0001

√

derby 0.0367 0.0885 141.19% 0.5613 0.0008
√

elasticsearch 0.0181 0.0421 133.07% 0.2851 0.0094
√

hive 0.0392 0.0992 152.63% 1.6523 < 0.001
√

lucene 0.0100 0.0156 56.59% 0.2338 < 0.001
√

pig 0.0406 0.0520 27.97% 1.2596 < 0.001
√

TABLE V: Comparison results of ER-AVG (classification
performance) between B and B+S api change-proneness pre-
diction models

project B B+S improve |δ| p-value
camel 0.1198 0.1334 11.40% 0.7717 < 0.001

√

derby 0.0684 0.1197 74.92% 0.7820 0.0054
√

elasticsearch 0.0575 0.0927 61.13% 0.3722 0.0100
√

hive 0.1158 0.3442 197.20% 1.0354 0.0001
√

lucene 0.0100 0.0325 224.96% 0.4914 < 0.001
√

pig 0.0100 0.0693 593.44% 1.1675 < 0.001
√

V. THREATS TO VALIDITY

This section discusses the threats to validity that can affect
the results of our empirical study.

Threats to construct validity concern the relationship be-
tween theory and observation. In our study, this threat involves
the data collection of independent and dependent variables.
In our prediction model, independent variables represent CK
metrics and smell-based metrics. CK metrics are extracted
from tool ck, while code smells are detected using tool
CBSDetector [17] and AJCSD. The tool ck and AJCSD are
open-source tools that are developed based on JDT and they
are adequately tested by our lab members. Thus, the data from
these tools are reliable. As for fine-grained changes detection,
we employ a state of the art tool ChangeDistiller [26]
utilizing AST-based matching algorithm with higher detection
accuracy. This tool has been used by many researchers for
empirical studies [10], [19], [23]. Therefore, the construct
validity of data in prediction model is satisfactory.

Threats to internal validity concerns the factors that could
influence our observations. We did not manually examine
many files containing relatively high numbers of structural



TABLE VI: Results of Univariate Logistic Regression Analysis Before Removing the Potentially Confounding Effect of
File Size (LOC)

camel derby elasticsearch hive lucene pig
Metric Coeff. p-value OR Coeff. p-value OR Coeff. p-value OR Coeff. p-value OR Coeff. p-value OR Coeff. p-value OR
ANS 0.285 <0.001 2.847 0.108 <0.001 2.191 0.385 <0.001 2.200 0.085 <0.001 >100 0.212 <0.001 2.256 0.152 <0.001 2.463
SCM 9.620 <0.001 2.244 10.283 <0.001 1.926 6.806 <0.001 1.491 20.336 <0.001 77.196 4.188 <0.001 1.545 3.214 <0.001 1.682
SRL 0.057 <0.001 2.290 0.065 <0.001 2.366 0.053 <0.001 1.856 0.062 <0.001 2.260 0.021 <0.001 1.578 0.033 <0.001 1.760
ASC 0.056 <0.001 2.860 0.033 <0.001 2.164 0.053 <0.001 1.730 0.034 <0.001 14.401 0.030 <0.001 1.555 0.030 <0.001 1.730
NDC 0.227 <0.001 1.854 0.221 <0.001 2.004 0.816 <0.001 1.491 0.193 <0.001 2.054 0.068 <0.001 1.563 0.196 <0.001 1.656

TABLE VII: Results of Univariate Logistic Regression Analysis After Removing the Potentially Confounding Effect of
File Size (LOC)

camel derby elasticsearch hive lucene pig
Metric Coeff. p-value OR Coeff. p-value OR Coeff. p-value OR Coeff. p-value OR Coeff. p-value OR Coeff. p-value OR
ANS 0.008 0.185 1.023 0.036 <0.001 1.220 0.366 <0.001 2.028 −0.018 <0.001 0.408 0.211 <0.001 2.188 0.053 <0.001 1.254
SCM −0.914 0.002 0.942 2.598 <0.001 1.141 5.760 <0.001 1.382 −10.398 <0.001 0.609 3.893 <0.001 1.481 0.623 0.001 1.081
SRL 0.038 <0.001 1.632 0.050 <0.001 1.828 0.050 <0.001 1.761 0.061 <0.001 2.219 0.020 <0.001 1.534 0.022 <0.001 1.415
ASC 0.016 <0.001 1.296 0.006 <0.001 1.112 0.046 <0.001 1.599 0.012 <0.001 1.503 0.028 <0.001 1.488 0.012 <0.001 1.195
NDC 0.120 <0.001 1.337 0.142 <0.001 1.464 0.739 <0.001 1.430 0.188 <0.001 2.000 0.064 <0.001 1.515 0.116 <0.001 1.296
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Fig. 3: B vs S and B vs B+S evaluation under across-version
change-proneness prediction with respect to api.

changes which also contained other smells beyond our con-
sideration in this paper. Such an examination may reveal other
smells that have a greater impact on structural changes, and
which may be confounding our results. Yet, we filter out some
test files in which changes may not have been driven by
our considered code smells, but test smells [39]. The second
threat to the internal validity of our study is the unknown
effect of the deviation of the independent variables from the

normal distribution. In our study, we used the raw data to
build the logistic regression models when investigating RQ2
and RQ3. In other words, we did not take into account whether
the independent variables follow a normal distribution. The
reason is that, in logistic regression, there is no assumption
related to normal distribution. In addition, we also consider
the confounding effect of file size (LOC) in answering RQ3,
as did in RQ1. After removing the potentially confounding
effect of file size, however, our conclusions about api change-
proneness prediction still hold.

Threat to external validity concerns the generalization of our
findings. To mitigate this threat, we conducted our experiments
on six open-source systems of different size and from different
domains. The experimental results drawn from these subject
are quite consistent. Furthermore, the data sets collected from
these systems are large enough to draw statistically meaningful
conclusions. We believe that our research provides a deeper
understanding about the usefulness of smell-based metrics for
effort-aware change-proneness prediction. Nonetheless, we do
not claim that our findings can be generalized to all systems, as
the subject systems under study might not be representative of
systems in general. To mitigate this threat, we hope that other
researchers will replicate our study across a wide variety of
systems in the future.

VI. CONCLUSION

This paper reports an empirical study where five smell-based
metrics have been examined for predicting effort-aware struc-
tural change-proneness. Experiments have been conducted on
six typical Java open-source projects with up to 60 versions.
Our findings indicate that, statistically, all the five smell-
based metrics are positively correlated with structural changes
(without discriminating specific change types). As expected,
the smell-based metrics are better than the CK metrics in most
studied projects for predicting particular change categories
(i.e. api). Moreover, when used with the CK metrics together,
smell-based metrics are more effective in predicting change-
prone files under considering the effort to code inspection. In



future work, we plan to validate our results in more subject
projects and consider other classifiers to build more accurate
change-proneness prediction models.
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