
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2020

Critiquing Antipatterns In Novice Code Critiquing Antipatterns In Novice Code

Leo C. Ureel II
Michigan Technological University, ureel@mtu.edu

Copyright 2020 Leo C. Ureel II

Recommended Citation Recommended Citation
Ureel, Leo C. II, "Critiquing Antipatterns In Novice Code", Open Access Dissertation, Michigan
Technological University, 2020.
https://doi.org/10.37099/mtu.dc.etdr/1158

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Computer Sciences Commons, and the Scholarship of Teaching and Learning Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1158
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1328?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages

CRITIQUING ANTIPATTERNS IN NOVICE CODE

By

Leo C. Ureel II

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computational Science and Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2020

© 2020 Leo C. Ureel II

This dissertation has been approved in partial fulfillment of the requirements

for the Degree of DOCTOR OF PHILOSOPHY in Computational Science and

Engineering.

Department of Computer Science

Dissertation Advisor: Dr. Charles Wallace

Committee Member: Dr. Linda Ott

Committee Member: Dr. Robert Pastel

Committee Member: Dr. Adam Feltz

Department Chair: Dr. Linda Ott

Dedication

To Dad

who knew I would make it this far.

Contents

List of Figures . xv

List of Tables . xxiii

Acknowledgments . xxv

Abstract . xxvii

1 Introduction . 1

I Background 4

2 Situating the Work . 5

2.1 Motivation . 5

2.1.1 Cognitive Apprenticeship 7

3 Automated Assessment of Programming Assignments . . . 9

3.1 Automated Assessment of Programming Assignments 9

3.1.1 Autograders . 10

3.1.2 Grading with analysis and feedback 11

3.1.3 Critiquer Systems . 12

4 Patterns and Antipatterns . 15

4.1 Patterns and Antipatterns . 15

4.1.1 Patterns . 15

vii

4.1.2 Antipatterns . 18

4.2 Antipatterns: Characteristics, Detection, and Response 20

4.2.1 Misplaced Code . 20

4.2.2 Interface Pseudo-Implementation 22

4.2.3 Localized Instance-Variable 23

4.2.4 Knee-Jerk . 25

II Constructing Code Critiquers 28

5 Basic Critiquer Design . 29

5.1 A Bit of Design . 29

5.1.1 User Story . 30

5.1.2 Aspects of Coding . 31

5.1.3 Describing Antipatterns and Critiques 33

6 Critiquing Structure . 37

6.1 The Structure of a Program 37

6.2 Detecting Structure Antipatterns 39

6.3 Making Critiques from Diagnostics 45

7 Critiquing Behavior . 57

7.1 The Behavior of a Program 57

7.2 Testing with JUnit . 58

7.3 Using JUnit in a Behavior Critiquer 60

8 Critiquing Style . 71

8.1 Style . 71

8.2 Static Analysis . 72

9 Critiquing Design . 77

viii

9.1 Illuminating Patterns and Antipatterns 77

9.2 Identifying Patterns with an Abstract Syntax Tree 78

9.3 Identifying Antipatterns in Bad Code 82

9.4 Using the AST to Prevent False Positives 84

III A Critiquer for Introductory Computer Science 86

10 WebTA: A Tool for Automated Code Critique 87

10.1 WebTA . 87

10.1.1 Architecture . 90

10.1.2 Configuration . 92

10.1.2.1 Antipatterns 93

10.1.3 Operation . 95

10.1.4 A WebTA walkthrough 98

10.1.4.1 Instructor setup 98

10.1.4.2 Student development 100

10.1.4.3 Instructor evaluates submissions 105

10.2 The Future of WebTA . 106

11 Corpus of Novice Code Submissions 107

11.1 Corpus of Code . 107

11.2 Results from initial beta testing of WebTA 108

11.3 Future Work: Analysis of Corpus Data 111

11.3.1 Why do some students submit more? 111

11.3.2 Efficacy & Impact of Stoplight. 112

11.3.3 Which issues take the longest to address? 113

11.3.4 Can we identify struggling students? 113

11.3.5 Analyzing Use of Critiques 114

11.3.6 Can we utilize machine learning? 114

ix

11.3.7 Analysis of Student Errors 115

11.3.8 Detection of Code Smells 116

IV Catalog of Patterns & Antipatterns 117

12 Antipattern Library . 119

12.1 Identifying New Antipatterns 119

12.1.1 Antipattern: Localized Instance Variable 120

12.1.2 Antipattern: Magic Incantation 121

12.1.3 Antipattern: Inheritance Pseudo-Implementation . . . 122

12.2 Structural Antipatterns . 122

12.2.1 BAD-ARGUMENT-TYPES 122

12.2.2 BAD-TYPES-FOR-BINARY-OPERATOR 123

12.2.3 BAD-TYPES-FOR-COMPARISON-OPERATOR . . . 124

12.2.4 BAD-TYPES-FOR-UNARY-OPERATOR 125

12.2.5 BAD-TYPE-IN-CONDITIONAL-EXPRESSION 125

12.2.6 CANNOT-FIND-SYMBOL 126

12.2.7 CANNOT-INFER-TYPE-ARGUMENTS 127

12.2.8 CLASS-CAST-EXCEPTION 128

12.2.9 CLASS-INTERFACE-ENUM-EXPECTED 128

12.2.10 CLASS-NOT-SAME-NAME-AS-FILE 129

12.2.11 CONSTRUCTOR-RETURN-TYPE 130

12.2.12 DIVISION-BY-ZERO 131

12.2.13 EXTENDS-OBJECT 132

12.2.14 IDENTIFIER-EXPECTED 132

12.2.15 ILLEGAL-START-OF-EXPRESSION 133

12.2.16 ILLEGAL-START-OF-TYPE 134

12.2.17 IMPORTS-JAVA.LANG 135

x

12.2.18 IMPORT-OWN-PACKAGE 136

12.2.19 INCOMPATIBLE-TYPES 137

12.2.20 MISSING-COLON-OR-ARROW 138

12.2.21 MISSING-RETURN-STATEMENT 139

12.2.22 MISSING-RETURN-VALUE 139

12.2.23 MISSING-SEPARATOR 140

12.2.24 NONSTATIC-IN-STATIC-CONTEXT 142

12.2.25 NONSTATIC-VAR-STATIC-CONTEXT 143

12.2.26 NOT-A-STATEMENT 144

12.2.27 POSSIBLE-LOSS-OF-PRECISION 144

12.2.28 RAWTYPE-FOUND 145

12.2.29 REACHED-END-OF-FILE-WHILE-PARSING 146

12.2.30 RETURN-TYPE-REQUIRED 146

12.2.31 SUPER-DEFAULT . 147

12.2.32 SUPPRESS-WARNINGS-RAWTYPES 148

12.2.33 SUPPRESS-WARNINGS-UNCHECKED 148

12.2.34 UNCHECKED-ARRAY-CAST 149

12.2.35 UNCHECKED-CALL 150

12.2.36 UNCHECKED-CAST 151

12.2.37 UNEXPECTED-RETURN-VALUE 152

12.2.38 UNMATCHED-DOUBLE-QUOTE 153

12.2.39 UNREACHABLE-STATEMENT 155

12.2.40 VARIABLE-MAY-NOT-BE-INITIALIZED 156

12.3 Behavioral Antipatterns . 157

12.3.1 ARITHMETIC-EXCEPTION-DIV-BY-ZERO 157

12.3.2 ARRAY-INDEX-OUT-OF-BOUNDS-LOWER 158

12.3.3 ARRAY-INDEX-OUT-OF-BOUNDS-UPPER 158

12.3.4 ARRAY-STORE-EXCEPTION 159

xi

12.3.5 CONSOLE-SCANNER-IN-LOOP 160

12.3.6 EMPTY-LOOP . 161

12.3.7 FILE-NOT-FOUND-EXCEPTION 161

12.3.8 INPUT-MISMATCH-EXCEPTION-SCANNER 162

12.3.9 NO-SUCH-ELEMENT-ITERATOR 163

12.3.10 NO-SUCH-ELEMENT-SCANNER 165

12.3.11 NULL-POINTER-EXCEPTION 165

12.3.12 SCAN-STRING-FILENAME 166

12.3.13 STRING-INDEX-OUT-OF-BOUNDS 167

12.3.14 SUBSTRING-INDEX-OUT-OF-BOUNDS 168

12.3.15 SUPPRESS-WARNINGS 169

12.4 Style Antipatterns . 170

12.4.1 ARITHMETIC-ASSIGNMENT 170

12.4.2 BRACES-MISSING . 171

12.4.3 CAPITALIZED-VARIABLE 171

12.4.4 COMMA-WITHOUT-SPACE 172

12.4.5 COMPARING-BOOLEANS 173

12.4.6 COPYINTO . 173

12.4.7 CRAMMED-OPERATORS 174

12.4.8 CRAMMED-PARENS 175

12.4.9 FLOAT-USED . 175

12.4.10 IMPORTS-EVERYTHING-IN-PACKAGE 176

12.4.11 LOCAL-PATHNAME 177

12.4.12 LOOP-FOR-VAR-NOT-LOCAL 177

12.4.13 LOWERCASE-CLASS-NAME 178

12.4.14 METHOD-STARTS-WITH-UPPERCASE 179

12.4.15 MISSING-COMMENT 179

12.4.16 MULTIPLE-VAR-ON-LINE 180

xii

12.4.17 NAMING-UNDERBARS 181

12.4.18 NO-SPACE-IN-FOR-LOOP 181

12.4.19 OPERATORS-++ . 182

12.4.20 PACKAGE-NAME-TOO-GENERAL 183

12.4.21 PACKAGE-NEEDLESS-QUALIFIED-NAME 183

12.4.22 PACKAGE-QUALIFIED-NAMES 184

12.4.23 PUBLIC-INSTANCE-VARIABLES 185

12.4.24 RETURN-WITH-PARENS 186

12.4.25 SHORT-USED . 186

12.4.26 SPACE-BEFORE-COMMA 187

12.4.27 SPACE-BEFORE-CURLY-BRACE 188

12.4.28 STRING-EQUALS-HINT 188

12.4.29 STRING-EQUALS-LITERAL 189

12.4.30 THIS-METHOD . 190

12.4.31 VAR-STARTS-WITH-UPPERCASE 190

12.4.32 VECTOR-FOR-FIXED-ARRAY 191

12.5 Test-Driven Development Antipatterns 192

12.6 Design Development Antipatterns 192

V Final Thoughts 193

13 Conclusion . 195

13.1 Conclusion . 195

References . 197

xiii

List of Figures

2.1 What does an Instructor/TA really do?. 6

2.2 Instructors can’t provide individual attention in large class-

rooms. 6

4.1 Errors normally associated with misplaced code. 21

5.1 Basic design of a Code Critiquer. 30

5.2 Five aspects of coding. 32

6.1 Example Diagnostics for MissingSeparators.java. 45

6.2 Example Critiques for MissingSeparators.java. 56

7.1 Example Critiques for StringIndexOutOf-

Bounds.getLastCharacter(). 68

7.2 Example Instructor Critique for Logic Error. 69

8.1 Example Style Critique. 76

9.1 Tokenization of Listing 9.1. 80

9.2 Nodes in the AST for Listing 9.1. 81

9.3 Nodes in the AST for Listing 9.1. 82

9.4 Bad code found in the AST for 9.6. 83

9.5 Style Critique for Listing 9.8. 84

9.6 AST identified comments in 9.8. 85

10.1 WebTA development cycle. 88

xv

10.2 WebTA System Architecture 91

10.3 WebTA startup screen. 96

10.4 WebTA critique summary. 96

10.5 WebTA student tests. 96

10.6 WebTA style critique. 97

10.7 First Pass Executive Summary. 101

10.8 Second Pass Compile Time Error. 102

10.9 Third Pass: Test failure and style critique. 102

10.10Student encounters infinite recursion. 104

10.11Student Passes Instructor Tests, But Fails Secret Test. 104

10.12Student Passes All Tests . 105

11.1 Programming project scores. 109

11.2 Programming project scores. 110

11.3 Submission Scores. 112

11.4 Final Score < Max. 112

11.5 Submission Times. 113

xvi

Listings

4.1 The Visitor Pattern . 17

4.2 The Scanner Overuse Antipattern 19

4.3 Correcting the Scanner Overuse Antipattern 19

4.4 Misplaced Code . 21

4.5 Interface Pseudo-Implementation 22

4.6 one way to detect the Interface Pseudo-Implementation pattern. 23

4.7 Localized Instance-Variable 23

4.8 Instance Variable with no Behavior 24

4.9 Empty Knee-Jerk Code . 25

4.10 Independent Knee-Jerk Code 26

4.11 Entangled Knee-Jerk Code . 27

5.1 CodingAspect.java - Enumerating Coding Aspects 31

5.2 AntipatternSource.java - Sources for Identifying Antipatterns. 33

5.3 AntipatternDescription.java - Interface for Antipattern Descrip-

tions . 35

6.1 ArrayList of Compiler Options 40

6.2 CompilerTools.java - Detecting Structure Antipatterns 41

6.3 MissingSeparators.java - Example Containing Antipatterns . . 43

6.4 CompilerTools.java - Generate Diagnostics 44

6.5 Description.java - Combined Antipattern and Critique Descrip-

tion . 45

6.6 Critique.java - Critique Class 47

xvii

6.7 CritiquerTools.java - Critique Class 50

6.8 StructureCritiquer.java - A Rudimentary Structure Critiquer . 53

7.1 StringIndexOutOfBounds.java - Common string antipatterns. . 57

7.2 StringIndexOutOfBoundsTest.java - JUnit tests for antipatterns. 59

7.3 JUnitRunListener.java - Listening for Failed Tests. 60

7.4 UnitTestTools.java - Listening for Failed Tests. 61

7.5 BehaviorCritiquer.java - A Behavior Critiquer. 64

7.6 Test.java - Overriding the test annotation. 68

8.1 ImportsOwnPackage.java - Example Style Antipattern. 72

8.2 StyleCritiquer.java - Static Code Analysis. 72

9.1 EmptyForLoop.java - Example Design Antipattern. 78

9.2 Code Snippet to Construct an AST. 79

9.3 Printing the tokens parsed by the lexer. 79

9.4 Printing the nodes int the AST. 80

9.5 Idenifying methods exhibiting the EMPTY-KNEE-JERK An-

tipattern. 81

9.6 CodeOutsideMethod.java - CODE-OUTSIDE-METHOD An-

tipattern. 82

9.7 Idenifying Antipatterns in Bad Code. 83

9.8 FalsePositive.java - Causes a Style Critiquer False Positive. . . 84

10.1 Instructor Tests . 93

10.2 Instructor rule capturing an empty base case. 94

12.1 Localized Instance-Variable 120

12.2 Invoking code as incantation 121

12.3 Code exemplar for BAD-ARGUMENT-TYPES 123

12.4 Code exemplar for BAD-TYPES-FOR-COMPARISON-

OPERATOR . 124

12.5 Code exemplar for BAD-TYPES-FOR-UNARY-OPERATOR . 125

xviii

12.6 Code exemplar for BAD-TYPE-IN-CONDITIONAL-

EXPRESSION . 126

12.7 Code exemplar for CANNOT-FIND-SYMBOL 126

12.8 Code exemplar for CANNOT-INFER-TYPE-ARGUMENTS . 127

12.9 Code exemplar for CLASS-CAST-EXCEPTION 128

12.10Code exemplar for CLASS-INTERFACE-ENUM-EXPECTED 129

12.11Code exemplar for CLASS-NOT-SAME-NAME-AS-FILE . . . 130

12.12Code exemplar for CONSTRUCTOR-RETURN-TYPE 130

12.13Code exemplar for DIVISION-BY-ZERO 131

12.14Code exemplar for EXTENDS-OBJECT 132

12.15Code exemplar for IDENTIFIER-EXPECTED 133

12.16Code exemplar for ILLEGAL-START-OF-EXPRESSION . . . 133

12.17Code exemplar for ILLEGAL-START-OF-TYPE 135

12.18Code exemplar for IMPORTS-JAVA.LANG 136

12.19Code exemplar for IMPORT-OWN-PACKAGE 136

12.20Code exemplar for INCOMPATIBLE-TYPES 137

12.21Code exemplar for MISSING-COLON-OR-ARROW 138

12.22Code exemplar for MISSING-RETURN-STATEMENT 139

12.23Code exemplar for MISSING-RETURN-VALUE 140

12.24Code exemplar for MISSING-SEPARATOR 141

12.25Code exemplar for NONSTATIC-IN-STATIC-CONTEXT . . . 142

12.26Code exemplar for NONSTATIC-VAR-STATIC-CONTEXT . 143

12.27Code exemplar for NOT-A-STATEMENT 144

12.28Code exemplar for POSSIBLE-LOSS-OF-PRECISION 145

12.29Code exemplar for RAWTYPE-FOUND 145

12.30Code exemplar for REACHED-END-OF-FILE-WHILE-

PARSING . 146

12.31Code exemplar for RETURN-TYPE-REQUIRED 147

xix

12.32Code exemplar for SUPER-DEFAULT 147

12.33Code exemplar for SUPPRESS-WARNINGS-RAWTYPES . . 148

12.34Code exemplar for SUPPRESS-WARNINGS-UNCHECKED . 149

12.35Code exemplar for UNCHECKED-ARRAY-CAST 149

12.36Code exemplar for UNCHECKED-CALL 150

12.37Code exemplar for UNCHECKED-CAST 151

12.38Code exemplar for UNEXPECTED-RETURN-VALUE 152

12.39Code exemplar for UNMATCHED-DOUBLE-QUOTE 153

12.40Code exemplar for UNREACHABLE-STATEMENT 155

12.41Code exemplar for VARIABLE-MAY-NOT-BE-INITIALIZED 156

12.42Code exemplar for ARITHMETIC-EXCEPTION-DIV-BY-

ZERO . 157

12.43Code exemplar for ARRAY-INDEX-OUT-OF-BOUNDS-

LOWER . 158

12.44Code exemplar for ARRAY-INDEX-OUT-OF-BOUNDS-

UPPER . 159

12.45Code exemplar for ARRAY-STORE-EXCEPTION 159

12.46Code exemplar for CONSOLE-SCANNER-IN-LOOP 160

12.47Code exemplar for EMPTY-LOOP 161

12.48Code exemplar for FILE-NOT-FOUND-EXCEPTION 162

12.49Code exemplar for INPUT-MISMATCH-EXCEPTION-

SCANNER . 162

12.50Code exemplar for NO-SUCH-ELEMENT-ITERATOR 163

12.51Code exemplar for NO-SUCH-ELEMENT-SCANNER 165

12.52Code exemplar for NULL-POINTER-EXCEPTION 166

12.53Code exemplar for SCAN-STRING-FILENAME 167

12.54Code exemplar for STRING-INDEX-OUT-OF-BOUNDS . . . 167

12.55Code exemplar for SUBSTRING-INDEX-OUT-OF-BOUNDS 168

xx

12.56Code exemplar for SUPPRESS-WARNINGS 169

12.57Code exemplar for ARITHMETIC-ASSIGNMENT 170

12.58Code exemplar for BRACES-MISSING 171

12.59Code exemplar for CAPITALIZED-VARIABLE 172

12.60Code exemplar for COMMA-WITHOUT-SPACE 172

12.61Code exemplar for COMPARING-BOOLEANS 173

12.62Code exemplar for COPYINTO 174

12.63Code exemplar for CRAMMED-OPERATORS 174

12.64Code exemplar for CRAMMED-PARENS 175

12.65Code exemplar for FLOAT-USED 176

12.66Code exemplar for IMPORTS-EVERYTHING-IN-PACKAGE 176

12.67Code exemplar for LOCAL-PATHNAME 177

12.68Code exemplar for LOOP-FOR-VAR-NOT-LOCAL 177

12.69Code exemplar for LOWERCASE-CLASS-NAME 178

12.70Code exemplar for METHOD-STARTS-WITH-UPPERCASE 179

12.71Code exemplar for MISSING-COMMENT 180

12.72Code exemplar for MULTIPLE-VAR-ON-LINE 180

12.73Code exemplar for NAMING-UNDERBARS 181

12.74Code exemplar for NO-SPACE-IN-FOR-LOOP 181

12.75Code exemplar for OPERATORS-++ 182

12.76Code exemplar for PACKAGE-NAME-TOO-GENERAL . . . 183

12.77Code exemplar for PACKAGE-NEEDLESS-QUALIFIED-

NAME . 184

12.78Code exemplar for PACKAGE-QUALIFIED-NAMES 184

12.79Code exemplar for PUBLIC-INSTANCE-VARIABLES 185

12.80Code exemplar for RETURN-WITH-PARENS 186

12.81Code exemplar for SHORT-USED 186

12.82Code exemplar for SPACE-BEFORE-COMMA 187

xxi

12.83Code exemplar for SPACE-BEFORE-CURLY-BRACE 188

12.84Code exemplar for STRING-EQUALS-HINT 189

12.85Code exemplar for STRING-EQUALS-LITERAL 189

12.86Code exemplar for THIS-METHOD 190

12.87Code exemplar for VAR-STARTS-WITH-UPPERCASE 191

12.88Code exemplar for VECTOR-FOR-FIXED-ARRAY 191

xxii

List of Tables

5.1 Common Regular Expression Meta-Characters. 35

6.1 Java Separators. 39

xxiii

Acknowledgments

No one can succeed alone. I have been blessed to have been helped along the way

by many people. Elaine Eikenberry, our offspring Miriam and Neil were more

than supportive and patient through a process that has spanned more than a

decade. My parents. My Dad would have been very proud to see me graduated.

I have had the good fortune to have convinced Dr. Charles Wallace to be my

advisor. I have been mentored by many academics through the years: Dr. Linda

Ott, Dr. Robert Pastel, Dr. Adam Feltz on my committee. Others include Dr.

John Lowther, Dr. Anne Wysocki, Dr. Ken Forbus, Dr. Chris Riesbeck, Dr.

Larry Birnbaum, Dr. Laura Brown, Dr. Jean Mayo.

My close compatriot Briana Bettin and many friends John Welch, Chris and

Kyle Pellar Kosbar, Madeleine Usher, Mike Sobocinski. And the many who

have worked with me through the years, especially James Rudlaff who put long

hours into the AST code, Scott Pomerville, Madeleine Howard, Sam Wallace,

and Sarah Larkin who joined Briana and myself for lively summer research dis-

cussions.

This work builds the works of Dr. Robert Pastel and Dr. Chris Brown on

his JUnit Generation (JUG) and Autograder tool at Michigan Technological

University [9, 11], and the work by Dr. Chris Riesbeck and Dr. Lin QiU at

Northwestern University [45, 46] Undergraduate researchers James Rudlaff and

Sam Wallace contributed original ideas toward the development of the Abstract

Syntax Tree and the Pseudocode Representation components of WebTA.

This research has been supported by a Jackson Blended Learning Grant, NSF

IUSE Grant, and an ICC Seed Grant.

xxv

Abstract

Students in introductory computer science courses, are learning to program.

Indeed, most students perceive that learning to code is the central topic explored

in the courses. Students spend an enormous amount of time struggling to learn

the syntax and understand semantics of a particular language. Instructors spend

a similar amount of time reading student code and explaining the meaning of

the cryptic error messages displayed by compilers.

Messages provided by compilers are intended to give feedback on the adherence

of one’s code to the language specification and conventions. Unfortunately, these

message are geared towards experts who have a clear understanding of the lan-

guage syntax and semantics and a deep model of what comprises a program and

how a program is developed. These students are novices who lack fundamental

understanding of the structure of a program and have no basic mental model of

how a program works. Novices make different kinds of mistakes than experts.

Instructors need to spend a lot of time simply assisting novices in using compilers

and understanding their output.

In addition to mastering the syntax and semantics of their first programming

language, novices are exposed to the question of what constitutes good design.

Instructors can identify virtuous design choices and articulate areas of improve-

ment. But contact time with students is limited, and waiting for in-person

feedback or replies to personal messages can be a critical delay.

Novices, still struggling to use the compiler, have not yet developed the sophis-

ticated analytical processes employed by experts and this is reflected in their

design choices and the kinds of mistakes they make. When a novice approaches

xxvii

an instructor with a question, the instructor must often provide a balanced cri-

tique that assists the student with understanding both the structure and the

design aspects of their own code.

My research has focused on whether we can identify examples of early program-

ming antipatterns that have arisen from our teaching experience, and describe

different ways of detecting them automatically. Novice students may produce

code that is close to a correct solution but contains syntactic errors; code criti-

quers attempt to salvage the promising portions of the students submission and

suggest repairs in ways more meaningful than typical compiler error messages.

Alternatively, a student misunderstanding may result in well-formed code that

passes unit tests yet contains clear design flaws; through additional analysis,

code critiquers can detect and flag these flaws. Finally, certain types of antipat-

terns can be anticipated and flagged by the instructor, based on the context of

the course and the programming activity; code critiquers allow for customizable

critique triggers and messages.

This dissertation presents several key contributions to our understanding of

novice misconceptions and their representation, diagnosis and repair using an-

tipatterns. My research focuses on identifying antipatterns and detecting them

in novice code, then using this information to provide the student with a mean-

ingful critique of their work. I have developed WebTA, a tool to critique student

programs in introductory computer science courses. WebTA is used to teach

students test-driven agile development methods through small cycles of teach-

ing, coding integrated with testing, and immediate feedback.Through the use of

WebTA in introductory computer science courses since 2014, I have amassed a

significant corpus of novice programmer submission data. Lastly, I have com-

piled a library of antipatterns found in novice code.

xxviii

Chapter 1

Introduction

Many automatic approaches have been developed for evaluating student pro-

grams [18, 20, 30]. Often these automated assessment tools take the form of

testing scripts or unit tests designed to support the instructor in testing and

grading programs submitted by large numbers of students. Such tools are gen-

erally called Autograders.

Autograder technology may also be applied to support agile design processes

and provide students with critical feedback on their code and design processes.

Software that focuses on identifying structures and behaviors that indicate work-

ing code and good design then providing feedback to the student are known as

code critiquers. According to agile design principles, the primary measure of a

design is working software [27]. Timely communication is critical to the agile

design process. Code critiquers provide this communication in the absence of the

instructor. Furthermore, an essential element of agile design is reflection with

an eye towards learning and improvement. Code critiquers provide feedback to

students when they need it so they can reflect on the patterns found in their

1

code in order to learn about programming and develop better programs.

Program characteristics assessed dynamically include functionality, efficiency,

and testing coverage. In addition, static analysis tools can be used to assess pro-

gram characteristics such as coding style, programming errors, software metrics,

and adherence to good design principles.

The aim of our automated code critique tool WebTA is to provide feedback

to students during development. WebTA acts as an assistant to the student,

commenting on intermediate code iterations during development, and then as

a traditional automated grader for final submissions. We wish to simulate, as

closely as possible, the experience of interacting with a human mentor. With

this aim, we wish to detect and comment on student practices that reflect some

misunderstanding, early in the process. Through our experience as instructors,

we can anticipate recurring practices that indicate misunderstanding or lack of

care (antipatterns [13]) and plan accordingly.

Some antipatterns cut across traditional boundaries of syntactic well-formedness

or behavioral correctness. For instance, some antipatterns result in syntactically

ill-formed code, but we do not wish to report them with a standard compile-

time error message; the standard message may be quite opaque and confusing,

whereas we can say something more relevant and meaningful to a novice student.

Also, some antipatterns do not result in compile-time errors and have no effect on

behavior, thus are not detectable through testing. Furthermore, in our position

as instructor, we can fine-tune our feedback to the particulars of the assignment,

allowing us to give comments that would be outside the scope of a general

analysis.

2

We begin our paper with (§I) an overview of related work, (§II) a working descrip-

tion of our strategies for identifying antipatterns and generating code critiques

for different aspects of programming, (§III) an examination of a production code

critiquer, WebTA, the tool used to conduct this research and a discussion of the

corpus of student submissions that was compilerd through the use of WebTA,

(§IV) we then present a library of common antipatterns in student code, and

finally, (§V) we conclude with a summary of contributions and a look to future

work.

3

Part I

Background

4

Chapter 2

Situating the Work

2.1 Motivation

Code critiquers provide critique student code in much the same way that in-

structors and their teaching assistants (TAs) respond to student programs.

What does an Instructor/TA really do? Based on experience gained over time,

the instructor/TA looks for antipatterns in student work, recognizes them, and

calls them out. These antipatterns are commonly occurring practices that reflect

misunderstandings or poor design choices made by beginning programmers.

What makes the Instructor/TA different from existing programming tools? The

instructor combines pedagogical experience with expertise in computing to pro-

vide comments on coding issues unique to novices. Most development software

is designed for experts. The support and assistance provided by these tools op-

erate on a higher level than students in introductory computer science courses

5

Figure 2.1: What does an Instructor/TA really do?.

can reach. Instructor comments, however, are quite different from what a com-

piler would tell the student. The instructor meets the students at their level to

provide meaningful critiques on coding mistakes that experts would never make.

Figure 2.2: Instructors can’t provide individual attention in large class-
rooms.

6

Unfortunately, instructors cannot critique every student’s code in large class-

room settings and instructors are unavailable during late-night study sessions

to help students develop good coding practices. Code critiquers automate the

critiquing process; capturing the essence of instructor-student interaction and

focusing on novice antipatterns. This motivates the need for software that can

provide feedback on student code when they meed it most, during development.

2.1.1 Cognitive Apprenticeship

The Cognitive Apprenticeship model [14, 15, 16, 17] is a constructivist approach

to learning that focuses on teaching concepts and practices utilized by experts

to solve problems in realistic environments.

Constructivism is a theory for teaching and learning whereing learners construct

knowledge rather than passively absorbing information. It is the student’s ability

to experience and reflect upon the world that enables them to construct mental

models and incorporate new information into their previous knowledge. Instruc-

tors and code critiquers support constructivist learning by providing feedback

for reflection while the student is engages in the experience of programming.

Cognitive Apprenticeship has special relevance in the context of software devel-

opment because it emphasizes making implicit processes explicit to the learner.

In typical computer science or software engineering educational settings, topics

like design are often deemphasized in favor of more technical topics, such as

syntax; in the workplace, the design-related knowledge that experienced devel-

opers possess is internalized, complicating their ability to pass it along to new

employees.

7

Vihavainen and Luukkainen [58, 59] utilize Extreme Apprenticeship (XA), which,

in the context of software engineering education, builds on cognitive apprentice-

ship. The focus of XA in the classroom is transforming the student into an ex-

pert by emphasizing learning-by-doing and starting early. This is accomplished

primarily through modeling activities and scaffolding. Scaffolds are correctly-

timed hints and feedback. Instructors emphasize deliberate practice and stu-

dents complete many small programs during the course. The deliberate effort

of programming on a day-to-day basis emphasizes that students are becoming

professionals.

Using the cognitive apprenticeship model, code critiquers provide the same kinds

of critiques that instructors do. The student receives the the critiques while

engaged in authentic programming tasks. The critiques call out antipatterns in

the student’s code and indicate best practices that can mitigate or repair the

issues. Students can then reflect upon the code critiques and incorporate this

new information into their own mental models of programming.

8

Chapter 3

Automated Assessment of

Programming Assignments

3.1 Automated Assessment of Programming

Assignments

Many automatic approaches have been developed for grading student programs.

Often these automated assessment tools take the form of testing scripts designed

to support the instructor in testing and grading programs submitted by large

numbers of students. However, automated assessment can also be used to sup-

port agile design processes and provide students with feedback.

Ala-Mutka [1] describes the advantages of automated assessment as “speed,

availability, consistency and objectivity” but warns that “automated tools em-

phasize the need for careful pedagogical design of the assessment solutions”.

9

Ala-Mutka discusses many features of automated assessment approaches. Pro-

gram characteristics assessed dynamically include functionality and efficiency.

In addition, static analysis tools can be used to assess program characteristics

such as adherence to coding conventions, coupling of modules, and cyclomatic

complexity.

There are three main categories of automated assessment tools that have in-

fluenced the design of WebTA; Autograders, Submission and Grading Systems,

and Critiqer Systems. These are described in the following sections.

3.1.1 Autograders

By definition autograder systems provide students with feedback on their code;

albeit sometimes this is only a score with little explanation. As the name indi-

cates, autograders are primarily instructor-facing; the underlying model is that

students use their own methods to test and debug their code, then the auto-

grader passes judgment on their final effort. The primary motivation underlying

autograder systems is saving instructors time in grading, rather than providing

feedback to students, which is our goal in developing code critiquers. Auto-

graders have a long history dating back to at least 1960 [29]. Some autograder

systems, like Marmoset [55] and JUG [10], as well as professional analysis tools

like JExercise [56], are entirely test-driven and do not examine source code. Such

systems can only detect behavior-based antipatterns.

The Marmoset Project [54]. A submission and testing system, students

can use Marmoset from either the command line or an IDE plugin. Student

submission are subjected to four different kinds of tests (Student tests, Public

10

tests, Release tests, and Secret tests), then given feedback based on the test

results.

JUnit Generation (JUG) Autograder [9, 11]: One of the primary influ-

ences on the work provided here is the JUnit Generation (JUG) Autograder

[10, 11]. JUG was developed to support instructors in grading and providing

feedback on homework assignments in a data structures course. It provides sup-

plemental feedback to improve student learning, and ease of use for the assign-

ment developer and grader. The JUG system combines unit testing, evaluation

and reporting to fulfill those goals. JUG performs dynamic assessment of func-

tionality through generated JUnit testing and efficiency through measurements

of execution time. JUG influenced the dynamic assessment portion of our appli-

cation that evaluates student code by applying a battery of instructor developed

JUnit tests to the student’s code.

3.1.2 Grading with analysis and feedback

More relevant to our work are autograder systems that include facilities for

analysis and feedback on source code.These include the following:

Web-CAT [21]. Web-CAT is highly configurable due to its modular architec-

ture. Plugins for common IDEs allow its use while students are coding. It works

with a variety of programming languages. Web-CAT grades assignments and

provides feedback to the student based on both instructor and student provided

test cases. Instructors can plug in their own constraints and triggers for feed-

back. This can be very helpful in addressing the kinds of antipatterns we are

discussing in this paper.

11

BOSS [32] is a course management system that originated as an autograder.

BOSS includes among its features, a database and file-independent storage sys-

tem, a submission and testing framework, and a student front-end. BOSS checks

runtime behavior, code style, and detects plagiarism.

3.1.3 Critiquer Systems

Critiquers are similar to autograders, but they focus on providing highly inter-

active and targeted feedback to student programmers [4]. While these systems

often perform testing, they make strong use of the instructor’s domain knowl-

edge to identify patterns and formulate meaningful responses. This makes them

well-suited for providing novices with the kinds of feedback we are attempting

to emulate.

Java Critiquer [46]: Another major influence on our work is Qiu and Reis-

beck’s Java Critiquer [45, 47, 48, 49], developed to teach students how to write

clean, maintainable and efficient Java code. Java Critiquer provides individu-

alized feedback and just-in-time learning opportunities to students. The Java

Critiquer performs static assessment of programming style, programming errors,

and design by using regular expressions to match snippets of code with trigger

patterns in instructor created rules. When a match is found in the student’s

code, the rule is fired and the advice encoded therein is dispensed to the student.

Students use the tool iteratively to improve their code before submission. Ali,

Hosking, and Grundy [3, 5] categorize the Java Critiquer as an analytic critic,

using text-based pattern matching through instructor authored rules to provide

explanations and suggestions. The Java Critiquer influenced the static assess-

ment portion of our application that evaluates students’ programming style.

12

Test My Code (TMC) [60]: Test My Code (TMC) is an automated as-

sessment tool developed by Vihavainen et al. [60] as a tool for their Extreme

Apprenticeship methodology. TMC is an assessment system that enables in-

structors to build scaffolding into programming exercises. TMC is integrated

into the student’s programming environment and provides tasks for the stu-

dent to work on. TMC allows for scaffolding and automated instructor-initiated

feedback.

Test My Code is very close to the overall goals and functionality of our project.

One important difference in focus is that TMC works within an environment

of high instructor-student interaction, providing the ability for instructors to

iteratively and precisely identify points of critique within student code. In con-

trast, the personnel constraints of our teaching environment offer less intensive

interplay between student and instructor. We appreciate TMC’s ability to fa-

cilitate direct communication between student and instructor, but our focus is

on providing automated feedback to students that are detectable through dy-

namic or static methods, as anticipated by the instructor. Consequently, we

use automated methods for style and design feedback in addition to test-related

feedback.

JDeodorant [26] is an Eclipse plugin that detects several classic code smells

[37] in source code, including Feature Envy, Type/State Checking, Long Method,

God Class and Duplicated Code. JDeodorant is targeted for experienced pro-

grammers rather than novices.

13

Chapter 4

Patterns and Antipatterns

4.1 Patterns and Antipatterns

4.1.1 Patterns

Experienced programmers focus on solving problems with algorithms, interfaces,

and inheritance hierarchies. They know that a good design “should be specific

to the problem at hand but also general enough to address future problems and

requirements.” [28] They reflect on their solutions; revisiting and refactoring

the code many times even as the software is in use. Expert programmers build

a library of reusable code over time that forms the foundation for future work.

Patterns are common solutions, reified in code, that are used repeatedly in ex-

pert programs. Use of these patterns makes our programs flexible, elegant, and

reusable. The original inspiration for the use of design patterns in computer

15

science comes from a treaties on architecture (designing buildings) by Christo-

pher Alexander. He wrote, “Each pattern describes a problem which occurs over

and over again in our environment, and then describes the core of the solution

to that problem, in such a way that you can use this solution a million times

over, without ever doing it the same way twice.” [2] Although they are reified

as code when applied, the pattern represents a general approach that can be

implemented in a variety of ways, dependent on the context of use.

Gamma et. al. describe patterns as “descriptions of communicating objects

and classes that are customized to solve a general design problem in a particular

context.” [28] Gamma describes patterns using four elements: the pattern name,

the problem, the solution, and the consequences.

An example of a good programming pattern is the implementation of Visitor,

which represents an operation to be performed on the elements of a data struc-

ture. The Visitor lets you change the behavior applied to the elements without

changing the solution code.

For example, in Listing 4.1, we depict the code for an inorder traversal of a

binary tree. In the algorithm for inorder traversal, the method recurses to the

left child of the current node, effectively processing all of the nodes in the entire

left subtree. Then the current node is processed, i.e. visited. Finally, the

algorithms recursively processes the right child of the current node, effectively

processing the entire right subtree.

It is the processing of the current node that defines the Visitor Pattern. A

novice programmer might hard-code the way the node is processed into the

inorder traversal itself. However, doing so would result in re-implementing the

inorder traversal algorithm for every problem solution that required a different

16

way of processing the nodes in a tree.

In the Visitor Pattern, the inorder traversal algorithm is coded once and the

code snippet used to process each node is passed in as an argument (bundled as

a lambda expression.) This allows the programmer to make use of the general

traversal code while tailoring the way each node is processed to the required

solution.

Listing 4.1: The Visitor Pattern

1 // The Visitor pattern

2 public interface Visitor <E> {

3 public void visit(E element);

4 }

5
6 // Application of the Visitor pattern

7 // to perform an operation on each element

8 // in a binary tree.

9 public <E> void inorderTraversal(Node <E> node ,

10 Visitor <E> ←↩
↪→ visitor) ←↩
↪→ {

11 if (node == null) return;

12 inorderTraversal(node.getLeftChild(), visitor←↩
↪→);

13 visitor.visit(node.getElement());

14 inorderTraversal(node.getRightChild(), ←↩
↪→ visitor);

15 }

16
17 // Use of the visitor to print all elements

18 inorderTraversal(rootNode , element -> {

19 System.out.println(element)

20 });

21
22 // Use of the visitor to add all elements to a ←↩

↪→ list.

23 ArrayList <E> list = new ArrayList <>();

24 inorderTraversal(rootNode , element -> {

25 list.add(element)

26 });

17

We want to be able to identify good patterns in student code so we can highlight

them and reinforce good design habits. At the same time, we want to deem-

phasize compiler errors and warnings, while still maintaining the compiler as

gatekeeper, to place the focus on good code design.

4.1.2 Antipatterns

Antipatterns are commonly seen problem solutions that generate negative con-

sequences [12]. Antipatterns are code structures that look good, and maybe are

good within a narrow context, but produce generally bad results. [12] Andrew

Koenig described them as “An Antipattern is just like a pattern, except that

instead of a solution it gives something that looks superficially like a solution,

but isn’t one.” [35]

While we are concerned with Antipatterns in general, we are more concerned

with novice Antipatterns ; i.e., poorly conceived or erroneous code structures

commonly created by novice programmers. Often, these novice Antipatterns

represent bad solutions that would never be seen in expert code. For this reason,

tools designed to assist expert programmers rarely provide good feedback on

these kinds of mistakes.

For example, introductory computer science students often want to create a new

long-lived resource, such as a Scanner, for each data item that might obtain its

value from user input.(See Listing 4.2)

A Scanner is a resource for reading values from some input source, such as the

keyboard, a file, or a website. Every time a programmer creates a Scanner, Java

18

allocates a buffer space in memory to store the data as quickly as it can be read

from the input source. This can consume a tremendous amount of memory when

a Scanner is created for every single data element. Furthermore, because the

Scanners all share the same input source, the first Scanner will gobble-up all the

waiting keyboard strokes, leaving the others with no data. The solution to this

antipattern is to use a singleton. (Listing 4.3

Listing 4.2: The Scanner Overuse Antipattern

1 // The Accidental Rebirth Antipattern

2 // Student creates a new resource (Scanner) for ←↩
↪→ every node in a tree.

3 public class LinkedBinaryTreeNode <E> implements ←↩
↪→ BinaryTreeNode <E> {

4 private Question root;

5 private Scanner scan;

6
7 public LinkedBinaryTreeNode () {

8 root = new Question("cat");

9 scan = new Scanner(System.in);

10 }

11 }

Listing 4.3: Correcting the Scanner Overuse Antipattern

1 // Correcting the Accidental Rebirth Antipattern

2 // Student retrieves a singleton resource (Scanner←↩
↪→) instead of creating new for every node in ←↩
↪→ a tree.

3 public class LinkedBinaryTreeNode <E> implements ←↩
↪→ BinaryTreeNode <E> {

4 private Question root;

5
6 public LinkedBinaryTreeNode () {

7 root = new Question("cat");

8 // retrieves singleton resource instead of ←↩
↪→ creating new for each node.

9 scan = Singleton.Scanner(System.in);

10 }

11 }

19

Our goal with WebTA is to identify novice Antipatterns in the student code and

provide them with feedback that helps them develop better coding habits. The

critiques generated from detected Antipattern tell the students ”why the bad

solution looks attractive (e.g. it actually works in some narrow context), why it

turns out to be bad, and what positive patterns are applicable in its stead.” [7]

4.2 Antipatterns: Characteristics, Detection,

and Response

WebTA analyzes code snippets and larger programming projects, providing pseu-

docode translations, feedback on compilation and execution, shakedown testing,

and style critique. During analysis, code patterns trigger advice for the students.

Examination of student code submitted to WebTA has helped us identify several

code Antipatterns, which we can then detect automatically and provide appro-

priate just-in-time feedback to students. The examples given here are derived

from actual student submissions, slightly modified for brevity.

4.2.1 Misplaced Code

While learning to program in Java, beginning students are focused at the level

of individual expressions and statements, rather than the broader organization

of the code. This often leads them to the Misplaced Code Antipattern: inserting

good code outside of any method or other appropriate enclosing structure. This

will stop the compilation process, but the resulting error messages do not produce

meaningful feedback that would assist a novice coder (Fig. 4.1).

20

Figure 4.1: Errors normally associated with misplaced code.

We have tailored our syntactic analysis to bundle up such illegal code fragments

in such a way as to allow further analysis to continue. Thus we can provide

feedback about the code even if it is misplaced. For example, in Listing 4.4

there is a large code fragment outside of any method. WebTA detects the code

fragment, bundles it as a unit separate from the rest of the abstract syntax

tree, and determines that if the bundled code were contained within a method

it would be syntactically correct. So we can suggest to the student: “The only

code allowed at the class level are variable and method declarations. This code

looks good, but needs to be moved into a method.”

Listing 4.4: Misplaced Code

1 public class Hello {

2 String s = "Hello World";

3 String result = "";

4 for(int i=0; i < s.length (); i++) {

5 result = s.charAt(i) + result;

6 }

7 return result;

8 }

21

4.2.2 Interface Pseudo-Implementation

When developing a library to be used by other programmers, Java provides a

mechanism for specifying the promise of behavior as a contract between pro-

grammers.

The Interface Pseudo-Implementation Antipattern occurs when students imple-

ment the methods called for by a Java interface, but neglect to use the reserved

word implements in the class definition, thereby failing to enforce the contract of

the interface type. The following simplified example shows how a student might

implement a class in such a scenario. This is a particularly vexing problem for

students as the code will often run correctly on their machine where they create

an instance of class Reverse and store it in a variable of the same type. How-

ever, this often breaks in instructor test cases where an instance of Reverse is

likely to be stored in a variable of type ReverseInterface.

It is important to detect this pattern early on to mitigate student frustration.

Detecting this pattern can be achieved by traversing the Abstract Syntax Tree

for the class to determine if it meets the specification. Alternatively, and perhaps

more easily, instructors can include a simple instanceof test case in their test

suite (Listing 4.6).

Listing 4.5: Interface Pseudo-Implementation

1 public interface ReverseInterface {

2 public String reverseString(String s);

3 }

4
5 // Reverse implements ReverseInterface

6 public class Reverse {

7 // required by ReverseInterface

22

8 public String reverseString(String s) {

9 String result = "";

10 for(int i = 0; i < s.length (); i++) {

11 result = s.charAt(i) + result;

12 }

13 return result;

14 }

15 }

Listing 4.6: one way to detect the Interface Pseudo-Implementation pat-

tern.

1 @Test

2 public void testImplementsInterface() throws ←↩
↪→ FileNotFoundException {

3 Reverse test = new Reverse();

4 if (!(test instanceof ReverseInterface)) {

5 fail("Your Reverse class does not ←↩
↪→ implement ReverseInterface.");

6 }

7 }

4.2.3 Localized Instance-Variable

In the Localized-Instance-Variable Antipattern, students declare an instance vari-

able but only use it as if it were a local variable in a single method. Often, as

in Listing 4.7, these variables are both modified and used within the method.

We detect this by slicing the instance variable within the Abstract Syntax Tree.

If the variable is not public and is only used in a single method, WebTA suggests

that the student make the variable local to the method.

Listing 4.7: Localized Instance-Variable

23

1 public class Reverse {

2 String result = "";

3 public String reverseString(String s) {

4 for(int i = 0; i < s.length (); i++) {

5 result = s.charAt(i) + result;

6 }

7 return result;

8 }

9 }

Consider, however, the case where a student defines an instance variable and

only supplies a reader method, a writer method, and/or initializes the variable

in a constructor (Listing 4.8). In such cases, where there are no defined behaviors

operating on the variable, one has to question whether the data member belongs

in the class or if it is perhaps a property of another class.

Listing 4.8: Instance Variable with no Behavior

1 public class Elephant {

2 private int numberPoached;

3 public int getNumberPoached () {

4 return numberPoached;

5 }

6 public void setNumberPoached(int i) {

7 numberPoached = i;

8 }

9 }

This case can stymie automatic detection because of notable exceptions, such

as key-value pairs or the value slot in a linked-list node. This is where the

instructor’s knowledge of the problem domain is required to determine whether

or not WebTA should report a problem to the student.

24

4.2.4 Knee-Jerk

Students in an introductory programming course are bombarded with new terms

and programming constructs, and are asked to write code before a deep under-

standing of the new constructs has settled in. Consequently, it is common for

first year students to utilize the Knee-Jerk Antipattern: implementing a lan-

guage construct in a vacuous way, simply because it was recently studied in

class. Listing 4.9 shows a simplified example: working on an assignment to

implement a method that returns the absolute value of a number, a student

includes a for-loop (lines 4-5) because the code structure was covered recently

in class.

Often, the body of such knee-jerk code is left empty. This makes it easy to detect

using either a regular expression (in the case of static analysis of the code) or

by walking the Abstract Syntax Tree representing this method. Upon detecting

empty knee-jerk code, we highlight the fragment and ask the student why it is

included in their code.

Listing 4.9: Empty Knee-Jerk Code

1 public double abs(double d) {

2 double result = d;

3 if (d < 0) {

4 for(int i = 0; i < 10; i++) {

5 }

6 result = -d;

7 }

8 return result;

9 }

Somewhat more challenging is the case when code is provided within the body

25

of the knee-jerk fragment (Listing 4.10 lines 4-6). In the special case where the

body code does not contribute to the outcome of the method, this pattern may

be detected by slicing the dependency graph of the outcome of the method [43].

If the code does not affect the result of the method, the fragment is highlighted

and the student is advised that the code may be unnecessary.

Listing 4.10: Independent Knee-Jerk Code

1 public double abs(double d) {

2 double result = d;

3 if (d < 0) {

4 for(int i = 0; i < 10; i++) {

5 System.out.println(i);

6 }

7 result = -d;

8 }

9 return result;

10 }

An open problem for us, can occur when the knee-jerk code fragment includes

valid code that impacts the result of the method (Listing 4.11 lines 3-7). In this

example, the student writes a for-loop around the internal logic of the method.

The loop has no real effect and method still produces a valid result. A human

reading this code can easily identify the loop as unnecessary. Here the instructor

can use specific knowledge about the assignment to identify and flag code that

matches this pattern.

26

Listing 4.11: Entangled Knee-Jerk Code

1 public double abs(double d) {

2 double result = d;

3 for(int i = 0; i < 10; i++) {

4 if (d < 0) {

5 result = -d;

6 }

7 }

8 return result;

9 }

27

Part II

Constructing Code Critiquers

28

Chapter 5

Basic Critiquer Design

5.1 A Bit of Design

Part II is presented as the heart of a introductory course in Code Critiquers.

Here we discuss the basics of constructing code critiquers. We define code cri-

tiquers as software that facilitates learning through the automatic critique of

student source code by identifying and responding to antipatterns commonly

found in novice source code. Larger systems, such as Web-CAT [22] or BOSS

[33], incorporate aspects of Curriculum Management Systems (CMS) including

assignment management, online submission system, student grade book, etc.

Smaller systems, such as FindSmells [53] are narrowly focused on identify a

specific issues within student code.

We are interested in constructing code critiquers with the ability to identify

different kinds of antipatterns found in novice code and provide feedback to the

student. This chapter outlines the design of several rudimentary tools useful

29

doing just this.

5.1.1 User Story

Each of the critiquer tools we develop will be based on the simple design (Figure

5.1) that the instructor distills their pedagogical and computing experience into

descriptions of antipatterns, which the software will use to identify antipatterns

in novice code, and critique descriptions, used to formulate feedback for the

student.

Figure 5.1: Basic design of a Code Critiquer.

Students will supply source code, which the critiquer system will examine in some

way to identify antipatterns based on the instructor’s antipattern descriptions.

Once the antipatterns have been identified, the critiquer system will generate

critiques based on the instructor’s critique descriptions. These critique descrip-

tions are canned feedback; distilled responses that the instructor would have

30

given the student if the instructor had reviewed the code.

The critiques generated by the critiquer system are then communicated to the

student, who reflects upon them and incorporates their advice into the next

revision of their source code.

5.1.2 Aspects of Coding

In the following chapters, we will seek to identify antipatterns within five differ-

ent aspects of coding: Structure, Behavior, Style, Testing, and Design. (Figure

5.2)

• Structure involves the mechanics of the language; the syntax of a program.

• Behavior encompasses the meaning and execution of a program.

• Style invokes community-based standards enabling efficient communication

between programmers.

• Testing ensures the program is robust and developed according to spec.

• Design refers to high-level best practices that produce good code.

We will represent these coding aspects as an enumerated data type. (Listing:

5.1)

Listing 5.1: CodingAspect.java - Enumerating Coding Aspects

1 package edu.mtu.cs.webta.critiquer;

2
3 public enum CodingAspect {

4 STRUCTURE("Structure"),

5 BEHAVIOR("Behavior"),

6 STYLE("Style"),

7 TESTING("Testing"),

8 DESIGN("Design"),

9 TBD("To Be Determined");

31

Figure 5.2: Five aspects of coding.

10
11 public final String label;

12
13 private CodingAspect(String label) {

14 this.label = label;

15 }

16 }

In general, although not exclusively, each of these coding aspects suggests the

implementation for a code critiquer. For example, structural aspects of coding,

especially at the novice level, are deeply tied to the syntax of the programming

language. This suggest that patterns can be identified through parsing or com-

pilation. Whereas the behavior or meaning of code is best captured at runtime.

We will look at a different source for identifying antipatterns based on the coding

aspect. We can enumerate the different sources in a type (Listing 5.2).

Simple code critiquers for each of these aspects of programming will be explored

in the following chapters.

32

Listing 5.2: AntipatternSource.java - Sources for Identifying Antipatterns.

1 package edu.mtu.cs.webta.critiquer;

2
3 public enum AntipatternSource {

4 AST("AST"),

5 CODE("Code"),

6 DIAGNOSTIC("Diagnostic"),

7 EXCEPTION("Exception"),

8 TEST("Test"),

9 MANUAL("Manual");

10
11 public final String label;

12 private AntipatternSource(String label) {

13 this.label = label;

14 }

15 }

5.1.3 Describing Antipatterns and Critiques

In our user story, the instructor provides the critiquer system with a description

of the antipatterns to be identified. One way to describe patterns is to use

regular expressions. Regular expressions are equivalent to finite automata and

can be used to represent patterns based on common characteristics. Regular

expressions are particularly useful for describing patterns that appear in text or,

in our case, source code.

Regular expressions can be used to match specific text. For example, we could

find all of the print statements in a program using the regular expression

System.out.print. The power of regular expressions comes from the ability

to match patterns where differences between the text exist. For example, we

could find every case where a primitive integer variable is declared by using the

following regular expression: ^\s*int\s+[a-z][A-Za-z0-9 $]*\s+=. In this

33

example, ^ represents the start of a line of text, \s represents a single char-

acter of whitespace, the * means to match the preceding pattern zero or more

times and a + means the preceding pattern must appear one or more times, the

rather long expression [a-z][A-Za-z0-9 $]* describes a variable name in Java

(a lowercase letter followed by any combination of letters, digits, underscores, or

dollar signs).

So we can find where all of the integer variables are declared in the code, what

if we wanted a list of the variables? If we add parentheses around the regu-

lar expression for variable names, \̂s*int\s+([a-z][A-Za-z0-9 $]*)\s+=, the

regular expression engine will remember all of the variable names.

That is interesting, but we want to identify common antipatterns in student

code. We can use the regular expression to find all the integer variable decla-

rations where the variable name did not comply with the community standard

that variable names must begin with a lowercase letter (Antipattern: §12.4.31):

\̂s*int\s+([A-Z0-9 $][A-Za-z0-9 $]*)\s+=. Here we are looking for variable

names that begin with an uppercase letter, a digit, an underscore, or a dollar

sign. Note that some of the variable names found using this pattern are legal

Java identifiers, for example: this would match the code int LoanAmout = 5;.

The variable name LoanAmount is a legal variable name, but it does not comply

with community standard for naming variables in Java.

Table 5.1 lists some of the common meta-characters used in regular expressions

and their meaning.

We can now use regular expressions to describe antipatterns (Listing 5.3).

34

Table 5.1
Common Regular Expression Meta-Characters.

abc Strings of characters abc to be matched exactly.
[abc] Match any single character a, b, or c.
[âbc] Match any single character except a, b, or c.
[a-z] Match any single lowercase letter a through z.
[A-Z] Match any single lowercase letter A through Z.
[0-9] Match any single digit 0 through 9.

. (dot) matches any character accept newline.
^ Matches The beginning of a string or line.
$ Matches EOL or EOF.
* Match zero or more occurrences of the preceding expression.
+ Matches zero or more occurrences of the preceding expression.
? Matches zero or one occurrences of the preceding expression.
() Parentheses are used for grouping information.
\s A single character of whitespace (but not EOL).
\S A single character; not whitespace or EOL.
\w Match a word.
\W Not a word.

Listing 5.3: AntipatternDescription.java - Interface for Antipattern De-

scriptions

1 package edu.mtu.cs.webta.critiquer;

2
3 import java.util.regex.Pattern;

4
5 public interface AntipatternDescription {

6 public String getName();

7 public String getDescription();

8
9 public AntipatternSource getSource();

10
11 public String getRegexString();

12 public Pattern getRegexPattern();

13 }

35

Chapter 6

Critiquing Structure

6.1 The Structure of a Program

The structure of a program is a broad topic that begins, for novices, with master-

ing the syntax of a language. In addition to syntax, the structure of a program

encompasses Structured Programming. Structured programming is a program-

ming paradigm that includes code structures and coding methodology that aims

to improve the clarity, quality, development speed, and maintainability of pro-

grams. These are important concepts for students to learn. However, we will

not be able to identify antipatterns relating to structured programming until we

have developed tools for analyzing source code in §8. For now, we will focus on

identifying novice antipatterns related to syntax.

Syntax is language dependent and defines the rules for correctly combining sym-

bols into statements and expressions when composing a program. Novices are

confused by the rules of syntax and struggle with resolving syntax errors in

37

their code [50]. One reason code critiquers are important tools for addressing

novice confusion about syntax is because syntax errors manifest themselves in

the moment, while students are coding. Rodrigo et. al. say “One approach to

aiding students in learning to deal with syntactic errors could be to focus more

on the process they are learning, helping students to become more self-aware and

reflective in their work. However, the frustration and confusion that students

experience when programming are emotions and confusion in the moment. To

this end, pedagogic approaches that directly support students in meaningful ways

while they are engaged in programming (and, therefore, learning) are, we believe,

critical.”

We can use a language parser, either separate from or embedded in a compil-

er/interpreter to reveal syntax-related structural errors in student code. Our

goal is to explain syntactic errors in easy to understand terms, provided debug-

ging techniques that help repair syntax errors, and assist students in developing

the knowledge and best practices that help them avoid syntax errors in the

future.

One common example of a syntax error that plagues novice programmers learn-

ing the Java programming language is the missing semicolon. Java uses semi-

colons as separators between statements. Indeed, the missing semicolon is part

of a more general antipattern MISSING-SEPARATOR (Antipattern §12.2.23).

Java has 12 separators (Table §6.1) that can derail the parsing process and

produce cryptic error meesages that are difficult for novices to understand.

In this chapter we will develop a critiquer to provide advice to students who

encounter a missing separator or other syntax issue in their code.

38

Table 6.1
Java Separators.

(Left parenthesis - indicates the beginning of an expression, argument list,
or parameter list.

) Right parenthesis - indicated the end of an expression, argument list, or
parameter list.

{ Left curly-bracket - indicates the beginning of a code block or static
initialization environment.

} Right curly-bracket - indicates the end of a code block or static initial-
ization environment.

[Left square bracket - indicates the beginning of an indexing expression
or size expression of an array.

] Right square bracket - indicates the end of an indexing expression or size
expression of an array.

; Semicolon - indicates the end of a statement.
, Comma - used to separate elements in a static array initialization and to

separate assignment operations in variable declarations and for-loops.
. The dot is used to separate an instance and a variable or method identifier

or the packages in a package hierarchy.
. . . Ellipsis - used to separate a data type and identifier for use in declaring

a method that accepts multiple arguments.
@ The commercial-at symbol is used to indicate annotations in Java.
:: Double-colon - separates class name from methods name in a lambda

expression.

6.2 Detecting Structure Antipatterns

Java provides a convenient API for accessing the compiler at runtime. This al-

lows us to utilize the Java compiler to detect syntax-based structure antipatterns

in student code. Listing 6.2 contains the source code to compile a Java source

file. The code is relatively straight-forward, but bears examination.

The compile() method on line 15 returns true if the compilation is successful

or false if compilation failed. There are three arguments required to call the

compile() method. The first is a File object that describes the name and

39

location of the source file. The second is a list of strings representing compiler

options. Listing 6.1 provides an example of common compiler options. The third

argument is a Listener that processes Diagnostic objects as they are generated

by the compilation process. A Diagnostic contains information about any errors

or warnings discovered in the code by the compiler. We will collect this diagnostic

information and use it to identify syntax-based antipatterns in the code.

Listing 6.1: ArrayList of Compiler Options

1 Iterable < String > options = Arrays.asList(

2 "-Xlint:all", // Enable all warnings

3 "-Xdoclint:all", // Enable all checks for ←↩
↪→ problems in javadoc comments

4 "-Xmaxerrs", "1000", // Set the maximum number ←↩
↪→ of errors to print

5 "-Xmaxwarns", "1000", // Set the maximum number←↩
↪→ of warnings to print

6 "-Xdiags:verbose", // Select verbose diagnostic←↩
↪→ mode

7 "-deprecation", // Output source locations ←↩
↪→ where deprecated APIs are used

8 "-source","11", // Provide source compatibility←↩
↪→ with the specified Java SE release.

9 "-target","11", // Generate class files ←↩
↪→ suitable for the specified Java SE ←↩
↪→ release.

10 "-g", // Generate all debugging info

11 "-d", folder , // Specify where to place ←↩
↪→ generated class files

12 "-cp", folder , // Specify where to find user ←↩
↪→ class files and annotation processors

13 "-sourcepath", "." // Specify where to find ←↩
↪→ input source files

14);

Digging into the code in Listing 6.2, line 19 retrieves the system compiler object.

From this we obtain the standard file manager in line 21. This is used to manage

the source file dependencies and compilation order. We seed the file manager

40

with the initial java source file to compile, which was passed to the compile()

method as the first argument. Beginning in line 31, the code iterates through the

files provided by the manager. These files are compiled in a separate thread by

compiler on line 32. Finally, if all of the compilation tasks complete successfully,

line 42 will return true.

Listing 6.2: CompilerTools.java - Detecting Structure Antipatterns

1 package edu.mtu.cs.webta.util.compile;

2
3 import javax.tools.Diagnostic;

4 import javax.tools.DiagnosticListener;

5 import javax.tools.JavaCompiler;

6 import javax.tools.JavaFileObject;

7 import javax.tools.StandardJavaFileManager;

8 import javax.tools.ToolProvider;

9 import java.io.File;

10 import java.util.ArrayList;

11 import java.util.Arrays;

12 import java.util.Collections;

13 import java.util.List;

14 import java.util.Locale;

15
16 public class CompilerTools {

17 public static boolean compile (

18 File sourcefile ,

19 Iterable < String > options ,

20 DiagnosticListener < JavaFileObject > ←↩
↪→ diagnosticListener

21) {

22 JavaCompiler compiler = ToolProvider.←↩
↪→ getSystemJavaCompiler();

23
24 StandardJavaFileManager manager = compiler.←↩

↪→ getStandardFileManager(

25 diagnosticListener ,

26 Locale.ENGLISH ,

27 null

28);

29
30 Iterable < ? extends JavaFileObject > files =

31 manager.getJavaFileObjectsFromFiles(

41

32 (List < File >) Arrays.asList(←↩
↪→ sourcefile));

33
34 boolean result = true;

35 for(JavaFileObject file : files) {

36 JavaCompiler.CompilationTask task = ←↩
↪→ compiler.getTask(

37 null ,

38 manager ,

39 diagnosticListener ,

40 options ,

41 null ,

42 Arrays.asList(file)

43);

44 result = task.call() && result;

45 }

46 return result;

47 }

48
49 public static List < Diagnostic < ? extends ←↩

↪→ JavaFileObject > > generateDiagnostics(

50 String folder ,

51 String javaClassname ,

52 ArrayList <String > options) {

53 File javaSourceFile = new File(folder + "/" +←↩
↪→ javaClassname + ".java");

54 List < Diagnostic < ? extends JavaFileObject > >←↩
↪→ diagnosticsList =

55 Collections.synchronizedList(new ←↩
↪→ ArrayList <>());

56
57 options.addAll(Arrays.asList(

58 "-Xlint:all",

59 "-Xmaxerrs", "1000",

60 "-Xmaxwarns", "1000",

61 "-Xdiags:verbose",

62 "-source","11",

63 "-target","11",

64 "-g",

65 "-d", folder ,

66 "-sourcepath", folder

67));

68
69 compile(

70 javaSourceFile ,

42

71 options ,

72 diagnosticsList ::add

73);

74
75 return diagnosticsList;

76 }

77 }

Continuing with our MISSING-SEPARATOR antipattern (§12.2.23), the code

in Listing 6.3 is missing three separators. Can you see where?

Listing 6.3: MissingSeparators.java - Example Containing Antipatterns

1 public class MissingSeparators {

2 private Double volume(String nameOfCurvedSolid , ←↩
↪→ double height , double base , double radius)←↩
↪→ {

3 Double volume = null;

4 int [] foo = new int[10

5 switch nameOfCurvedSolid.toUpperCase ()) {

6 case "SPHERE":

7 volume = 4 * Math.PI * Math.pow(radius , 2←↩
↪→);

8 break;

9 case "CYLINDER":

10 volume = 2 * Math.PI * Math.pow(radius , 2←↩
↪→) +

11 2 * Math.PI * radius * height

12 break;

13 case "CONE":

14 volume = Math.PI * radius * (radius + ←↩
↪→ Math.sqrt(

15 Math.pow(height , 2) + Math.pow(←↩
↪→ radius , 2)));

16 break;

17 }

18 return volume;

19 }

20 }

43

We are now ready to collect diagnostics by compiling MissingSeparators.java.

Add the generateDiagnostics() method (Listing 6.4) to CompilerTools.java.

Then call the method with the path and filename for MissingSeparators.java.

Listing 6.4: CompilerTools.java - Generate Diagnostics

1 public static List < Diagnostic < ? extends ←↩
↪→ JavaFileObject > > generateDiagnostics(←↩
↪→ String folder , String javaClassname) {

2 File javaSourceFile = new File(folder + "/" + ←↩
↪→ javaClassname + ".java");

3 List < Diagnostic < ? extends JavaFileObject > > ←↩
↪→ diagnosticsList =

4 Collections.synchronizedList(new ArrayList←↩
↪→ <>());

5
6 Iterable < String > options = Arrays.asList(

7 "-Xlint:all",

8 "-Xdoclint:all",

9 "-Xmaxerrs", "1000",

10 "-Xmaxwarns", "1000",

11 "-Xdiags:verbose",

12 "-deprecation",

13 "-source","11",

14 "-target","11",

15 "-g",

16 "-d", folder ,

17 "-cp", folder ,

18 "-sourcepath", "."

19);

20
21 compile(

22 javaSourceFile ,

23 options ,

24 diagnosic -> {

25 diagnosticsList.add(diagnosic);

26 }

27);

28
29 return diagnosticsList;

30 }

44

You should now have a list containing the Diagnostic objects (Figure 6.1).

Figure 6.1: Example Diagnostics for MissingSeparators.java.

data/library/MissingSeparators.java:4: error: ']' expected

int [] foo = new int[10

^

data/library/MissingSeparators.java:5: error: '(' expected

switch nameOfCurvedSolid.toUpperCase()) {

^

data/library/MissingSeparators.java:11: error: ';' expected

2 * Math.PI * radius * height

^

6.3 Making Critiques from Diagnostics

Several studies have indicated that Novices have trouble understanding the mes-

sages produced by a compiler [8, 19, 41, 44, 57]. We use regular expressions to

extract salient details from Diagnostics that indicate an antipattern and apply

them to critique templates provided by the instructor. The instructor provides

the antipattern and critique information in a Description (Listing 6.5).

Listing 6.5: Description.java - Combined Antipattern and Critique De-

scription

1 package edu.mtu.cs.webta.critiquer;

2
3 import java.util.regex.Pattern;

4
5 public class Description implements ←↩

↪→ AntipatternDescription , CritiqueDescription ←↩
↪→ {

6 private String name;

7 private String description;

8
9 private CodingAspect type = CodingAspect.TBD;

10 private AntipatternSource source; // AST , Code ,←↩
↪→ Diagnostic , Exception

11 private boolean useAltSource = false;

45

12
13 private String regexString = null;

14 private Pattern regexPattern = null;

15
16 private String textTemplate = "";

17 private String altTextTemplate = "";

18
19
20 public Description(String name ,

21 CodingAspect type ,

22 AntipatternSource source ,

23 boolean useAltSource ,

24 String description ,

25 String regexString ,

26 String textTemplate ,

27 String altTextTemplate

28) {

29 this.name = name;

30 this.type = type;

31 this.source = source;

32 this.useAltSource = useAltSource;

33 this.description = description;

34 this.regexString = regexString;

35 regexPattern = Pattern.compile(regexString , ←↩
↪→ Pattern.MULTILINE);

36 this.textTemplate = textTemplate;

37 this.altTextTemplate = altTextTemplate;

38 }

39
40 @Override

41 public String getName() {

42 return name;

43 }

44
45 @Override

46 public String getDescription() {

47 return description;

48 }

49
50 @Override

51 public CodingAspect getType() {

52 return type;

53 }

54
55 @Override

46

56 public AntipatternSource getSource() {

57 return source;

58 }

59
60 public boolean useAltSource () {

61 return useAltSource;

62 }

63
64 @Override

65 public String getRegexString() {

66 return regexString;

67 }

68
69 @Override

70 public Pattern getRegexPattern() {

71 return regexPattern;

72 }

73
74 @Override

75 public String getTextTemplate() {

76 return textTemplate;

77 }

78
79 @Override

80 public String getAltTextTemplate() {

81 return altTextTemplate;

82 }

83 }

The result of matching up a Diagnostic with a Description is a Critique

(Listing 6.6). The Critique pulls together the name (same as the

matched Description), the matched Description, the source (in this case a

Diagnostic), the matched text (which is group(0) from the regular expression

match, the text of the critique and alternate text.

Listing 6.6: Critique.java - Critique Class

1 package edu.mtu.cs.webta.critiquer;

2
3 import java.util.regex.MatchResult;

47

4
5 public class Critique < T > {

6 private String name = "";

7 private String description = "";

8
9 private Description matchedDescription = null; ←↩

↪→ //?

10 private MatchResult trigger = null; //?

11
12 private T source = null; // e.g., Diagnostic

13 private String sourceFile = ""; // If relevant

14
15 private String matchText = "";

16 private String text = "";

17 private String altText = "";

18
19
20 public Critique(Description matchedDescription←↩

↪→ , MatchResult trigger , T source ,

21 String sourceFile , String text←↩
↪→ , String altText) {

22 name = matchedDescription.getName();

23 description = matchedDescription.←↩
↪→ getDescription();

24 this.matchedDescription = matchedDescription←↩
↪→ ;

25 this.trigger = trigger;

26 this.source = source;

27 this.sourceFile = sourceFile;

28 this.text = text;

29 this.altText = altText;

30 }

31
32 public String toString() {

33 return toString(0);

34 }

35
36 public String toString(int textChoice) {

37 String result = "ANTIPATTERN: " + ←↩
↪→ matchedDescription.getName() + "\n";

38 if (textChoice == 0) {

39 result += text + "\n";

40 } else {

41 result += altText + "\n";

42 }

48

43 return result;

44 }

45
46 // GETTER METHODS

47 public String getName() {

48 return name;

49 }

50
51 public String getDescription() {

52 return description;

53 }

54
55 public Description getMatchedDescription() {

56 return matchedDescription;

57 }

58
59 public MatchResult getTrigger() {

60 return trigger;

61 }

62
63 public T getSource() {

64 return source;

65 }

66
67 public String getSourceFile() {

68 return sourceFile;

69 }

70
71 public String getText() {

72 return text;

73 }

74
75 public String getAltText() {

76 return altText;

77 }

78 }

Some tools are required for generating the critiques. CritiquerTools.java (List-

ing 6.7) contains a default structure critique that is used to alert the student

when a Diagnostic does not match any antipattern descriptions. The method

getMatchResults() matches a regular expression to supplied text producing

49

a list of match results. Finally, there is a factory method, makeCritique specif-

ically for structure antipattern descriptions. This method takes a Diagnostic,

a filename, and an array of instructor provided antipattern descriptions. From

these inputs the factory method generates a Critique.

Listing 6.7: CritiquerTools.java - Critique Class

1 package edu.mtu.cs.webta.critiquer;

2
3 import javax.tools.Diagnostic;

4 import java.text.MessageFormat;

5 import java.util.ArrayList;

6 import java.util.List;

7 import java.util.regex.MatchResult;

8 import java.util.regex.Matcher;

9 import java.util.regex.Pattern;

10 import java.util.regex.PatternSyntaxException;

11
12 public class CritiquerTools {

13 public static final Description ←↩
↪→ DEFAULT_STRUCTURE_CRITIQUE = new ←↩
↪→ Description(

14 "BOGUS_ERROR", CodingAspect.STRUCTURE , ←↩
↪→ AntipatternSource.DIAGNOSTIC , false ,

15 "Triggered when code an unrecognized error←↩
↪→ occurs.",

16 "^[\\S\\s$]*$",
17 "ERROR:\n{0}\n",

18 "ERROR:\n{0}\n"

19);

20
21 private static List < MatchResult > ←↩

↪→ getMatchResults(

22 String regexString ,

23 String text) throws ←↩
↪→ PatternSyntaxException {

24 List < MatchResult > matches = new ArrayList←↩
↪→ <>();

25 if (regexString != null && !regexString.←↩
↪→ isEmpty()) {

26 Pattern regexPattern = Pattern.compile(←↩
↪→ regexString , Pattern.MULTILINE);

50

27 Matcher matcher = regexPattern.matcher(←↩
↪→ text);

28 while (matcher.find()) {

29 matches.add(matcher.toMatchResult() ←↩
↪→);

30 }

31 }

32 return matches;

33 }

34
35 public static < S extends Diagnostic > Critique←↩

↪→ < S > makeCritique(

36 S source ,

37 String sourceFile ,

38 Description [] descriptions) {

39 Critique < S > critique = null;

40 boolean critiqueFound = false;

41 for (Description description : descriptions←↩
↪→) {

42 if (description.getSource() != ←↩
↪→ AntipatternSource.DIAGNOSTIC) { ←↩
↪→ continue; }

43 List < MatchResult > matchResults = ←↩
↪→ getMatchResults(

44 description.getRegexString(),

45 source.toString());

46 if (!matchResults.isEmpty()) {

47 critiqueFound = true;

48 MatchResult matchResult = matchResults←↩
↪→ .get(0);

49 String [] matchedGroups = new String[←↩
↪→ matchResult.groupCount() + 1];

50 for (int i = 0; i < matchedGroups.←↩
↪→ length; i++) {

51 matchedGroups[i] = matchResult.←↩
↪→ group(i);

52 }

53 String matchedText = matchedGroups [0];

54 String critiqueText =

55 MessageFormat.format(

56 description.getTextTemplate(),

57 matchedGroups);

58 String altCritiqueText =

59 MessageFormat.format(

51

60 description.getAltTextTemplate(←↩
↪→),

61 matchedGroups);

62 critique = new Critique <>(

63 description ,

64 matchResult ,

65 source ,

66 sourceFile ,

67 critiqueText ,

68 altCritiqueText

69);

70 }

71 }

72 if (!critiqueFound) {

73 Description defaultDescription = ←↩
↪→ DEFAULT_STRUCTURE_CRITIQUE;

74 List < MatchResult > matchResults = ←↩
↪→ getMatchResults(

75 defaultDescription.getRegexString()←↩
↪→ ,

76 source.toString());

77 for (MatchResult critiqueMatch : ←↩
↪→ matchResults) {

78 critique = new Critique < S >(

79 defaultDescription ,

80 critiqueMatch ,

81 source ,

82 sourceFile ,

83 defaultDescription.←↩
↪→ getTextTemplate(),

84 defaultDescription.←↩
↪→ getAltTextTemplate()

85);

86 }

87 }

88 return critique;

89 }

90 }

All that remains is to build a Structure Critiquer Application (Listing 6.8. The

application needs access to an array of antipattern descriptions. For simplicity,

we added this as a constant, but one can imagine the data being extracted from

52

a database. There is a single instance method, generateStructureCritiques(

). This method takes as arguments a filepath, a filename and the array of an-

tipattern descriptions. From these it produces a list of critiques for the student.

Listing 6.8: StructureCritiquer.java - A Rudimentary Structure Critiquer

1 package edu.mtu.cs.webta.critiquer;

2
3 import edu.mtu.cs.webta.util.compile.CompilerTools←↩

↪→ ;

4
5 import javax.tools.Diagnostic;

6 import javax.tools.JavaFileObject;

7 import java.io.File;

8 import java.util.ArrayList;

9 import java.util.Arrays;

10 import java.util.Collections;

11 import java.util.List;

12
13 public class StructureCritiquer {

14 public static final Description [] ←↩
↪→ ANTIPATTERN_CRITIQUE_DESCRIPTIONS = {

15 new Description(

16 "MISSING_SEPARATOR", CodingAspect.←↩
↪→ STRUCTURE , AntipatternSource.←↩
↪→ DIAGNOSTIC ,

17 false ,

18 "Triggered when code is missing a ←↩
↪→ something , such as a semicolon ←↩
↪→ or a parenthesis.",

19 "^([[\\w-\\s]*/?]*) \\b([^/]+\\.\\S+)←↩
↪→ ?\\:[\\s]*([\\d][\\d]*) [\\s←↩
↪→]*:[\\s]*(error)\\:[\\s←↩
↪→]*(\\ '(.) \\ '[\\s]* expected)$←↩
↪→ ?([\\s][\\S]*[^$]*)$?([\\s]*[\\←↩
↪→ S])$",

53

20 "ERROR :\n{0}\ nThe compiler is looking←↩
↪→ for a missing ''{6}'' ←↩
↪→ somewhere near line {3} in file←↩
↪→ {2}.\ nIf you don ''t see the ←↩
↪→ problem at that location ,\←↩
↪→ ncarefully read backwards ←↩
↪→ through the code\nlooking for ←↩
↪→ the missing character or some ←↩
↪→ other problem .\n",

21 "ERROR: The compiler is looking for a←↩
↪→ missing ''{6}'' somewhere ←↩
↪→ around line {3}.\n"

22)

23 };

24
25 public List < Critique < Diagnostic < ? extends ←↩

↪→ JavaFileObject > > >

26 generateStructureCritiques(

27 String folder ,

28 String javaClassname ,

29 Description [] descriptions

30) {

31 File javaSourceFile = new File(folder + "/"←↩
↪→ + javaClassname + ".java");

32 List < Critique < Diagnostic < ? extends ←↩
↪→ JavaFileObject > > > critiques =

33 Collections.synchronizedList(new ←↩
↪→ ArrayList <>());

34
35 ArrayList < String > options = new ArrayList <←↩

↪→ String > (Arrays.asList(

36 "-Xdoclint:all",

37 "-deprecation",

38 "-cp", folder));

39
40 CompilerTools.generateDiagnostics(

41 folder ,

42 javaClassname ,

43 options).forEach(

44 diagnostic -> {

45 critiques.add(

46 CritiquerTools.< Diagnostic < ? ←↩
↪→ extends JavaFileObject > ←↩
↪→ >

54

47 makeCritique←↩
↪→ (

48 diagnostic ,

49 diagnostic.getSource().←↩
↪→ getName(),

50 descriptions

51));

52 });

53 return critiques;

54 }

55
56 public static void main(String [] args) {

57 String folder = args[0]; // E.g., "data/←↩
↪→ library"

58 String javaClassname = args[1]; // E.g., "←↩
↪→ MissingSeparators"

59 StructureCritiquer critiquer = new ←↩
↪→ StructureCritiquer();

60 System.out.println("Diagnostic Critiques ←↩
↪→ for " + javaClassname + ".java");

61 critiquer

62 .generateStructureCritiques(folder , ←↩
↪→ javaClassname , ←↩
↪→ ANTIPATTERN_CRITIQUE_DESCRIPTIONS←↩
↪→)

63 .forEach(System.out:: println);

64 }

65 }

Running StructureCritiquer and supplying arguments for the MissingSepa-

rators.java code, we get the following code critiques (Figure 6.2):

Making structure-based critiquers is straight-forward. For the most part, time

is spent eliciting antipattern descriptions from the instructor.

55

Figure 6.2: Example Critiques for MissingSeparators.java.

Diagnostic Critiques for MissingSeparators.java

ANTIPATTERN: MISSING_SEPARATOR

ERROR:

data/library/MissingSeparators.java:4: error: ']' expected

int [] foo = new int[10

^

The compiler is looking for a missing ']' somewhere near line 4

in file MissingSeparators.java.

If you don't see the problem at that location,

carefully read backwards through the code

looking for the missing character or some other problem.

ANTIPATTERN: MISSING_SEPARATOR

ERROR:

data/library/MissingSeparators.java:5: error: '(' expected

switch nameOfCurvedSolid.toUpperCase()) {

^

The compiler is looking for a missing '(' somewhere near line 5

in file MissingSeparators.java.

If you don't see the problem at that location,

carefully read backwards through the code

looking for the missing character or some other problem.

ANTIPATTERN: MISSING_SEPARATOR

ERROR:

data/library/MissingSeparators.java:11: error: ';' expected

2 * Math.PI * radius * height

^

The compiler is looking for a missing ';' somewhere near line 11

in file MissingSeparators.java.

If you don't see the problem at that location,

carefully read backwards through the code

looking for the missing character or some other problem.

56

Chapter 7

Critiquing Behavior

7.1 The Behavior of a Program

Behavior is related to the execution, logic, and semantics (meaning) of a pro-

gram. Nothing is more frustrating to a novice programmer than writing code

that runs, but produces incorrect results due to logic errors. In one study, Ettles,

Luxton-Reilly and Denny, found the sources of novice logic errors to be “algorith-

mic errors, misinterpretations of the problem, and fundamental misconceptions”

[24]. One of the most common fundamental misconceptions is indexing into

strings, arrays, and lists. It is confusing to students that indexing begins at zero

and the last element is positioned at the length - 1. Listing 7.1 illustrates a cou-

ple antipatterns that produce a string index out of bounds error (Antipatterns

§12.3.13, §12.3.14).

Listing 7.1: StringIndexOutOfBounds.java - Common string antipatterns.

1 public class StringIndexOutOfBounds {

57

2 public void getLastCharacter(String str) {

3 char ch = str.charAt(str.length());

4 }

5
6 public void printSubstrings(String str) {

7 for(int index = str.length (); index >= 0 ; ←↩
↪→ index --) {

8 System.out.println(str.substring(index - ←↩
↪→ 1, str.length()));

9 }

10 }

11 }

There are many different ways to identify behavioral antipatterns in code. For

example, under the right conditions, a compiler can detect integer division by

zero (Antipattern §12.2.12; e.g. when an integer variable is divided by an integer

constant whose value is zero. Another way to identify behavior antipatterns is

to rely on the instructor’s knowledge of both the assignment and programming

to test the student’s code.

7.2 Testing with JUnit

An efficient way to find behavior antipatterns is to develop a battery of tests

for common logic error that trip up students for any given assignment. This

is called shakedown testing. Testing reveals logic errors and behavioral an-

tipatterns. Most languages have an associated testing platform or framework

that instructors can use to test student code. JUnit is the most popular testing

framework for Java. Listing 7.2 is a Junit test suite containing two test methods.

Test methods are any method immediately preceded by the @Test annotation.

Methods not preceded by @Test are not executed by JUnit, but can be called

as helper methods by the instructor’s test code.

58

Listing 7.2: StringIndexOutOfBoundsTest.java - JUnit tests for antipat-

terns.

1 import org.junit.Test;

2 import org.junit.Ignore;

3 import java.io.FileNotFoundException;

4
5 import static org.junit.Assert .*;

6
7 public class StringIndexOutOfBoundsTest {

8 @Test(case_name="←↩
↪→ STRING_INDEX_OUT_OF_BOUNDS_EXCEPTION",

9 point_value= 25.0,

10 hint="Java strings are zero -indexed. That ←↩
↪→ means the valid index range is [0, ←↩
↪→ length), i.e. zero through the length of←↩
↪→ the string MINUS ONE.\n\n")

11 public void upperStringIndexOutOfBoundsTest () ←↩
↪→ {

12 StringIndexOutOfBounds object = new ←↩
↪→ StringIndexOutOfBounds ();

13 String str = "It's not black magic; it's just ←↩
↪→ Java code!";

14 char result = object.getLastCharacter(str);

15 char expected = '!';
16 if (result != expected) {

17 fail(String.format("Method ←↩
↪→ StringIndexOutOfBounds () returned an ←↩
↪→ expected value .\ nINPUT: \"%s\"\ nOUTPUT←↩
↪→ : '%s '\nEXPECTED: '%s '\n",

18 str , result , expected));

19 }

20 }

21
22 @Test(case_name="←↩

↪→ SUBSTRING_INDEX_OUT_OF_BOUNDS_EXCEPTION",

23 point_value= 25.0,

24 hint="The substring(start , end) returns the ←↩
↪→ characters from the start index up to, ←↩
↪→ but not including , the end index. The ←↩
↪→ first argument to substring , the ←↩
↪→ starting index , must be in the range [0,←↩
↪→ length). The second argument , the ending←↩
↪→ index , must be in the range [0, length←↩
↪→].\n\n")

59

25 public void substringStringIndexOutOfBoundsTest ←↩
↪→ () {

26 StringIndexOutOfBounds object = new ←↩
↪→ StringIndexOutOfBounds ();

27 String stooge = "Shemp";

28 object.printSubstrings(stooge);

29 }

30 }

The test suite method upperStringIndexOutOfBoundsTest() tests the stu-

dent’s getLastCharacter() method in two ways: 1. it may trigger a runtime

exception and 2. if no runtime exception is triggered, it verifies that the value

returned is the expected return value based on the inputs provided. In the latter

case, the instructor calls the JUnit fail() method with a message indicating

what happened.

7.3 Using JUnit in a Behavior Critiquer

To use JUnit in our behavior critiquer, we need to register a listener object

that will record the results of the JUnit test methods. The JUnit API provides

RunListener, a listener class we can subclass for this purpose. There are several

methods in RunListener, but we only need to override testRunFinished()

to record the final test results (Listing 7.3). To accomplish this, we add the

finalResult data field and associated getter method.

Listing 7.3: JUnitRunListener.java - Listening for Failed Tests.

1 package edu.mtu.cs.webta.util.junit;

2
3 import org.junit.runner.Result;

4 import org.junit.runner.notification.RunListener;

5

60

6 public class JUnitRunListener extends RunListener ←↩
↪→ {

7 private Result finalResult = null;

8
9 public Result getFinalResult() {

10 return finalResult;

11 }

12
13 @Override

14 public void testRunFinished (Result result) ←↩
↪→ throws Exception {

15 finalResult = result;

16 }

17
18 }

Listing 7.4 contains some methods that we will use to work with JUnit. In partic-

ular, runTests() is passed the test class, e.g. StringIndexOutOfBoundsTest,

registers the listener, executes its tests, and returns the results.

Listing 7.4: UnitTestTools.java - Listening for Failed Tests.

1 package edu.mtu.cs.webta.util.junit;

2
3 import org.junit.runner.JUnitCore;

4 import org.junit.runner.Result;

5 import org.junit.runner.notification.Failure;

6
7 import java.io.PrintWriter;

8 import java.io.StringWriter;

9 import java.net.URL;

10 import java.util.List;

11
12 public class UnitTestTools {

13
14 public static List < URL > urlClassPath(←↩

↪→ ClassLoader classLoader , List < URL > lst)←↩
↪→ {

15 if (classLoader.getParent() != null) {

16 urlClassPath(classLoader.getParent(), lst ←↩
↪→);

61

17 }

18 return lst;

19 }

20
21 public static String getTrimmedTrace(Failure ←↩

↪→ failure) {

22 StringWriter stringWriter = new StringWriter(←↩
↪→);

23 PrintWriter writer = new PrintWriter(←↩
↪→ stringWriter);

24 Throwable e = failure.getException();

25 StackTraceElement [] stackTraceElements = e.←↩
↪→ getStackTrace();

26 writer.println(e);

27 for (StackTraceElement stackTraceElement : ←↩
↪→ stackTraceElements) {

28 if (stackTraceElement.getClassName()

29 .equals(failure.←↩
↪→ getDescription(←↩
↪→)

30 .getTestClass()

31 .getName())) {

32 break;

33 }

34 writer.println(stackTraceElement.toString(←↩
↪→));

35 }

36 return stringWriter.toString();

37 }

38
39 public static String getFilteredTrace(Failure ←↩

↪→ failure) {

40 StringWriter stringWriter = new StringWriter(←↩
↪→);

41 PrintWriter writer = new PrintWriter(←↩
↪→ stringWriter);

42 Throwable e = failure.getException();

43 StackTraceElement [] stackTraceElements = e.←↩
↪→ getStackTrace();

44 StackTraceElement lastStackTraceElement = ←↩
↪→ stackTraceElements [0];

45 for (StackTraceElement stackTraceElement : ←↩
↪→ stackTraceElements) {

46 if (stackTraceElement.getClassName()

62

47 .equals(failure.←↩
↪→ getDescription(←↩
↪→)

48 .getTestClass()

49 .getName())) {

50 break;

51 }

52 lastStackTraceElement = stackTraceElement;

53 }

54 writer.println(e);

55 for (StackTraceElement stackTraceElement : ←↩
↪→ stackTraceElements) {

56 if (stackTraceElement.getClassName().←↩
↪→ equals(lastStackTraceElement.←↩
↪→ getClassName ())) {

57 writer.println(stackTraceElement.toString←↩
↪→ ());

58 }

59 }

60 return stringWriter.toString();

61 }

62
63 public static Result runTests(Class testClass)←↩

↪→ {

64 JUnitCore core = new JUnitCore();

65 JUnitRunListener jUnitRunListener =

66 new JUnitRunListener();

67 core.addListener(jUnitRunListener);

68 core.run(testClass);

69 return jUnitRunListener.getFinalResult ();

70 }

71 }

The behavior critiquer is developed in Listing 7.5. The constant

ANTIPATTERN CRITIQUE DESCRIPTIONS contains a Description of the array

index out of bounds antipattern and response text for the critique. Do-

main knowledge is used to provide advice when tests fail and is encoded in

the Description. Given the source file path and JUnit test filename, the

generateCritique() method sets-up a java class path that encompasses the

JUnit libraries, the instructor’s test suite, and the compiled student source files.

63

This information is passed to the compiler via the generateDiagnostics()

method, described in an earlier chapter. If there are no diagnostics re-

turned, then compilation was successful so we load the compiled JUnit test

class and pass it to UnitTestTools.runTests(). This returns the JUnit re-

sults, which contains information about failed tests. We convert that infor-

mation into critiques. Figure 7.1 shows the output critique generated when

substringStringIndexOutOfBoundsTest() failed even though there isn’t an

antipattern description for it.

Listing 7.5: BehaviorCritiquer.java - A Behavior Critiquer.

1 package edu.mtu.cs.webta.critiquer;// import static←↩
↪→ edu.mtu.cs.webta.util.junit.UnitTestTools.←↩
↪→ urlClassPath;

2
3 import edu.mtu.cs.webta.util.compile.CompilerTools←↩

↪→ ;

4 import edu.mtu.cs.webta.util.compile.←↩
↪→ MyCompilerTools;

5 import edu.mtu.cs.webta.util.junit.←↩
↪→ JUnitRunListener;

6 import edu.mtu.cs.webta.util.junit.UnitTestTools;

7 import org.junit.runner.notification.Failure;

8
9 import javax.tools.Diagnostic;

10 import javax.tools.JavaFileObject;

11 import java.io.File;

12 import java.net.MalformedURLException;

13 import java.net.URL;

14 import java.net.URLClassLoader;

15 import java.util.ArrayList;

16 import java.util.Arrays;

17 import java.util.Collections;

18 import java.util.List;

19 import java.util.StringJoiner;

20 import java.util.stream.Collectors;

21
22 import static edu.mtu.cs.webta.util.junit.←↩

↪→ UnitTestTools.urlClassPath;

23

64

24 public class BehaviorCritiquer {

25 public static final Description [] ←↩
↪→ ANTIPATTERN_CRITIQUE_DESCRIPTIONS = {

26 new Description("←↩
↪→ STRING_INDEX_OUT_OF_BOUNDS", ←↩
↪→ CodingAspect.BEHAVIOR ,

27 AntipatternSource.EXCEPTION , false ,

28 "Trigger at runtime by calling a String←↩
↪→ method with an index that is out←↩
↪→ of the range [0, length).",

29 "\\A(java.lang.(←↩
↪→ StringIndexOutOfBoundsException))←↩
↪→ :[\\s]+(String \\ sindex \\sout\\sof←↩
↪→ \\ srange :\\s([-]*[0 -9]+))[\\s]*$←↩
↪→ ?[\\s\\S$]*\\.(String)\\.([A-Za -←↩
↪→ z_][A-Za -z_\\$]*) \\([\\S]*\\)←↩
↪→ (^?(((([^\\.\\(\\) \\:$]*) \\.)+)←↩
↪→ ([^\\(\\)$]*))\\(([^:\\(\\)$]*)←↩
↪→ :([^\\)$]*)\\))$",

30 "ERROR :\n{0}\n\nA call was made to the ←↩
↪→ String method {6}() with an index←↩
↪→ of {4} at line {14} in {13}.\←↩
↪→ nThe index must be in the range ←↩
↪→ [0, length).\ nNote that the last ←↩
↪→ element in the string is at ←↩
↪→ position length - 1.\ nThis ←↩
↪→ problem often occurs in for -loops←↩
↪→ and is resolved by using < ←↩
↪→ instead of <= in the end ←↩
↪→ condition of the loop.\n",

31 "ERROR: The index in a call to {6}({4})←↩
↪→ in {11}.{12}() is out of bounds←↩
↪→ .\n"

32)

33 };

34
35 public List < Critique < Failure > > ←↩

↪→ generateCritiques(String sourceFolder , ←↩
↪→ String junitFilename)

36 throws ClassNotFoundException , ←↩
↪→ MalformedURLException {

37 String libFolder = System.getProperty("user←↩
↪→ .dir") + "/lib";

38 StringJoiner classpathJoiner = new ←↩
↪→ StringJoiner(":");

65

39 classpathJoiner.add(sourceFolder);

40 classpathJoiner.add(libFolder);

41 classpathJoiner.add(libFolder + "/lib/org/←↩
↪→ junit/Test.class");

42 classpathJoiner.add(libFolder + "/hamcrest -←↩
↪→ core -1.3. jar");

43 classpathJoiner.add(libFolder + "/junit←↩
↪→ -4.12. jar");

44
45 ArrayList < String > options = new ArrayList←↩

↪→ <>((List < String >) Arrays.asList(

46 // Specify where to find user class ←↩
↪→ files and annotation processors

47 "-classpath", classpathJoiner.toString(←↩
↪→)));

48
49 List < Diagnostic < ? extends JavaFileObject >←↩

↪→ > diagnosticsList =

50 CompilerTools.generateDiagnostics(

51 sourceFolder , junitFilename , options←↩
↪→);

52
53 if (diagnosticsList.isEmpty()) {

54
55 URL url1 = new File(sourceFolder).toURL←↩

↪→ ();

56 URL url2 = new File(libFolder + "/junit←↩
↪→ -4.12. jar").toURL();

57 URL url3 = new File(libFolder + "/lib/←↩
↪→ org/junit/Test.class").toURL();

58 List < URL > urls = Arrays.asList(url3 , ←↩
↪→ url2 , url1);

59 urlClassPath(BehaviorCritiquer.class.←↩
↪→ getClassLoader(), urls);

60
61 URL[] urlArray = new URL[urls.size()];

62 for (int i = 0; i < urls.size(); i++) ←↩
↪→ {

63 urlArray[i] = urls.get(i);

64 }

65
66 ClassLoader cl = new URLClassLoader(←↩

↪→ urlArray);

67 Class annotationClass = cl.loadClass("←↩
↪→ org.junit.Test");

66

68 Class junitClass = cl.loadClass(←↩
↪→ junitFilename);

69
70
71 System.out.println("Behavior Critiques" ←↩

↪→);

72 UnitTestTools.runTests(junitClass)

73 .getFailures()

74 .stream()

75 .map(failure ->

76 CritiquerTools.< Failure > ←↩
↪→ makeCritique(

77 failure ,

78 failure.getDescription()

79 .getClassName(),

80 ANTIPATTERN_CRITIQUE_DESCRIPTIONS←↩
↪→))

81 .collect(Collectors.toList());

82 } else {

83 System.err.println("COMPILER ERRORS & ←↩
↪→ WARNINGS");

84 for (Diagnostic < ? extends ←↩
↪→ JavaFileObject > diagnostic : ←↩
↪→ diagnosticsList) {

85 System.err.println(diagnostic + "\n" ←↩
↪→);

86 }

87 }

88 return new ArrayList <>();

89 }

90
91 public static void main(String [] args) throws←↩

↪→ ClassNotFoundException , ←↩
↪→ MalformedURLException {

92 String sourceFolder = args[0];

93 String junitTestClassname = args[1];

94 BehaviorCritiquer behaviorCritiquer = new ←↩
↪→ BehaviorCritiquer();

95 behaviorCritiquer.generateCritiques(←↩
↪→ sourceFolder , junitTestClassname)

96 .forEach(System.out::←↩
↪→ println);

97 }

98 }

67

Figure 7.1: Example Critiques for StringIndexOutOf-
Bounds.getLastCharacter().

ANTIPATTERN: STRING_INDEX_OUT_OF_BOUNDS

ERROR:

java.lang.StringIndexOutOfBoundsException:

String index out of range: 42

java.base/java.lang.StringLatin1.charAt(StringLatin1.java:47)

java.base/java.lang.String.charAt(String.java:693)

StringIndexOutOfBounds.getLastCharacter(

StringIndexOutOfBounds.java:9)

A call was made to the String method charAt() with an index of 42

at line 9 in StringIndexOutOfBounds.java.

The index must be in the range [0, length).

This most often occurs in for-loops and is resolved by

using < instead of <= in the end condition of the loop.

Listing 7.6: Test.java - Overriding the test annotation.

1 package org.junit;

2
3 import java.lang.annotation.ElementType;

4 import java.lang.annotation.Retention;

5 import java.lang.annotation.RetentionPolicy;

6 import java.lang.annotation.Target;

7
8 @Retention(RetentionPolicy.RUNTIME)

9 @Target ({ ElementType.METHOD })

10 public @interface Test {

11 static class None extends Throwable {

12 private static final long serialVersionUID = 1←↩
↪→ L;

13
14 private None() {

15 }

16 }

17
18 Class <? extends Throwable > expected() default ←↩

↪→ org.junit.Test.None.class;

19
20 // Changed default from 0L. We want a timeout ←↩

↪→ for student code. 5min should be enough.

68

21 long timeout() default 300000L;

22
23 String case_name() default "";

24 String user_story() default "";

25 String test_case() default "";

26 String hint() default "";

27 double point_value() default 1.0d;

28 }

Astute JUnit programmers will have noticed that the Test annotation has some

unusual arguments. We replaced the annotation with our own (Listing 7.6). This

enables the instructor to provide a hint, based on their deep domain knowledge,

when an unanticipated error occurs. Figure 7.2 shows a critique generated in

this way.

Figure 7.2: Example Instructor Critique for Logic Error.

ANTIPATTERN: BEHAVIOR_ERROR

java.lang.StringIndexOutOfBoundsException:

begin 0, end -1, length 5

java.base/java.lang.String.checkBoundsBeginEnd(String.java:3319)

java.base/java.lang.String.substring(String.java:1874)

StringIndexOutOfBounds.printSubstrings(

StringIndexOutOfBounds.java:14)

The substring(start, end) returns the characters from the start

index up to, but not including, the end index. The first argument

to substring, the starting index, must be in the

range [0,length). The second argument, the ending index, must be

in the range [0, length].

69

Chapter 8

Critiquing Style

8.1 Style

Our culture views style as a highly personal characteristic to be developed by

individuals. We see this taken to extremes in fashion and the arts. Students are

encouraged through high school to develop their own unique writing style and

authors are studied and analyzed based on theirs. Yet in computer science we

find that experts conform to community standards for style and the adoption

of good programming guidelines is a critical aspect of gaining mastery of a

programming language. Good programming style helps us communicate our

solutions efficiently and makes our code readable and maintainable by others

[42, 61]. Developing good coding style prevents bugs.

71

8.2 Static Analysis

Our approach in developing a simple style critiquer is to perform static analysis

of student code. Scanning the code reveals style mistakes and can be done even

if the code fails to compile. As before, we will rely on regular expressions to

match style violations and trigger guidance.

Listing 8.1: ImportsOwnPackage.java - Example Style Antipattern.

1 package edu.mtu.cs;

2
3 import edu.mtu.cs.*;

4
5 public class ImportsOwnPackage {

6
7 }

Listing 8.1 illustrates an example of poor style where a student places their code

in a package, then imports code from that package (Antipattern §12.2.18). This

is unnecessary in Java and makes the student’s code look amateurish. A common

novice mistake, importing one’s own package may be due to a misconception that

any code, outside the core java.lang package, must be imported to be available

for use.

Listing 8.2: StyleCritiquer.java - Static Code Analysis.

1 package edu.mtu.cs.webta.critiquer;

2
3 import java.io.IOException;

4 import java.nio.file.Files;

5 import java.nio.file.Path;

6 import java.text.MessageFormat;

7 import java.util.ArrayList;

8 import java.util.List;

72

9 import java.util.regex.MatchResult;

10
11 public class StyleCritiquer {

12 public static final Description [] ←↩
↪→ ANTIPATTERN_CRITIQUE_DESCRIPTIONS = {

13 new Description("IMPORT_OWN_PACKAGE",

14 CodingAspect.STRUCTURE ,

15 AntipatternSource.CODE ,

16 false ,

17 "Triggered when code ←↩
↪→ imports the package←↩
↪→ it resides within.←↩
↪→ ",

18 "(?s)package \\s+([\\w←↩
↪→ \\.]*) ;.* import \\s←↩
↪→ +\\1\\.[^\\.;]*\\s←↩
↪→ *;",

19 "You automatically have ←↩
↪→ access to the ←↩
↪→ classes in your own←↩
↪→ package -- no need←↩
↪→ to import them.",

20 "Do not import the ←↩
↪→ package the code is←↩
↪→ defined within .\n"

21)

22 };

23
24 public ArrayList <Critique <String >> ←↩

↪→ generateCritiques(String sourcepath , ←↩
↪→ String sourcefile) throws IOException {

25 String filename = sourcepath + "/" + ←↩
↪→ sourcefile;

26 Path filepath = Path.of(filename);

27 String sourceText = Files.readString(←↩
↪→ filepath);

28 ArrayList <Critique <String >> critiqueList = ←↩
↪→ new ArrayList <>();

29 for (Description description : ←↩
↪→ ANTIPATTERN_CRITIQUE_DESCRIPTIONS) {

30 if (description.getSource() == ←↩
↪→ AntipatternSource.CODE) {

31 List < MatchResult > matchResults =

32 CritiquerTools.getMatchResults(

73

33 description.getRegexString(←↩
↪→),

34 sourceText);

35 if (!matchResults.isEmpty ()) {

36 for(MatchResult matchResult : ←↩
↪→ matchResults) {

37 String[] matchedGroups = new ←↩
↪→ String[matchResult.←↩
↪→ groupCount () + 1];

38 for (int i = 0; i < ←↩
↪→ matchedGroups.length; i++ ←↩
↪→) {

39 matchedGroups[i] = ←↩
↪→ matchResult.group(i);

40 } String matchedText =←↩
↪→ matchedGroups [0];

41 String critiqueText = ←↩
↪→ MessageFormat.format(←↩
↪→ description.←↩
↪→ getTextTemplate(), ←↩
↪→ matchedGroups);

42 String altCritiqueText = ←↩
↪→ MessageFormat.format(←↩
↪→ description.←↩
↪→ getAltTextTemplate(), ←↩
↪→ matchedGroups);

43 CodeCritique <String > critique = ←↩
↪→ new CodeCritique <>(

44 description ,

45 matchResult ,

46 sourceText ,

47 filename ,

48 matchedText ,

49 critiqueText ,

50 altCritiqueText

51);

52 critiqueList.add(critique);

53 }

54 }

55 }

56 }

57 return critiqueList;

58 }

59

74

60 public static void main(String [] args) throws←↩
↪→ IOException {

61 String pathname = args[0];

62 String filename = args[1];

63 StyleCritiquer styleCritiquer = new ←↩
↪→ StyleCritiquer();

64 styleCritiquer.generateCritiques(pathname , ←↩
↪→ filename)

65 .forEach(System.out:: println);

66 }

67 }

Our style critiquer, Listing 8.2, begins by declaring a constant

ANTIPATTERN CRITIQUE DESCRIPTION containing a list of antipattern de-

scriptions. Again, this is for convenience, in a production application this list

would likely be loaded from a database and may vary between assignments as

the instructor draws upon pedagogical knowledge to tailor the critiques to their

courses.

The heart of the style critique is the generateCritiques() method. Here we see

the familiar regular expression code. What is different is that we are matching

against the entire text of the source code, a process producing potentially many

matches throughout the code. Because students may repeat antipatterns several

times through the code, we ask instructors to provide two text templates in their

critique descriptions. A lengthy tutorial critique message for the first time the

code triggers a particular critique and a shorter alternative critique for every

match thereafter.

Applying the style critiquer to our example code results in the following critique

(Figure 8.1).

75

Figure 8.1: Example Style Critique.

ANTIPATTERN: IMPORT_OWN_PACKAGE

Found at Line:Column (1:1) - (3:21) in

data/library/ImportsOwnPackage.java

package edu.mtu.cs;

import edu.mtu.cs.*;

You automatically have access to the classes in your own package -

no need to import them.

Another style issue with the code in Listing 8.1, is that it imports every-

thing in the package (Antipattern §12.4.10). Wildcard imports are generally

not used by experts who are very deliberate and specific about the code they

import. When developing a Description for a style antipattern, it is often

useful to include a link to a relevant style guideline. E.g. a link to the Google

Java Style Guide, https://google.github.io/styleguide/javaguide.html#

s3.3.1-wildcard-imports.

76

https://google.github.io/styleguide/javaguide.html#s3.3.1-wildcard-imports
https://google.github.io/styleguide/javaguide.html#s3.3.1-wildcard-imports

Chapter 9

Critiquing Design

9.1 Illuminating Patterns and Antipatterns

Design is the process of deciding how to model the world in code. Learning to

design programs calls for reflection and practice [25]. Critiquers provide feedback

based on patterns and antipatterns present in student code. The presence of

positive patterns indicates the student has well-designed code that intentionally

models the world toward creating robust solutions. The presence of antipatterns

in the code indicates poor design choices containing code that negatively impacts

robustness and accuracy. The byproducts of virtuous or poor design, patterns

and antipatterns provide a window into the student’s design process and an

opportunity for instructor’s to support the student in their journey from novice

to master coder.

We have developed code critiquers that combine an instructor’s knowledge of

teaching and programming with software that compiles, executes, tests, and

77

searches code for antipatterns, which are then used to provide design feedback

for the students to reflect upon. In this chapter, we discuss some additional

critique techniques for prompting students to reflect on their design process.

9.2 Identifying Patterns with an Abstract Syn-

tax Tree

One very powerful tool at our for identifying patters in code is an Abstract

Syntax Tree (AST). An AST is a tree representation of the structure of code.

Trees can help us analyze properties of the code, such as coupling and cohesion,

that it is difficult for novices to understand otherwise.

Traversing an AST, we can identify patterns that might be difficult to detect

by testing or static analysis. For example, the code in Listing 4.9 is fully listed

as a Java class in Listing 9.1. This code can be difficult to detect using regular

expressions. Most regular expression engines come with two modes for matching

text: lazy and greedy. Balancing curly brackets can be problematic in either

mode allowing a bracket match too soon or too late respectively.

Listing 9.1: EmptyForLoop.java - Example Design Antipattern.

1 /**

2 * Class exhibits the EMPTY -KNEE_JERK -CODE ←↩
↪→ Antipattern

3 */

4 public class EmptyForLoop {

5 /**

6 * @param num is an integer value

7 * @return two times the specified number

8 */

9 public int mult2x (int num) {

78

10 // Loop does not affect solution , but serves←↩
↪→ no purpose.

11 for(int i=0; i<10; i++){

12
13 }

14 return 2 * num;

15 }

16 }

In order to parse this code and construct an AST, we execute the following code

(Listing 9.2).

Listing 9.2: Code Snippet to Construct an AST.

1 Lex lex = new Lex("data/library/EmptyForLoop.java"←↩
↪→);

2 ArrayList <Token > tokenList = lex.lex("data/library←↩
↪→ /formatted_output");

3 BuildAST ast = new BuildAST(tokenList);

4 Root root = ast.build ();

We can print out the tokens that were parsed to construct the AST. The code

in Listing 9.3 produces the output in Figure 9.1.

Listing 9.3: Printing the tokens parsed by the lexer.

1 for(Token t : tokenList) {

2 System.out.printf("[TOKEN:%s:%s, %s, %s]\n",

3 t.getLine (),

4 t.getIndex (),

5 t.getId (),

6 t.getWord ());

7 }

We can also print the nodes in the AST (Listing 9.4 produces output in Figure

9.2).

79

Figure 9.1: Tokenization of Listing 9.1.

[TOKEN:4:0, modifier, public]

[TOKEN:4:1, declare, class]

[TOKEN:4:2, class, EmptyForLoop]

[TOKEN:4:3, Lbrace, {]

[TOKEN:9:4, modifier, public]

[TOKEN:9:5, type, double]

[TOKEN:9:6, method, abs]

[TOKEN:9:7, Lparen, (]

[TOKEN:9:8, type, double]

[TOKEN:9:9, pvar, d]

[TOKEN:9:10, Rparen,)]

[TOKEN:9:11, Lbrace, {]

[TOKEN:10:12, type, double]

[TOKEN:10:13, var, result]

[TOKEN:10:14, assign_op, =]

[TOKEN:10:15, pvar, d]

[TOKEN:10:16, semi_colon, ;]

[TOKEN:11:17, conditional, if]

[TOKEN:11:18, Lparen, (]

[TOKEN:11:19, pvar, d]

[TOKEN:11:20, compare_op, <]

[TOKEN:11:21, const, 0]

[TOKEN:11:22, Rparen,)]

[TOKEN:11:23, Lbrace, {]

[TOKEN:12:24, loop, for]

[TOKEN:12:25, Lparen, (]

[TOKEN:12:26, type, int]

[TOKEN:12:27, var, i]

[TOKEN:12:28, assign_op, =]

[TOKEN:12:29, const, 0]

[TOKEN:12:30, semi_colon, ;]

[TOKEN:12:31, var, i]

[TOKEN:12:32, compare_op, <]

[TOKEN:12:33, const, 10]

[TOKEN:12:34, semi_colon, ;]

[TOKEN:12:35, var, i]

[TOKEN:12:36, post-unary_op, ++]

[TOKEN:12:37, Rparen,)]

[TOKEN:12:38, Lbrace, {]

[TOKEN:13:39, Rbrace, }]

[TOKEN:14:40, var, result]

[TOKEN:14:41, assign_op, =]

[TOKEN:14:42, unary_op, -]

[TOKEN:14:43, pvar, d]

[TOKEN:14:44, semi_colon, ;]

[TOKEN:15:45, Rbrace, }]

[TOKEN:16:46, branch, return]

[TOKEN:16:47, var, result]

[TOKEN:16:48, semi_colon, ;]

[TOKEN:17:49, Rbrace, }]

[TOKEN:18:50, Rbrace, }]

Listing 9.4: Printing the nodes int the AST.

1 for(Node node : root.ALL_NODES) {

2 System.out.printf("[%s:%s]\n",

3 node.getClass ().getSimpleName (),

4 node.getToken ().getWord ());

5 }

More interesting is that we can traverse the tree or search through the nodes

to identify patterns. Listing 9.5 searches through AST and prints all methods

80

Figure 9.2: Nodes in the AST for Listing 9.1.

[Root:]

[Other:public]

[Other:class]

[ClassDecl:EmptyForLoop]

[ClassBody:{]

[MethodDecl:abs]

[Parameter:d]

[Body:{]

[VarDecl:result]

[VarDecl:result]

[Variable:d]

[IfStmt:if]

[Variable:d]

[Constant:0]

[BinaryOp:<]

[Body:{]

[ForStmt:for]

[VarDecl:int]

[VarDecl:int]

[Constant:0]

[Variable:i]

[Constant:10]

[BinaryOp:<]

[UnaryOp:i]

[Variable:i]

[Assign:result]

[Variable:result]

[Variable:d]

[UnaryOp:-]

[ExprStmt:result]

[BranchStmt:return]

[Variable:result]

containing empty loops. See Figure 9.3 for the output.

Listing 9.5: Idenifying methods exhibiting the EMPTY-KNEE-JERK An-

tipattern.

1 root.ALL_NODES.stream ()

2 .filter(node -> node.getToken ().getId ().←↩
↪→ contains("loop") && ((ForStmt) node).←↩
↪→ getBody () == null)

3 .forEach(node -> {

4 Node n = node;

5 while(n != null && !n.getToken ().getId ().←↩
↪→ contains("method")) {

6 n = n.getParent ();

7 }

8 System.out.println("Method containing Knee -←↩
↪→ Jerk Code\n");

9 System.out.println(n);

10 });

81

Figure 9.3: Nodes in the AST for Listing 9.1.

The following method contains Knee-Jerk Code

public double abs(double d) {

double result = d;

if (d < 0) {

for(int = 0;i < 10;[i++]){

}

result = d-;

}

return result;

}

9.3 Identifying Antipatterns in Bad Code

Novice programmers sometimes write code that will not compile. Instructors

can look at bad code and still offer advice to students. Our code critiquers

are be able to do the same. An AST can be a powerful tool for identifying

antipatterns in the presence of code that normally will not parse and compile

because it violates the rules of the language. Listing 9.6 contains good code that

the student has placed at the top-level in the class body. This is a fairly common

mistake as students develop a mental model of how to organize their code.

Listing 9.6: CodeOutsideMethod.java - CODE-OUTSIDE-METHOD An-

tipattern.

1 public class CodeOutsideMethod {

2 public long fubar = 0;

3
4 for(int i=0;i<10;i++){

5 System.out.println("Hello World");

6 }

7
8 public void methodName () {

82

9 int a = 7;

10 }

11
12 int b = 0;

13
14 System.exit(-1);

15 }

Our code critiquer navigates to the class body and accesses the bad code directly,

but we could have traversed the tree looking for “garbage” nodes. When the

parser is creating the AST, instead of stopping when an error is discovered, it

creates a “garbage” node and continues parsing. In this way we identify valid

code that is in the wrong place and can advise the student where to place it.

Parsers and ASTs do not normally operate in this manner. This is a significant

contribution to the development of code critiquers by this research. (See Listing

9.7 and Figure 9.4.)

Listing 9.7: Idenifying Antipatterns in Bad Code.

1 System.out.println(root.getClassDecl ().←↩
↪→ getClassBody ().getGarbage ());

Figure 9.4: Bad code found in the AST for 9.6.

!!Garbage-0:

for(int = 0;i < 10;[i++]){

System.out.println("Hello World");

}

!!

!!Garbage-1:

System.exit([1-]);

!!

83

9.4 Using the AST to Prevent False Positives

Sometimes our regular expression driven Style Critiquer will produce false pos-

itives. For example, it could identify a pattern not in the code, but present

in comments or strings. Listing 9.8 contains an example. Applying the Style

Critiquer to this code identifies Antipattern §12.4.7. See output in Figure 9.5.

Listing 9.8: FalsePositive.java - Causes a Style Critiquer False Positive.

1 public class FalsePositive {

2 /**

3 * @param a - a number

4 * @param b - another number

5 * @return (a+b)*(a+b)

6 */

7 public double addAndSquare (double a, double b←↩
↪→) {

8 return Math.pow(a + b , 2)

9 }

10 }

Figure 9.5: Style Critique for Listing 9.8.

ANTIPATTERN: CRAMMED_OPERATORS

Found at Line:Column (5:16) - (5:25)

in data/library/FalsePositive.java

* @return (a+b)*(a+b)

Don't cram operators. Put a space on both sides.

The AST can identify comments and strings in the code (Figure 9.6). A critiquer

can use this information to check the antipatterns it identifies. In this case, the

antipattern was identified on Line 5 in the program and the AST indicates that

matched text on Line 5 in contained in a comment. Thus the critiquer should

84

not report the critique to the student.

Figure 9.6: AST identified comments in 9.8.

There are 5 comments declarations in this code

[comment: Line 2, // -------------------------]

[comment: Line 3, //@param a - a number]

[comment: Line 4, //@param b - another number]

[comment: Line 5, //@return (a+b)*(a+b)]

[comment: Line 6, // -------------------------]

85

Part III

A Critiquer for Introductory

Computer Science

86

Chapter 10

WebTA: A Tool for Automated

Code Critique

10.1 WebTA

Traditional methods for teaching computer science — lecturing on abstract con-

cepts, assigning a programming project related to the lectures, then grading the

students’ submitted finished products — resemble the outdated waterfall model

of software development [51] in many ways:

• An instructor writes a specification and hands it off to students as an

assignment.

• Students toil in isolation, without the benefit of instructor feedback or

team communication.

• When they run out of time, students submit the assignment and hope for

the best – not entirely sure that they interpreted the assignment in the

87

same way as the instructor.

• Lastly, the instructor applies secret tests to the student work and assigns

a grade, then moves on to the next topic, regardless of whether students

have successfully constructed mental models sufficient to understand the

current topic.

With WebTA, we employ an authentic approach for today’s software world,

teaching students test-driven agile development methods through small cycles

of teaching, coding integrated with testing, and immediate feedback. We fo-

cus on this Learning Cycle [36] by providing students just-in-time code cri-

tiques for them to reflect on and feedback into a continuous development process

(Fig. 10.1). This exposure prepares them better for today’s software industry

and reduces the frustration that students often experience in early programming

projects, mitigating the risk of student burnout and helping with retention in

computing-related majors.

Figure 10.1: WebTA development cycle.

Students in our introductory course work on 7–10 programming assignments per

semester; of these, 5–7 are large, multi-week projects. Within these strict time

bounds, students must parse the project specification, extract from this a suit-

able design, and implement it in code. The pace can sometimes outdo students,

and they often feel they submit their assignment without a deep understanding

of the project, its requirements, or a sense of the grade they will receive. In this

context, the WebTA tool provides students with immediate testing and feedback

88

while they complete the assignment so there are no surprises at the end.

The following features are central to the use of WebTA in the classroom:

Supports Agile Development. Students using WebTA are learning to develop

software using modern techniques. WebTA supports small cycles of specification,

coding integrated with testing, and reflection, in the spirit of agile development.

Continuous Shakedown Testing. Every time a student submits code to WebTA,

their code is subjected to all tests designed for the project. Students learn to

develop code to pass each test and immediately discover if new code has side-

effects that cause other tests to fail.

Progressive Code Scalability. WebTA grows with the student. It will evaluate

expressions and code fragments submitted by beginning students, classes sub-

mitted by intermediate students, and multiclass projects submitted by advanced

students.

Pseudocode Support. WebTA can translate back and forth between code and

pseudocode. Students can submit pseudocode for evaluation. Java code can be

translated to pseudocode, providing students with means to check their logic

and learn to fluidly switch between code and English.

Immediate Feedback. Students are provided with immediate feedback on their

programs, just when they need it during the development process. Faculty

encode guidance and feedback into a database of common mistakes. When

student code exhibits symptoms of a problem, the database guidance is triggered

and students immediately receive the instructor’s advice. This kind of guidance

covers situations arising from compile and runtime errors, as well as more general

89

coding style mistakes.

Preliminary and Automatic Grade Assessment. After submitting code, students

see a summary screen that uses a stop-light metaphor to communicate how well

they are doing. A red light indicates they have not passed all the tests, yellow

indicates they received some warnings or unresolved guidance, and green means

they passed all tests and no further changes are necessary. Behind the scenes,

a preliminary score is generated for approval by instructors or instructors can

configure the system to automatically assign grades.

10.1.1 Architecture

WebTA is comprised of several modules, data sources, components, and inter-

action modes. Figure 10.2 shows an overview of the WebTA architecture. A

detachable LTI Module provides services required for authentication with, and

grade reporting back to, the Canvas Learning Management System (LMS). In

principle, the module can plug in to any other LMS implementing the LTI stan-

dard, including Blackboard and Moodle.

Data sources for the system include; Student Code, Instructor Tests, Critique

Database, and Grade Reports. Student Code and Instructor Tests are comprised

of source files uploaded to WebTA. The Critique Database contains rules for

identifying patterns and dispensing advice to the students.

Our introductory computer science sequence utilizes the Java programming lan-

guage. Thus our first pass at creating a Critiquer System focuses on providing

feedback to students on their Java code.

90

Figure 10.2: WebTA System Architecture

There are four modes of interacting with the system:
1. Snippet : Students enter code snippets in a text-area that may come seeded

with partial code to get students started. The code snippet entered by the

student can be as simple as an expression or as sophisticated as an entire

class. The snippet is analyzed and tested according to the configuration

set up by the instructor. Possible analysis include English translation,

compilation, test execution, and style analysis.

2. Project : A drag-and-drop field is provided for uploading project files. Up-

loaded files are compiled, tested, and critiqued. The student receives feed-

back in their browser.

91

3. Test Coverage: Students supply their own test cases. These are run against

an instructor supplied project and feedback is provided on test coverage.

4. Instructor : Canvas is also used to authenticate faculty and graduate TAs,

enabling them to access WebTA in their browser. Instructors use WebTA

to setup code tests, enter rules into the critique database, and view/modify

grade reports before assigning final grades.

These modes of interaction are built-into the web application and are not dic-

tated by Canvas. After authentication, all interactions are through web pages

served-up by the WebTA server.

10.1.2 Configuration

Students using WebTA are engaged in communication-by-proxy with the in-

structor. The instructor configures WebTA with common critiques that are

triggered by errors, warnings, or textual analysis of the student’s code. These

critiques are issued to the students immediately; as needed by the student to

support concept formation. This communication is not meant to replace in-

structor feedback; rather, it codifies common feedback scenarios to assist the

instructor in reaching students in tight feedback loops just when the student is

engaged in problem solving and learning. A particularly effective configuration

is one in which students work in pairs — with appropriate mentoring in pair

programming skills [38, 40] — and utilize both live feedback from the instruc-

tor and automated critique from WebTA. In this way, students get exposure to

consulting and processing feedback from a range of sources.

92

10.1.2.1 Antipatterns

Many problems can be caught by compiling, testing, and analyzing the code for

known antipatterns. But sometimes WebTA must rely on configuration setup

by an instructor knowledgeable in the problem domain.

The instructor can configure the system to run both public and secret tests, run

the student’s own test code against their program, assess the student’s JUnit

test cases to determine their ability to generate edge cases, produce feedback by

matching rules run against the source code, or matching rules against output

text.

As an example, The instructor formulates the following assignment:

Develop a class named Fibonacci that contains the methods:

fibRecursion which given an integer n returns the long nth element of the

Fibonacci Sequence. if n is out of range, return -1.

For this problem, the instructor sets up two tests, one of them being secret. The

tests, using JUnit test conventions, are shown in Listing 10.1.

Listing 10.1: Instructor Tests

1 @Test

2 @CanvasTaTest(points = 5, name = "fibRecursive ←↩
↪→ Test.", description = "Checks for all values←↩
↪→ of n from 0 to 9.", hint = "Remember to ←↩
↪→ test for the base case.")

3 public void fibRecursiveTest() {

4 Fibonacci prog = new Fibonacci();

5 long[] solutions = {

6 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,←↩
↪→ 377

93

7 };

8 for(int n = 0; n < solutions.length; n++) {

9 long result = prog.fibRecursive(n); if (←↩
↪→ solutions[n] != result) {

10 fail("fibRecursive(" + n + ") = " + ←↩
↪→ solutions[n]

11 + ". Your method returned " + result);

12 } }

13 }

14 // Secret Test

15 @Test

16 @CanvasTaTest(points = 5, name = "fibRecursive ←↩
↪→ Edge Case", description = "Checks for n = -1←↩
↪→ ")

17 public void fibRecursiveEdgeCaseTest() {

18 Fibonacci prog = new Fibonacci(); long result = ←↩
↪→ prog.fibRecursive(-1);

19 if (result != -1) {

20 fail("fibRecursive(" + -1 + ") = " + -1

21 + ". Your method returned " + result);

22 }

23 }

The instructor also creates (or reuses existing) rules for the static analyzer. Rules

consist of a regular expression, that matches with a problematic code snippet,

coupled with advice the instructor would give a student who wrote such code.

For example, anticipating a Knee-Jerk pattern, the instructor could setup the

rule shown in Listing 10.2.

Listing 10.2: Instructor rule capturing an empty base case.

1 if match("if *\(.*\)\s*\{\s*\}")

2 "It looks like you have an empty base case."

All of the built-in tests and feedback can be toggled by the instructor on a per

assignment basis.

94

10.1.3 Operation

When students connect with WebTA, a startup screen that explains the current

problem and tells them which files they should upload to receive a code critique

(Fig. 10.3). After clicking on the “Critique My Code” button, students receive

an online report which includes a Critique Summary (Fig. 10.4). A stoplight

metaphor, commonly used within the agile development community, is used to

indicate student progress through the assignment. The stoplight indicators and

code critiques prompt students to reflect and refactor. The critique summary

includes a stoplight that tells the student at a glance if they succeeded in their

programming task. A green light indicates a satisfactory state and a red light

indicates serious errors.

In addition to the “pass-fail” criteria of the green-red stoplight metaphor (which

are useful, especially if done in a scaffolded way like Test My Code), WebTA

allows instructors to include more heuristic conditions that can be triggered

when students may be diverging from “good practice”, e.g. style or design

issues that may not cause tests to fail. An amber light indicates the presence

this type of problem. WebTA also allows for automated positive feedback. The

assessment summary section also lists the parts of the critique and how the

student performed in them.

Under the hood, the system has compiled their code and run it through a series of

rigorous shake-down tests. Students can scroll down from the critique summary

to view details of the critique, including errors and warnings generated both at

compile-time and run-time. The instructor can configure the system to run both

public and secret tests, run the student’s own test code against their program,

or assess the student’s JUnit test cases to determine their ability to generate

95

Figure 10.3: WebTA startup screen.

Figure 10.4: WebTA critique summary.

edge cases (Fig. 10.5).

Figure 10.5: WebTA student tests.

Scrolling further down the code critique, students find a listing of each code file

submitted that includes style advice generated via textual analysis of the code

(Fig. 10.6).

96

Figure 10.6: WebTA style critique.

Students using WebTA are engaged in Learning by Doing [52]. Instructors pro-

vide students with authentic problems. While developing solutions to prob-

lems, students engage in an iterative conversation: developing code, receiving

critiques, reflecting on feedback, and revising their solutions. WebTA applies

Cognitive Apprenticeship practices that role-model authentic skills for students.

Students are repeatedly exposed to patterns of coding and critiques from which

they learn how to identify and communicate about issues that crop up during

software development.

Features of WebTA include

• code compilation with student-friendly explanations of errors and warn-

ings;

• rigorous, assignment-based unit test shakedown of student code, featuring

both student-visible test to guide their code development and hidden tests

to exercise their inquiry skills;

• evaluation of student test code, to support them as creative testers;

• textual analysis of source code, fully customizable by the instructor, to

provide feedback on coding style;

• built-in plagiarism detection;

97

• preliminary grade assessment, for use by instructors or teaching assistants

as a basis for final scores.

10.1.4 A WebTA walkthrough

We provide a brief walkthrough of the WebTA critique process. For space rea-

sons, we focus on the student perspective and provide a synopsis of the instructor

actions.

10.1.4.1 Instructor setup

The instructor formulates the following assignment:

• Develop a class named Fibonacci that contains two methods: fibIteration

and fibRecursion that given an integer n returns the long nth element of the

Fibonacci Sequence using iterative and recursive methods, respectively. if

n is out of range, return -1.

For this problem, the instructor sets up three tests, one of them being secret.

The tests, using JUnit test conventions, are as follows:

@Test

@CanvasTaTest(points = 5, name = "fibIterative Test.",

description = "Checks for all values of n from 0 to 9.",

hint = "Remember to track the previous two values.")

public void fibIterativeTest() {

Fibonacci prog = new Fibonacci();

long[] solutions = {

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

};

98

for(int n = 0; n < solutions.length; n++) {

long result = prog.fibIterative(n);

if (solutions[n] != result) {

fail("fibIterative(" + n + ") = " + solutions[n]

+ ". Your method returned " + result);

}

}

}

@Test

@CanvasTaTest(points = 5, name = "fibRecursive Test.",

description = "Checks for all values of n from 0 to 9.",

hint = "Remember to test for the base case.")

public void fibRecursiveTest() {

Fibonacci prog = new Fibonacci();

long[] solutions = {

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

};

for(int n = 0; n < solutions.length; n++) {

long result = prog.fibRecursive(n);

if (solutions[n] != result) {

fail("fibRecursive(" + n + ") = " + solutions[n]

+ ". Your method returned " + result);

}

}

}

// Secret Test

@Test

@CanvasTaTest(points = 5, name = "fibRecursive Edge Case",

description = "Checks for n = -1")

public void fibRecursiveEdgeCaseTest() {

Fibonacci prog = new Fibonacci();

long result = prog.fibRecursive(-1);

if (result != -1) {

fail("fibRecursive(" + -1 + ") = " + -1

+ ". Your method returned " + result);

}

}

The instructor also creates (or reuses existing) rules for the style critic. Rules

consist of a regular expression, that matches with a problematic code snippet,

99

coupled with advice the instructor would give a student who wrote such code. For

example, anticipating that the student might not space code within parentheses,

such as:

for(int i = 0;i < n; i++){

x = y;

y = x + y;

}

The instructor might develop a rule whose trigger is matches a form “(EXPR)”

and whose advice is “For readability, use a space after (and before)”.

10.1.4.2 Student development

When students submit the assignment, it is uploaded to WebTA for testing and

analysis. Depending on the instructor configurations, student code is compiled,

tested against instructor tests, secret instructor tests, the students own tests,

and the students test can even be run against an instructor solution to help

students develop better coverage in testing. Furthermore, source files uploaded

by the student are subjected to textual analysis to provide feedback on their

programming style.

In this case, the student submits the following code skeleton, which should fail

all tests.

public class Fibonacci {

//Iterative method

100

public long fibIterative(int n) {

return 0;

}

//Recursive method

public long fibRecursive(int n) {

return 0;

}

}

WebTA provides immediate feedback in the form of a critique report that the

student can print. The critique report contains an executive summary of results,

as well as a detailed listing of all errors and warnings encountered during the

various kinds of analysis performed (as configured by the instructor.)

Figure 10.7: First Pass Executive Summary.

Fig. 10.7 shows that the students skeleton code compiled, but all tests failed as

expected. So now the student tackles the fibIterative method, which seems like

it should be easiest to implement.

public class Fibonacci {

//Iterative method

public long fibIterative(int n) {

long x = 0;

long y = 1

for(int i = 0; i < n; i++) {

x = y;

y = x + y;

}

return x;

}

101

//Recursive method

public long fibRecursive(int n) {

return 0;

}

}

Figure 10.8: Second Pass Compile Time Error.

Oops — the student missed a semicolon on line 17 (Fig. 10.8). The student

makes a quick fix and resubmits the code. This time, WebTA indicates that the

test for fibIterative failed and a style issue was found (Fig. 10.9).

Figure 10.9: Third Pass: Test failure and style critique.

The student fixes the style issue by adding a space between the for keyword

and the opening parenthesis. The test failure is a more difficult matter. The

student adds a main method and prints the first ten values. It is evident that

the results are not the Fibonacci Sequence. But what is wrong? Fortunately,

WebTA has provided a hint, “Remember to track the previous two values”.

Taking this into consideration, the student realizes that she did not implement

the formula correctly and makes some changes.

102

public class Fibonacci {

// Iterative method

public long fibIterative(int n) {

long x = 0;

long y = 1;

long z = 1;

for (int i = 0; i < n; i++) {

x = y; // fib(n)

y = z; // next fib(n-2)

z = x + y; // next fib(n-1)

}

return x;

}

// Recursive method

public long fibRecursive(int n) {

return 0;

}

// TEST CODE

public static void main(String[] args) {

Fibonacci self = new Fibonacci();

System.out.println("n ITERATIVE RECURSIVE");

for(int n = 0; n < 10; n++) {

long fibI = self.fibIterative(n);

long fibR = self.fibRecursive(n);

System.out.printf("}

}

}

This time the student passes the fibIterative test. Moving on, the student im-
plements and submits the fibRecursive method.

//Recursive method

public int fibRecursive(int n) {

if (n > 0) {

return n;

}

return fibRecursive(n - 1) + fibRecursive(n - 2);

}

103

Figure 10.10: Student encounters infinite recursion.

The fibRecursive test fails due to infinite recursion (Fig. 10.10). The student,

new to recursive algorithms, spends some time on this before connecting the hint

about testing the base case to the fact that the base case includes 0! That’s a

quick fix (post epiphany).

//Recursive method

public int fibRecursive(int n) {

if (n = 0 || n = 1) {

return n;

}

return fibRecursive(n - 1) + fibRecursive(n - 2);

}

Figure 10.11: Student Passes Instructor Tests, But Fails Secret Test.

The student is almost there. All Instructor Tests are passed, but the Secret Test

is still failing (Fig. 10.11). No information is given to guide the student on a

secret test so the student has to resort to manual debugging and rereading the

specification. In this case, the assignment says that values of n that are out of

104

range should cause the methods to return -1. With a final modification to the

code, all tests pass!

Figure 10.12: Student Passes All Tests

Assignment submission. When it comes time to submit an assignment, students

can submit to WebTA and get immediate feedback about how well their code

compiled and tested via the Assignment Submit tool. When creating an assign-

ment, instructors set the Submission Type to External Tool and select WebTA

Assignment Submit. Instructor configuration is similar to the Code Critique

tool. Students see the WebTA submit page at the bottom of their assignment.

Upon submitting, students receive an executive summary of how their code

performed. This does not indicate a grade. However, a preliminary grade report

is saved for a human TA to review before assigning a grade.

10.1.4.3 Instructor evaluates submissions

Through WebTA, the instructor may view student submissions, and select a

student to see the students’ code and a preliminary score assigned by WebTA.

105

The instructor then examines the results and the student’s code, providing ad-

ditional comments and feedback or grade modifications. Once a grade has been

assigned, WebTA sends a grade report to the student.

10.2 The Future of WebTA

WebTA will continue to be used as a research platform. After some Instructor-

side UX work, I plan to release WebTA to the open-source community at the

end of 2020. I am developing a graduate-level course in which WebTA will be a

teaching platform. With MATLAB-TA, Marissa Walther and I began exploring

adapting WebTA to other languages and other disciplines. I plan to continue

this work.

106

Chapter 11

Corpus of Novice Code

Submissions

11.1 Corpus of Code

In this chapter we discuss data collected by WebTA, some interesting results,

and the future work these results suggest. We started collecting data in 2014.

Since that time, the system has been used by 1,421 students in 27 courses. These

students made 64,964 submissions to 119 assignments. The system generated

14,650,677 individual critiques indicating issues detected in submissions, includ-

ing compile-time errors and warnings, run-time errors and warnings, and style

issues.

107

11.2 Results from initial beta testing of WebTA

2014-2015 was our first year of deployment. We beta tested WebTa in two

courses (Intro to Programming 1, Data Structures), each with approximately

100 students enrolled. There have been growing pains: some technological, some

perceptual.

Technologically, we experienced problems with server load and browser incom-

patibility. There was a period of time in the fall when several major browsers

were pushed security updates and WebTa stopped working with all but the

Chrome browser. During crunch periods around midterms and finals week, we

experienced severe server lag, making it difficult for students to submit code

or for WebTA to execute it within the specified thread time-out parameters.

Working with our IT department, we have resolved most of these issues. Server

load during crunch times is still an issue when over one hundred panicked stu-

dents make last minute submissions in the hours and minutes before the due

date. My understanding is that peak server load is an issue for most institutions

developing autograders and code critiquers.

Unfortunately, these issues create perception problems with the students:

• “[WebTA] is also a bit difficult because we can’t access it from our own

computers.”

Yet many more students have expressed an appreciation for WebTA:

• “I like [WebTA] because it shows be where my error is or which test is

wrong so I can spend more time on fixing it rather than taking forever to

search for the error.”

108

• “[WebTA] gives good input on style and how to fix my errors.”

• “I really enjoyed CanvasTA. Mostly every aspect of it was very helpful.

I really loved how quick it was to simply drag and drop my .java file in

and simply click to have it run its checks and turn it in. The checks and

some of the style tips it made were also very helpful. There were some bad

programming practices I’ve done that I never realized before until I read

through its style suggestions.”

WebTA was beta tested in the Fall 2014 Data Structures course and in the

Spring 2015 Introduction to Programming course. Programming project scores

compared to the previous year were higher (Fig. 11.1), but more study is required

to determine if the difference in scores is solely or in part attributable to WebTA

and to identify other influencing factors.

Course Semester Mean Median Mode Standard Deviation
CS1121 Spring 2015 80.4 95.0 99.8 28.0
CS1121 Spring 2014 72.4 77.7 93.2 22.7
CS2321 Fall 2014 82.9 86.6 95.4 17.6
CS2321 Fall 2013 75.0 80.8 59.4 20.4

Figure 11.1: Programming project scores.

Qualitatively, we have the sense that more effort needs to focus on fading scaf-

folds and teaching students how to test their code.

Data Structures students were required to submit JUnit test cases with their

code during both Fall 2013 and 2014 semesters. WebTA tested their JUnit

tests against the assignment API. Over the course of Fall 2014 we saw marked

improvement in student conformance to the specified API. However, we also

noticed students who, upon failing an attempt to test an edge case, would remove

their test method to eliminate the problem, instead of trying to understand the

edge case and fixing their test.

109

Some instructors have voiced concern that students might be relying on WebTA

to test their code. When asked how he used WebTA, one student responded:

• “I mainly used it for testing purposes. It was great that it gave me the

results and failures so I could go back and try to figure out what went

wrong. On the downside I think it made me put a little less effort in

actual testing myself though I ended up having to anyway to fix some of

the errors it showed.”

Another student said:

• “Whenever I felt that I had working code (i.e. I fixed any bugs I could

think or the bugs pointed out by [CanvasTA]) I would submit my program

file to [CanvasTA] to see if it passed or not.”

Based on an informal in-class survey, second-year Data Structures students were

more accepting and less critical of WebTA while first-year Intro students, who

had never used a different system for assignment submission, provided more

critical feedback.

Figure 11.2: Programming project scores.

110

11.3 Future Work: Analysis of Corpus Data

Critiquer systems provide students with prompt feedback. However, when the

system provides inappropriate feedback, such as false identification of a prob-

lem, or cryptic error messages that are difficult to understand, novice students

may become confused and discouraged whereas experts are able to make more

appropriate use of feedback messages.

A study by Munson [39] suggests that, when given a list of critiques, students will

address the first feedback message about 52% of the time. Higher assignment

scores are positively associated with addressing the first error. Novice program-

mers reported problems understanding compiler generated error messages.

We need to analyze the WebTA data to form an understanding of student utiliza-

tion of error messages between submissions. Can we use our data to determine

the order in which students solve errors in the code? Do different kinds of cri-

tiques receive a higher priority? Can we determine if our critiques are more

useful to the students than raw error messages? How does feedback generated

by a false positive affect their path to a solution?

I plan to compare the feedback given between consecutive submissions to deter-

mine which critiques the student focused on between submissions.

11.3.1 Why do some students submit more?

The average number of submits by students per assignment is 8.85 with a stan-

dard deviation of 12.63 with the maximum being 192 submits by a student.

111

course assignment user # # submits submission scores
CS1121 5159768 306 7 65, 73, 86, 81, 95, 100, 100
CS1121 5159768 334 7 50, 50, 50, 50, 50, 85, 85
CS1121 5159768 346 24 50, 50, 50, 50, 50, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, . . .
CS1121 5159768 370 14 48, 63, 63, 56, 56, 56, 56, 63, 63, 56, 56, 63, 65, 63

Figure 11.3: Submission Scores.

11.3.2 Efficacy & Impact of Stoplight.

The course-grained stoplight metaphor indicator:

• GREEN: No antipatterns detected.

• YELLOW: Only non-show-stopping antipatterns detected.

• RED: Critical failures detected.

8% of student final submission scores on assignments were less than the student’s max

submission score.

Figure 11.4: Final Score < Max.

112

11.3.3 Which issues take the longest to address?

• What are the most frequent critiques encountered by students?

• What are the hardest critiques for students to resolve?

• How do student issues change across the semester?
course assignment user # # submits submission timestamps
CS 1121 5159768 273941 1 1572797632
CS 1121 5159768 274354 5 1572797639, 1572797640, 1572797640, 1572797641, . . .
CS 1121 5159768 280458 3 1572797796, 1572797798, 1572797799
CS 1121 5159768 552974 1 1572798708
CS 1121 5159768 571280 1 1572798144
CS 1121 5159768 581689 2 1572798678, 1572798681
CS 1121 5159768 583753 28 1572802356, 1572802362, 1572802368, 1572802375, . . .
CS 1121 5159768 955186 24 1572797579, 1572797579, 1572797579, 1572797580, . . .
CS 1121 5159768 956615 1 1572798693

Figure 11.5: Submission Times.

11.3.4 Can we identify struggling students?

As many as one-third of incoming students fail their first CS course. Estey and

Coady [23] examined interaction patterns could identify struggling students.

Their analysis of 652 students over three semesters highlighted a number of

predictors for success. Their work suggests that struggling students can be

identified early in the semester.

Estey and Coady found a correlation between the number of hints received and

the frequency of compilation that can be used as an indicator of struggling

students. Our data contains the frequency of submission and the number of

critiques provided, can we find a similar correlation in our data?

When we look at submission scores as students resubmit code for an assignment,

we see some patterns that may indicate struggling students. What is happening

when we see students making several submissions with no change in score? What

113

is happening when we see students repeatedly improving their score only to

experiencing a large drop in score for just one submission? These variations in

submission score need to be investigated to determine if they can help identify

struggling students.

11.3.5 Analyzing Use of Critiques

I How are student using critiques to improve their code?

I In which order do students address critiques?

I Do better students address one or more critiques?

I Does the order and number in which students address critiques change as

the course progresses?

11.3.6 Can we utilize machine learning?

Can we utilize machine learning techniques to

114

I improve or enhance the detection of antipatterns in student submissions?

I identify new antipatterns in our corpus of student code?

11.3.7 Analysis of Student Errors

Altadmri and Brown [6] analysed a compilation data from over 250,000 students

in their large Blackbox data set. They examined the frequency, time-to-fix, and

spread of errors among users. These factors can be used to identify the most

frequent (or hardest to fix) errors.

Their work utilized compile-time errors and lexical analysis to identify errors in

student code. Our dataset contains this information plus the results of shake-

down testing. Using this information can we discover new antipatterns made by

introductory cs students?

Additionally, Altadmri and Brown analyzed time-to-fix information. Syntax

errors were the most popular category of errors among novice programmers, but

were also the quickest to fix. Semantic and Types errors exhibited longer time-

to-fix values. Could we use a similar analysis to identify struggling students?

The WebTA data contains submission time data, error messages and stacktraces,

and all feedback provided for each submission. Using this data, I should be able

to the same factors as Altadmri and Brown.

115

11.3.8 Detection of Code Smells

The presence of code smells can negatively impact the quality of a program.

Khomh, et al. developed a Bayesian approach to detecting code smells [34].

Their paper presents a systematic process for converting existing detection rules

to a probabilistic model. They illustrate the process by generating a model to

detect the Blob Antipattern, validating the model, and measuring its accuracy.

Code smells are usually indicative of design antipatterns. Can we adapt their

technique to grovel over our corpus of student submission to automatically detect

new antipatterns that can be added to our critique library?

116

Part IV

Catalog of Patterns &

Antipatterns

117

Chapter 12

Antipattern Library

12.1 Identifying New Antipatterns

Through the course of this research, I’ve developed a catalog of over 200 antipat-

terns that instructors can draw on. My ad hoc process of identifying antipatterns

to add to the library involves combing the literature and community standards to

identify bugs, traps, and coding patterns that novices might encounter, utilize,

or design. Beyond the literature and community standards, the most valuable

resource available are instructors who bring both coding experience and peda-

gogical knowledge to the table. Lastly spend lots of time scrutinizing student

code.

To recap: I identify new patterns for the library by

1. combing the literature,

2. exploring community standards,

119

3. drawing on instructor experience,

4. and scrutinizing student code.

Once I’ve identified several antipatterns, I reflect on them and ask myself:

1. How can the antipattern be detected in student code?

2. Can the issues, solutions, debugging be explained to novices?

3. Why do novices exhibit the antipattern?

For example, a common issue is students declaring a class-level variable, but

only using it in a single, non-trivial method. Students may be trying to develop

flexible code, but they are misunderstanding the principles of modularity and

encapsulation. (See Listing 12.1) This antipattern is only possible in simple

scenarios. Novice programmers get away with it because assignments are limited

in scope and very few instances are created.

12.1.1 Antipattern: Localized Instance Variable

Listing 12.1: Localized Instance-Variable

1 public class Reverse {

2 String result = "";

3 public String reverseString(String s) {

4 for(int i = 0; i < s.length (); i++) {

5 result = s.charAt(i) + result;

6 }

7 return result;

8 }

120

9 }

Another commonly seen antipattern is the Magic Incantation, where students

insert code just because it might be necessary. For example, adding an empty

loop (Listing 12.2), which has no effect, to the code. This sometimes happens

when a students has just learned a topic and think it should be used everywhere.

It indicates an incomplete understanding of the effects of using the code.

12.1.2 Antipattern: Magic Incantation

Listing 12.2: Invoking code as incantation

1 public double abs(double d) {

2 double result = d;

3 if (d < 0) {

4 for(int i = 0; i < 10; i++) {

5 }

6 result = -d;

7 }

8 return result;

9 }

Finally, the Inheritance Pseudo-Implementation antipatter occurs when students

have a buggy understanding of inheritance. When provided with an interface or

abstract class, instead of inheriting, they re-implement the code. Thus they are

not inheriting anything and they are violating polymorphism. (Listing 12 & 13)

121

12.1.3 Antipattern: Inheritance Pseudo-Implementation

12.2 Structural Antipatterns

These patterns deal with the structure or syntax of the code. Novices are in the

process of learning the syntax of the language. During this process, students

can form misconceptions concerning the rules of the language. It is critical that

these misconceptions be identified early.

12.2.1 BAD-ARGUMENT-TYPES

Type: Structure

Source: Diagnostic

122

Description Triggered when a method is called with incompatible argument

types.

Example:

Listing 12.3: Code exemplar for BAD-ARGUMENT-TYPES

1 public class MethodCannotBeAppliedToGivenTypes {

2 public static int absoluteValue(int number) {

3 return number >= 0 ? number : -number;

4 }

5
6 public static void main(String [] args) {

7 System.out.println("The absolute value of -4 ←↩
↪→ is " + (absoluteValue(-4L)));

8 }

9 }

Description Triggered when a method is called with incompatible argument

types.

12.2.2 BAD-TYPES-FOR-BINARY-OPERATOR

Type: Structure

Source: Diagnostic

Description Triggered when the types of the values on either side of a binary

operator do not match.

Description Triggered when the types of the values on either side of a binary

operator do not match.

123

12.2.3 BAD-TYPES-FOR-COMPARISON-

OPERATOR

Type: Structure

Source: Diagnostic

Description Triggered when the types of the values on either side of a binary

operator do not match.

Example:

Listing 12.4: Code exemplar for BAD-TYPES-FOR-COMPARISON-

OPERATOR

1 import java.util.List;

2 public class BadOperandTypesForComparisonOperator ←↩
↪→ {

3 public static void bubbleSort(List <String > list←↩
↪→) {

4 for (int i = 0; i < list.size() -1; i++) {

5 for (int j = i+1; j < list.size(); j++) {

6 if (list.get(j-1) > list.get(j)) {

7 String temp = list.get(j-1);

8 list.set(j-1, list.get(j));

9 list.set(j, temp);

10 }

11 }

12 }

13 }

14 }

Description Triggered when the types of the values on either side of a binary

operator do not match.

124

12.2.4 BAD-TYPES-FOR-UNARY-OPERATOR

Type: Structure

Source: Diagnostic

Description Triggered when the type of the value applied to a unary operator

is invalid for that operation.

Example:

Listing 12.5: Code exemplar for BAD-TYPES-FOR-UNARY-

OPERATOR

1 public class BadOperandTypesForUnaryOperator {

2 public String incrementStringCounter(String ←↩
↪→ counter) {

3 return ++ counter;

4 }

5 }

Description Triggered when the type of the value applied to a unary operator

is invalid for that operation.

12.2.5 BAD-TYPE-IN-CONDITIONAL-EXPRESSION

Type: Structure

Source: Diagnostic

125

Description Triggered when the ternary operator evaluates to an unexpected

type.

Example:

Listing 12.6: Code exemplar for BAD-TYPE-IN-CONDITIONAL-

EXPRESSION

1 public class BadOperandTypesForBinaryOperator {

2 public static String stringSubtraction(String ←↩
↪→ minuend , String subtrahend) {

3 return minuend - subtrahend;

4 }

5 }

Description Triggered when the ternary operator evaluates to an unexpected

type.

12.2.6 CANNOT-FIND-SYMBOL

Type: Structure

Source: Diagnostic

Description Triggered when a symbol (variable/method/class name) is evalu-

ated before it is declared.

Example:

Listing 12.7: Code exemplar for CANNOT-FIND-SYMBOL

1 public class CannotFindSymbol {

126

2 public static int absoluteValue(int number) {

3 result = number;

4 if (result < 0) {

5 result = -result;

6 }

7 return result;

8 }

9 }

Description Triggered when a symbol (variable/method/class name) is evalu-

ated before it is declared.

12.2.7 CANNOT-INFER-TYPE-ARGUMENTS

Type: Structure

Source: Diagnostic

Description Triggered when there is either incomplete or inconsistent informa-

tion concerning the type arguments for a generic structure.

Example:

Listing 12.8: Code exemplar for CANNOT-INFER-TYPE-ARGUMENTS

1 import java.util.ArrayList;

2 import java.util.Arrays;

3
4 public class CannotInferTypeArguments <E> {

5 public static void main (String [] args) {

6 ArrayList <String > list = new ArrayList <>(←↩
↪→ Arrays.asList("1", 2, "3", 4));

7 }

8 }

127

Description Triggered when there is either incomplete or inconsistent informa-

tion concerning the type arguments for a generic structure.

12.2.8 CLASS-CAST-EXCEPTION

Type: Structure

Source: Exception

Description Trigger at when casting between incompatible class types.

Example:

Listing 12.9: Code exemplar for CLASS-CAST-EXCEPTION

1 class A {

2 int i = 10;

3 }

4 class B extends A {

5 int j = 20;

6 }

7 public void classCastException () {

8 A a = new A();

9 B b = (B) a;

10 }

Description Trigger at when casting between incompatible class types.

12.2.9 CLASS-INTERFACE-ENUM-EXPECTED

Type: Structure

128

Source: Diagnostic

Description Triggered when the compiler encounters unexpected code outside

the context of a class block.

Example:

Listing 12.10: Code exemplar for CLASS-INTERFACE-ENUM-

EXPECTED

1 // Generates class , interface , or enum expected ←↩
↪→ error

2 // Code is outside of class structure

3 for(int i = 0; i < 10; i++) {

4 System.out.println(i);

5 }

6
7 public class ClassInterfaceEnumExpected {

8
9 }

Description Triggered when the compiler encounters unexpected code outside

the context of a class block.

12.2.10 CLASS-NOT-SAME-NAME-AS-FILE

Type: Structure

Source: Diagnostic

Description Triggered when a public class is declared in a file with a different

filename.

129

Example:

Listing 12.11: Code exemplar for CLASS-NOT-SAME-NAME-AS-FILE

1 public class FilenameAndClassNameAreDifferent {

2
3 }

Description Triggered when a public class is declared in a file with a different

filename.

12.2.11 CONSTRUCTOR-RETURN-TYPE

Type: Structure

Source: Code

Description Triggered with a constructor has a return type.

Example:

Listing 12.12: Code exemplar for CONSTRUCTOR-RETURN-TYPE

1 public class ConstructorWithReturnType <E> {

2 public int ConstructorWithReturnType (int ←↩
↪→ number) {

3 this.number = number;

4 return number;

5 }

6 }

Description Triggered with a constructor has a return type.

130

12.2.12 DIVISION-BY-ZERO

Type: Structure

Source: Diagnostic

Description Triggered when the compiler detects integer division by zero.

Example:

Listing 12.13: Code exemplar for DIVISION-BY-ZERO

1 public class DivisionByZero {

2 public static final int DIVISOR = 0;

3 private Integer divideByConstant(int dividend)←↩
↪→ {

4 return dividend / DIVISOR;

5 }

6 }

Description Triggered when the compiler detects integer division by zero.

Repair: As this is detectable by the compiler, look for an expression with an

obvious division by zero. Either by a numeric literal, a variable initialized to

0 with no changes before the division, or a constants set to 0 and used as a

denominator.

Best Practices

• Be mindful of the type preservation rule, which states that arithmetic

omputations between two integers must produce an integer result.

131

• When using integers in an expression that contains a division, be verify

that the denominator will not equal 0.

12.2.13 EXTENDS-OBJECT

Type: Structure

Source: Code

Description Triggered when a class extends Object.

Example:

Listing 12.14: Code exemplar for EXTENDS-OBJECT

1 public class ExtendsObject extends Object {

2
3
4 }

Description Triggered when a class extends Object.

12.2.14 IDENTIFIER-EXPECTED

Type: Structure

Source: Diagnostic

132

Description Triggered when the compiler encounters an operator when expect-

ing an identifier.

Example:

Listing 12.15: Code exemplar for IDENTIFIER-EXPECTED

1 public class IdentifierExpected {

2 public static int absoluteValue(int num) {

3 int result = num;

4 }

5 return num >= 0 ? num : - ;

6 }

7 }

Description Triggered when the compiler encounters an operator when expect-

ing an identifier.

12.2.15 ILLEGAL-START-OF-EXPRESSION

Type: Structure

Source: Diagnostic

Description Triggered when the compiler encounters something unexpected.

Example:

Listing 12.16: Code exemplar for ILLEGAL-START-OF-EXPRESSION

1 public class IllegalStartOfExpression {

2 public static int absoluteValue(int num) {

3 public int result = num;

133

4 return num >= 0 ? num : -num;

5 }

6 }

Description Triggered when the compiler encounters something unexpected.

Repair: Walk through the code talking aloud about the syntax. Pay atten-

tion to possible missing parentheses, curly brackets, or semicolons. Check for

methods declared inside methods - not allowed in Java. Finally, check for cases

where public, private, or protected modifiers are used within a method - also

not allowed.

Best Practices

• Be careful to place a semicolon at the end of every statement.

• Methodically balance parenthesis and curly brackets.

• Do not declare methods inside methods.

• Do not use access modifiers inside methods.

• Indent your code to help balance curly braces.

12.2.16 ILLEGAL-START-OF-TYPE

Type: Structure

Source: Diagnostic

Description Triggered when the compiler encounters something unexpected.

134

Example:

Listing 12.17: Code exemplar for ILLEGAL-START-OF-TYPE

1 public class IllegalStartOfType {

2 public static int absoluteValue(int num) {

3 int result = num;

4 }

5 return num >= 0 ? num : -num;

6 }

7 }

Description Triggered when the compiler encounters something unexpected.

Repair: Walk through the code talking aloud about the syntax. Pay atten-

tion to possible missing parentheses, curly brackets, or semicolons. Check for

methods declared inside methods - not allowed in Java. Finally, check for cases

where public, private, or protected modifiers are used within a method - also

not allowed.

Best Practices

• Be careful to place a semicolon at the end of every statement.

• Methodically balance parenthesis and curly brackets.

• Do not declare methods inside methods.

• Do not use access modifiers inside methods.

• Indent your code to help balance curly braces.

12.2.17 IMPORTS-JAVA.LANG

Type: Structure

135

Source: Code

Description Triggered when the code imports java.lang, which is automatically

imported.

Example:

Listing 12.18: Code exemplar for IMPORTS-JAVA.LANG

1 import java.lang.Math;

Description Triggered when the code imports java.lang, which is automatically

imported.

12.2.18 IMPORT-OWN-PACKAGE

Type: Structure

Source: Code

Description Triggered when code imports the package it resides within.

Example:

Listing 12.19: Code exemplar for IMPORT-OWN-PACKAGE

1 package ed.mtu.cs;

2
3 import edu.mtu.cs.*;

4
5 public class ImportsOwnPackage {

6

136

7 }

Description Triggered when code imports the package it resides within.

12.2.19 INCOMPATIBLE-TYPES

Type: Structure

Source: Diagnostic

Description Triggered when a value of one type is used where a different type

is expected.

Example:

Listing 12.20: Code exemplar for INCOMPATIBLE-TYPES

1 public class IncompatibleTypes {

2 public static int absoluteValue(String number)←↩
↪→ {

3 return number >= 0 ? number : -number;

4 }

5 }

Description Triggered when a value of one type is used where a different type

is expected.

137

12.2.20 MISSING-COLON-OR-ARROW

Type: Structure

Source: Diagnostic

Description Triggered when code is missing a colon or arrow operator, such as

after a case or within a lambda expression.

Example:

Listing 12.21: Code exemplar for MISSING-COLON-OR-ARROW

1 public class MissingColonOrArrow {

2 private Double volume(String nameOfCurvedSolid , ←↩
↪→ double height , double base , double radius)←↩
↪→ {

3 Double volume = null;

4 switch (nameOfCurvedSolid.toUpperCase ()) {

5 case "SPHERE"

6 volume = 4 * Math.PI * Math.pow(radius , 2←↩
↪→);

7 break;

8 case "CYLINDER":

9 volume = 2 * Math.PI * Math.pow(radius , 2←↩
↪→) + 2 * Math.PI * radius * height;

10 break;

11 case "CONE":

12 volume = Math.PI * radius * (radius + ←↩
↪→ Math.sqrt(

13 Math.pow(height , 2) + Math.pow(←↩
↪→ radius , 2)));

14 break;

15 }

16 return volume;

17 }

18 }

138

Description Triggered when code is missing a colon or arrow operator, such as

after a case or within a lambda expression.

12.2.21 MISSING-RETURN-STATEMENT

Type: Structure

Source: Diagnostic

Description Triggered when the method does not terminate with a return state-

ment and the method type is not void.

Example:

Listing 12.22: Code exemplar for MISSING-RETURN-STATEMENT

1 public class MissingReturnStatement {

2 public static int absoluteValue(int number) {

3 int result = number >= 0 ? number : -number;

4 }

5 }

Description Triggered when the method does not terminate with a return state-

ment and the method type is not void.

12.2.22 MISSING-RETURN-VALUE

Type: Structure

139

Source: Diagnostic

Description Triggered when the a method, declared with a non-void return

type, contains a standalone return statement.

Example:

Listing 12.23: Code exemplar for MISSING-RETURN-VALUE

1 public class MissingReturnValue {

2 public String[] inplaceSort(String [] array1) ←↩
↪→ {

3 String [] array2 = new String[array1.length];

4 System.arraycopy(array1 , 0, array2 , 0, array1.←↩
↪→ length);

5 return;

6 }

7 }

Description Triggered when the a method, declared with a non-void return

type, contains a standalone return statement.

12.2.23 MISSING-SEPARATOR

Type: Structure

Source: Diagnostic

Description Triggered when code is missing a something, such as a semicolon

or a parenthesis.

Example:

140

Listing 12.24: Code exemplar for MISSING-SEPARATOR

1 public class MissingSomething {

2 private Double volume(String nameOfCurvedSolid , ←↩
↪→ double height , double base , double radius)←↩
↪→ {

3 Double volume = null;

4 int [] foo = new int[10

5 switch (nameOfCurvedSolid.toUpperCase () {

6 case "SPHERE":

7 volume = 4 * Math.PI * Math.pow(radius , 2←↩
↪→);

8 break;

9 case "CYLINDER":

10 volume = 2 * Math.PI * Math.pow(radius , 2←↩
↪→) + 2 * Math.PI * radius * height

11 break;

12 case "CONE":

13 volume = Math.PI * radius * (radius + ←↩
↪→ Math.sqrt(

14 Math.pow(height , 2) + Math.pow(←↩
↪→ radius , 2)));

15 break;

16 }

17 return volume;

18 }

19 }

Description Triggered when code is missing a something, such as a semicolon

or a parenthesis.

Repair: Debugging missing separators can be a challenge. The compiler doesn’t

always indicate where the separator goes. Students should start where the com-

piler indicates and carefully read back through their code looking for a place

where the missing separator should be inserted. Alternatively, one of the sepa-

rators may exist in the code by mistake, such as a remnant opening bracket after

code refactoring, causing the compiler to look for an unintended and therefore

nonexistent closing bracket.

141

Best Practices

• Deliberately balance all parentheses, curly-brackets, and square brackets.

• Place a semicolon at the end of every statement.

• Separate all elements in static array initialization with commas.

12.2.24 NONSTATIC-IN-STATIC-CONTEXT

Type: Structure

Source: Diagnostic

Description Most often triggered when calling an instance method from the

main method.

Example:

Listing 12.25: Code exemplar for NONSTATIC-IN-STATIC-CONTEXT

1 public class NonStaticMethodFromStaticContext <E> {

2 public String stringifyArray(int[] array) {

3 String arrayString = "[";

4 if (array.length > 0) {

5 arrayString += array[0];

6 for(int i = 1; i < array.length; i++) {

7 arrayString += ", " + array[i];

8 }

9 }

10 arrayString += "]";

11 return arrayString;

12 }

13
14 public static void main (String [] args) {

15 int[] array = { 1, 2, 3 };

142

16 System.out.println(stringifyArray(array));

17 }

18 }

Description Most often triggered when calling an instance method from the

main method.

12.2.25 NONSTATIC-VAR-STATIC-CONTEXT

Type: Structure

Source: Diagnostic

Description Most often triggered when accessing an instance variable from the

main method.

Example:

Listing 12.26: Code exemplar for NONSTATIC-VAR-STATIC-

CONTEXT

1 public class NonStaticVariableFromStaticContext <E>←↩
↪→ {

2 int count = 0;

3
4 public static void main (String [] args) {

5 count ++;

6 }

7 }

Description Most often triggered when accessing an instance variable from the

main method.

143

12.2.26 NOT-A-STATEMENT

Type: Structure

Source: Diagnostic

Description Triggered when an expression stands alone on a line.

Example:

Listing 12.27: Code exemplar for NOT-A-STATEMENT

1 public class NotAStatment {

2 public static int absoluteValue(int number) {

3 number >= 0 ? number : -number;

4 }

5 }

Description Triggered when an expression stands alone on a line.

12.2.27 POSSIBLE-LOSS-OF-PRECISION

Type: Structure

Source: Diagnostic

Description Triggered when more bits are assigned to a value than it can hold

based on data type.

144

Example:

Listing 12.28: Code exemplar for POSSIBLE-LOSS-OF-PRECISION

1 public class PossibleLossOfPrecision {

2 public static int absoluteValue(long number) {

3 return number >= 0 ? number : -number;

4 }

5 }

Description Triggered when more bits are assigned to a value than it can hold

based on data type.

12.2.28 RAWTYPE-FOUND

Type: Structure

Source: Diagnostic

Description Triggered when generic class is used without specifying a param-

eterized type.

Example:

Listing 12.29: Code exemplar for RAWTYPE-FOUND

1 import java.util.ArrayList;

2
3 public class RawTypeFound {

4 ArrayList list = new ArrayList ();

5 }

145

Description Triggered when generic class is used without specifying a param-

eterized type.

12.2.29 REACHED-END-OF-FILE-WHILE-PARSING

Type: Structure

Source: Diagnostic

Description Triggered when the parser unexpected reaches the end of the file;

more code is expected.

Example:

Listing 12.30: Code exemplar for REACHED-END-OF-FILE-WHILE-

PARSING

1 public class ReachedEndOfFileWhileParsing {

2 public static int absoluteValue(int number) {

3 return number >= 0 ? number : - number;

4 }

Description Triggered when the parser unexpected reaches the end of the file;

more code is expected.

12.2.30 RETURN-TYPE-REQUIRED

Type: Structure

146

Source: Diagnostic

Description Triggered when the method signature is missing a return type.

Example:

Listing 12.31: Code exemplar for RETURN-TYPE-REQUIRED

1 public class ReturnTypeRequired {

2 public static absoluteValue(int number) {

3 return number >= 0 ? number : -number;

4 }

5 }

Description Triggered when the method signature is missing a return type.

12.2.31 SUPER-DEFAULT

Type: Structure

Source: Code

Description Triggered by a call to the default super constructor.

Example:

Listing 12.32: Code exemplar for SUPER-DEFAULT

1 public class SourceCodeExample {

2 public SourceCodeExample() {

3 super();

4 }

5 }

147

Description Triggered by a call to the default super constructor.

12.2.32 SUPPRESS-WARNINGS-RAWTYPES

Type: Structure

Source: Code

Description Triggered when students use @SuppressWarnings to hide rawtypes

cast warnings.

Example:

Listing 12.33: Code exemplar for SUPPRESS-WARNINGS-RAWTYPES

1 @SuppressWarnings("rawtypes")

2 public void suppressRawTypes() {

3 ArrayList list = new ArrayList();

4 }

Description Triggered when students use @SuppressWarnings to hide rawtypes

cast warnings.

12.2.33 SUPPRESS-WARNINGS-UNCHECKED

Type: Structure

Source: Code

148

Description Triggered when students use @SuppressWarnings to hide

unchecked cast warnings.

Example:

Listing 12.34: Code exemplar for SUPPRESS-WARNINGS-

UNCHECKED

1 @SuppressWarnings("unchecked")

2 public <E> void suppressUncheckedCast() {

3 E[] array = (E[]) new Object[10];

4 }

Description Triggered when students use @SuppressWarnings to hide

unchecked cast warnings.

12.2.34 UNCHECKED-ARRAY-CAST

Type: Structure

Source: Diagnostic

Description Triggered when there is an implicit or explicit cast from a specific

array type to a generic array type.

Example:

Listing 12.35: Code exemplar for UNCHECKED-ARRAY-CAST

1 public class UncheckedArrayCast {

2 public <E> E[] cloneArray(E[] array1) {

3 E[] array2 = (E[]) new Object[array1.length];

149

4 System.arraycopy(array1 , 0, array2 , 0, array1.←↩
↪→ length);

5 return array2;

6 }

7 }

Description Triggered when there is an implicit or explicit cast from a specific

array type to a generic array type.

12.2.35 UNCHECKED-CALL

Type: Structure

Source: Diagnostic

Description Triggered when there is a call to a generic method whose param-

eterized type was not specified.

Example:

Listing 12.36: Code exemplar for UNCHECKED-CALL

1 public class UncheckedCall {

2 public <E extends Comparable > void inplaceSort(←↩
↪→ E[] array) {

3 for(int i = 0; i < array.length - 1; i++) {

4 for (int j = i+1; j < array.length - i; j++←↩
↪→) {

5 if (array[j - 1]. compareTo(array[j] ←↩
↪→) > 0) {

6 E temp = array[j - 1];

7 array[j - 1] = array[j];

8 array[j] = temp;

9 }

150

10 }

11 }

12 return;

13 }

14 }

Description Triggered when there is a call to a generic method whose param-

eterized type was not specified.

12.2.36 UNCHECKED-CAST

Type: Structure

Source: Diagnostic

Description Triggered when there is an implicit or explicit cast from a specific

type to a generic type. This often occurs in conjunction with the use of a

rawtype.

Example:

Listing 12.37: Code exemplar for UNCHECKED-CAST

1 import java.util.ArrayList;

2 import java.util.Arrays;

3
4 public class UncheckedCast <E> {

5 public ArrayList <E> duplicateList(ArrayList <←↩
↪→ Object > list1) {

6 ArrayList <E> list2 = new ArrayList <>();

7 for(int i = 0; i < list1.size(); i++) {

8 list2.add((E) list1.get(i));

9 }

10 return list2;

151

11 }

12
13 public static void main (String [] args) {

14 UncheckedCast <Integer > thing = new ←↩
↪→ UncheckedCast <>();

15 ArrayList <Object > list = new ArrayList <>(←↩
↪→ Arrays.asList("1", 2, "3", 4));

16 for(Integer i : thing.duplicateList(list))←↩
↪→ {

17 System.out.println(i.getClass ().getName ())←↩
↪→ ;

18 }

19 }

20 }

Description Triggered when there is an implicit or explicit cast from a specific

type to a generic type. This often occurs in conjunction with the use of a

rawtype.

12.2.37 UNEXPECTED-RETURN-VALUE

Type: Structure

Source: Diagnostic

Description Triggered when the a void method attempts to return a value.

Example:

Listing 12.38: Code exemplar for UNEXPECTED-RETURN-VALUE

1 public class UnexpectedReturnValue {

2 public <E extends Comparable <E>> void ←↩
↪→ inplaceSort(E[] array) {

152

3 for(int i = 0; i < array.length - 1; i++) {

4 for (int j = i+1; j < array.length - i; j++←↩
↪→) {

5 if (array[j - 1]. compareTo(array[j] ←↩
↪→) > 0) {

6 E temp = array[j - 1];

7 array[j - 1] = array[j];

8 array[j] = temp;

9 }

10 }

11 }

12 return array;

13 }

14 }

Description Triggered when the a void method attempts to return a value.

12.2.38 UNMATCHED-DOUBLE-QUOTE

Type: Structure

Source: Diagnostic

Description Triggered when a string literal is missing either an opening or

closing double-quote.

Example:

Listing 12.39: Code exemplar for UNMATCHED-DOUBLE-QUOTE

1 public class MissingSomething {

2 private Double volume(String nameOfCurvedSolid , ←↩
↪→ double height , double base , double radius)←↩
↪→ {

3 Double volume = null;

153

4 switch (nameOfCurvedSolid.toUpperCase ()) {

5 case SPHERE":

6 volume = 4 * Math.PI * Math.pow(radius , 2←↩
↪→);

7 break;

8 case "CYLINDER":

9 volume = 2 * Math.PI * Math.pow(radius , 2←↩
↪→) + 2 * Math.PI * radius * height;

10 break;

11 case "CONE":

12 volume = Math.PI * radius * (radius + ←↩
↪→ Math.sqrt(

13 Math.pow(height , 2) + Math.pow(←↩
↪→ radius , 2)));

14 break;

15 }

16 return volume;

17 }

18 }

Description Triggered when a string literal is missing either an opening or

closing double-quote.

Repair: Look back from the indicated position for a string that does not begin

or end with double quotes. Be aware of embedded double quotes and verify they

are properly escaped.

Best Practices

• Break long string literals into multiple lines concatenated with a plus sign.

• Escape all double quotes that are embedded in the middle of a string by

prepending the double quotes with a backslash. ()̈

154

12.2.39 UNREACHABLE-STATEMENT

Type: Structure

Source: Diagnostic

Description Triggered when the a statement can never be executed; usually

because it is after a return, break, or in an never executed branch of an if-

statement.

Example:

Listing 12.40: Code exemplar for UNREACHABLE-STATEMENT

1 public class UnreachableStatement {

2 public static int sum(int[] items) {

3 int sum = 0;

4 for(int i = 0; i < items.length; i++) {

5 if (items[i] < 0) {

6 break;

7 System.out.println("EXITING LOOP");

8 }

9 sum += items[i];

10 }

11 return sum;

12 System.out.println("END OF METHOD: sum");

13 }

14 }

Description Triggered when the a statement can never be executed; usually

because it is after a return, break, or in an never executed branch of an if-

statement.

155

12.2.40 VARIABLE-MAY-NOT-BE-INITIALIZED

Type: Structure

Source: Diagnostic

Description Most often triggered when a variable is declared without assigning

a value.

Example:

Listing 12.41: Code exemplar for VARIABLE-MAY-NOT-BE-

INITIALIZED

1 public class VariableMayNotBeInitialized {

2 public static void printVal(int num) {

3 int val;

4 if (num == 0) {

5 val = 0;

6 }

7 System.out.println(val);

8 }

9 }

Description Most often triggered when a variable is declared without assigning

a value.

156

12.3 Behavioral Antipatterns

These patterns deal with the behavior or semantics of the code. Here, antipat-

terns can interfere with student solutions producing negative or unexpected re-

sults.

12.3.1 ARITHMETIC-EXCEPTION-DIV-BY-ZERO

Type: Behavior

Source: Exception

Description Trigger at runtime by integer division by zero.

Example:

Listing 12.42: Code exemplar for ARITHMETIC-EXCEPTION-DIV-BY-

ZERO

1 public void divisionByZero() {

2 divisionByZero(5);

3 }

4 private void divisionByZero(int divisor) {

5 int dividend = 5;

6 double quotient = dividend / divisor;

7 divisionByZero(divisor - 1);

8 }

Description Trigger at runtime by integer division by zero.

157

12.3.2 ARRAY-INDEX-OUT-OF-BOUNDS-LOWER

Type: Behavior

Source: Exception

Description Trigger at runtime by referencing an element in an array using an

index that is less than zero.

Example:

Listing 12.43: Code exemplar for ARRAY-INDEX-OUT-OF-BOUNDS-

LOWER

1 public void lowerArrayIndexOutOfBounds() {

2 String [] stooges = {"Larry", "Curly", "Moe"};

3 for(int index = stooges.length -1; ; index --)←↩
↪→ {

4 System.out.println(stooges[index]);

5 }

6 }

Description Trigger at runtime by referencing an element in an array using an

index that is less than zero.

12.3.3 ARRAY-INDEX-OUT-OF-BOUNDS-UPPER

Type: Behavior

Source: Exception

158

Description Trigger at runtime by referencing an element in an array using an

index that is greater than or equal to the length of the array.

Example:

Listing 12.44: Code exemplar for ARRAY-INDEX-OUT-OF-BOUNDS-

UPPER

1 public void loopArrayIndexOutOfBounds() {

2 String [] stooges = {"Larry", "Curly", "Moe"};

3 for(int index = 0; index <= stooges.length; ←↩
↪→ index ++) {

4 System.out.println(stooges[index]);

5 }

6 }

Description Trigger at runtime by referencing an element in an array using an

index that is greater than or equal to the length of the array.

12.3.4 ARRAY-STORE-EXCEPTION

Type: Behavior

Source: Exception

Description Trigger at when the rules for coercing elements of an array are

violated.

Example:

Listing 12.45: Code exemplar for ARRAY-STORE-EXCEPTION

159

1 public void arrayStoreException() {

2 Object [] val = new Integer[4];

3 val[0] = 5.8;

4 }

Description Trigger at when the rules for coercing elements of an array are

violated.

12.3.5 CONSOLE-SCANNER-IN-LOOP

Type: Behavior

Source: Code

Description Triggered when a console Scanner is created within a loop.

Example:

Listing 12.46: Code exemplar for CONSOLE-SCANNER-IN-LOOP

1 public String[] scannerInLoop(int numItems) {

2 String[] array = new String[numItems];

3 System.out.printf("Enter %d items:", numItems←↩
↪→);

4 for(int i = 0; i < numItems; i++) {

5 Scanner scanner = new Scanner(System.in);

6 array[i] = scanner.next();

7 }

8 return array;

9 }

Description Triggered when a console Scanner is created within a loop.

160

12.3.6 EMPTY-LOOP

Type: Behavior

Source: Code

Description Sometimes students insert an empty loop in code for no apparent

reason.

Example:

Listing 12.47: Code exemplar for EMPTY-LOOP

1 public int emptyLoop(int num){

2 for (int i = 0; i < num; i++) {

3 // Empty Loop

4 }

5 if(num >= 0){

6 return num;

7 }else{

8 return -num;

9 }

10 }

Description Sometimes students insert an empty loop in code for no apparent

reason.

12.3.7 FILE-NOT-FOUND-EXCEPTION

Type: Behavior

161

Source: Exception

Description Trigger at when a file is not found. Most often when the student

has hard-coded the filename.

Example:

Listing 12.48: Code exemplar for FILE-NOT-FOUND-EXCEPTION

1 public void fileNotFoundException(String ←↩
↪→ filename) throws FileNotFoundException {

2 File file = new File("myfile.data");

3 Scanner scanner = new Scanner(file);

4 }

Description Trigger at when a file is not found. Most often when the student

has hard-coded the filename.

12.3.8 INPUT-MISMATCH-EXCEPTION-SCANNER

Type: Behavior

Source: Exception

Description Trigger at when a Scanner tries to access the next input as the

wrong type.

Example:

162

Listing 12.49: Code exemplar for INPUT-MISMATCH-EXCEPTION-

SCANNER

1 public void inputMismatchException() {

2 Scanner scanner = new Scanner("ABC");

3 int i = scanner.nextInt();

4 }

Description Trigger at when a Scanner tries to access the next input as the

wrong type.

12.3.9 NO-SUCH-ELEMENT-ITERATOR

Type: Behavior

Source: Exception

Description Trigger at when an Iterator tries to access the next element and

there is none.

Example:

Listing 12.50: Code exemplar for NO-SUCH-ELEMENT-ITERATOR

1 public void listNoSuchElementException() {

2 ArrayList <String > dwarves = new ArrayList <>();

3 dwarves.add("Sleepy");

4 Iterator <String > iterator = dwarves.iterator ()←↩
↪→ ;

5 while(true) {

6 System.out.println(iterator.next());

7 }

8 }

9 public void arraysNoSuchElementException() {

163

10 List <String > dwarves = Arrays.asList("Thorin"←↩
↪→ , "Fill", "Kill", "Dwalin", "Balin", "←↩
↪→ Oin", "Gloin", "Dori", "Nori", "Ori", "←↩
↪→ Bifur", "Bofur", "Bombur");

11 Iterator <String > iterator = dwarves.iterator ()←↩
↪→ ;

12 while(true) {

13 System.out.println(iterator.next());

14 }

15 }

16 public void spliteratorNoSuchElementException()←↩
↪→ {

17 String [] dwarves = { "Thorin", "Fill", "Kill",←↩
↪→ "Dwalin", "Balin", "Oin", "Gloin", "←↩
↪→ Dori", "Nori", "Ori", "Bifur", "Bofur", ←↩
↪→ "Bombur" };

18 Iterator <String > iterator = Arrays.stream(←↩
↪→ dwarves).iterator ();

19 while(true) {

20 System.out.println(iterator.next());

21 }

22 }

23 public void ←↩
↪→ primitiveIteratorNoSuchElementException()←↩
↪→ {

24 int[] numbers = { 1, 2, 3 };

25 PrimitiveIterator.OfInt iterator = Arrays.←↩
↪→ stream(numbers).iterator ();

26 while(true) {

27 System.out.println(iterator.next());

28 }

29 }

Description Trigger at when an Iterator tries to access the next element and

there is none.

164

12.3.10 NO-SUCH-ELEMENT-SCANNER

Type: Behavior

Source: Exception

Description Trigger at when a a Scanner tries to read beyond the end of its

input stream.

Example:

Listing 12.51: Code exemplar for NO-SUCH-ELEMENT-SCANNER

1 public void scannerNoSuchElementException() {

2 Scanner scanner = new Scanner("ABC");

3 String s1 = scanner.next();

4 String s2 = scanner.next();

5 }

Description Trigger at when a a Scanner tries to read beyond the end of its

input stream.

12.3.11 NULL-POINTER-EXCEPTION

Type: Behavior

Source: Exception

Description Trigger at runtime referencing a object with a null value.

165

Example:

Listing 12.52: Code exemplar for NULL-POINTER-EXCEPTION

1 private class Node <E> {

2 public E value = null;

3 public Node <E> next = null;

4 public Node(E value) {

5 this.value = value;

6 }

7 }

8 public <E> void add(Node <E> head , E value) {

9 if (value == null) {

10 throw new IllegalArgumentException("Can't ←↩
↪→ add null values to list.");

11 }

12 head.next = new Node <E>(value);

13 }

14 public void nullPointerException() {

15 Node <Integer > head = null;

16 this.<Integer >add(head , 42);

17 }

Description Trigger at runtime referencing a object with a null value.

12.3.12 SCAN-STRING-FILENAME

Type: Behavior

Source: AST

Description Pattern occurs when student creates a new Scanner with the string

filename instead of a File object.

Example:

166

Listing 12.53: Code exemplar for SCAN-STRING-FILENAME

1 public void scanStringFilename(String filename ←↩
↪→) throws FileNotFoundException {

2 Scanner scanner = new Scanner(filename);

3 while(scanner.hasNext()) {

4 System.out.println(scanner.next());

5 }

6 }

Description Pattern occurs when student creates a new Scanner with the string

filename instead of a File object.

12.3.13 STRING-INDEX-OUT-OF-BOUNDS

Type: Behavior

Source: Exception

Description Trigger at runtime by calling a String method with an index that

is out of the range [0, length).

Example:

Listing 12.54: Code exemplar for STRING-INDEX-OUT-OF-BOUNDS

1 public void upperStringIndexOutOfBounds() {

2 String str = "It's not black magic; it's just ←↩
↪→ Java code!";

3 char ch = str.charAt (50);

4 }

Description Trigger at runtime by calling a String method with an index that

167

is out of the range [0, length).

12.3.14 SUBSTRING-INDEX-OUT-OF-BOUNDS

Type: Behavior

Source: Exception

Description Trigger at runtime by calling substring with an index that is out-

side the accepted ranges.

Example:

Listing 12.55: Code exemplar for SUBSTRING-INDEX-OUT-OF-

BOUNDS

1 public void substringStringIndexOutOfBounds() {

2 String stooge = "Shemp";

3 for(int index = stooge.length (); ; index --) ←↩
↪→ {

4 System.out.println(stooge.substring(0, ←↩
↪→ index));

5 }

6 }

Description Trigger at runtime by calling substring with an index that is out-

side the accepted ranges.

168

12.3.15 SUPPRESS-WARNINGS

Type: Behavior

Source: Code

Description Triggered when students use @SuppressWarnings to hide warnings.

Example:

Listing 12.56: Code exemplar for SUPPRESS-WARNINGS

1 @SuppressWarnings({"deprecation", "divzero", "←↩
↪→ empty", "rawtypes", "unchecked", "unused"}←↩
↪→)

2 public <E> void suppressWarnings() {

3 // unused

4 int neverUsed = 0;

5 // unchecked

6 E[] array = (E[]) new Object[10];

7 // rawtypes

8 ArrayList list = new ArrayList();

9 // divzero

10 int num = 5/0;

11 // empty

12 if (true);

13 }

Description Triggered when students use @SuppressWarnings to hide warnings.

169

12.4 Style Antipatterns

These patterns deal with coding style. Style is an mastery concept. Students

need to learn to code according to community standards as they journey from

novice to expert. This ensures that they and others will be able to read, under-

stand, and maintain their code.

12.4.1 ARITHMETIC-ASSIGNMENT

Type: Style

Source: Code

Description Triggered when failing to use concise += syntax

Example:

Listing 12.57: Code exemplar for ARITHMETIC-ASSIGNMENT

1 public double addingToVar(double total , double ←↩
↪→ amount) {

2 return total = total + amount;

3 }

Description Triggered when failing to use concise += syntax

170

12.4.2 BRACES-MISSING

Type: Style

Source: Code

Description Triggered when an if statement is followed by a statement instead

of a code block;

Example:

Listing 12.58: Code exemplar for BRACES-MISSING

1 public void missingBrackets() {

2 if (true)

3 return;

4 else return;

5 for(int i = 0; i < 10; i++)

6 System.out.println(i);

7 }

Description Triggered when an if statement is followed by a statement instead

of a code block;

12.4.3 CAPITALIZED-VARIABLE

Type: Style

Source: Code

171

Description Triggered when a variable begins with a capital letter.

Example:

Listing 12.59: Code exemplar for CAPITALIZED-VARIABLE

1 public void varStartsWithUpperCase() {

2 int X = 5;

3 int a = 2;

4 System.out.println(X + a);

5 }

Description Triggered when a variable begins with a capital letter.

12.4.4 COMMA-WITHOUT-SPACE

Type: Style

Source: Code

Description Tiggered when there is not a space after a comma.

Example:

Listing 12.60: Code exemplar for COMMA-WITHOUT-SPACE

1 public void commadWithoutSpace() {

2 List <String > list = java.util.Arrays.asList("←↩
↪→ Person","Woman","Man","Camera","TV");

3 }

Description Tiggered when there is not a space after a comma.

172

12.4.5 COMPARING-BOOLEANS

Type: Style

Source: Code

Description Triggered when a value is compared to a boolean.

Example:

Listing 12.61: Code exemplar for COMPARING-BOOLEANS

1 public String compareBoolean(boolean flag) {

2 if (flag != true) {

3 return "Flag is false";

4 } else if (flag == true) {

5 return "Flag is true";

6 }

7 // Code never reached but required by compiler

8 return "Flag is uncertain !?!";

9 }

Description Triggered when a value is compared to a boolean.

12.4.6 COPYINTO

Type: Style

Source: Code

Description Triggered when a student uses the Vector method copyInto().

173

Example:

Listing 12.62: Code exemplar for COPYINTO

1 public void copyIntoVsToArray(String [] array ←↩
↪→) {

2 Vector <String > vector = new Vector <>();

3 vector.copyInto(array);

4 }

Description Triggered when a student uses the Vector method copyInto().

12.4.7 CRAMMED-OPERATORS

Type: Style

Source: Code

Description Sometimes operators not surrounded by spaces are okay in very

short expressions or to indicate precedence. Don’t over-use this.

Example:

Listing 12.63: Code exemplar for CRAMMED-OPERATORS

1 public double crammedOperators(double celsius)←↩
↪→ {

2 return (celsius -32.0) *5.0/9.0;

3 }

Description Sometimes operators not surrounded by spaces are okay in very

short expressions or to indicate precedence. Don’t over-use this.

174

12.4.8 CRAMMED-PARENS

Type: Style

Source: Code

Description Triggered when there isn’t a space separating parens from their

contents.

Example:

Listing 12.64: Code exemplar for CRAMMED-PARENS

1 public void crammedParens () {

2 for(int i = 0; i < 10; i++){

3 System.out.println(i);

4 }

5 }

Description Triggered when there isn’t a space separating parens from their

contents.

12.4.9 FLOAT-USED

Type: Style

Source: Code

Description Triggered when the primitive data type float is used.

175

Example:

Listing 12.65: Code exemplar for FLOAT-USED

1 public void shortOrFloatUsed() {

2 short num = 0;

3 float f = 0.0;

4 }

Description Triggered when the primitive data type float is used.

12.4.10 IMPORTS-EVERYTHING-IN-PACKAGE

Type: Style

Source: Code

Description

Example:

Listing 12.66: Code exemplar for IMPORTS-EVERYTHING-IN-

PACKAGE

1 import java.net .*;

Description

176

12.4.11 LOCAL-PATHNAME

Type: Style

Source: Code

Description Triggered when a DOS Path is used.

Example:

Listing 12.67: Code exemplar for LOCAL-PATHNAME

1 public void dosFilename() {

2 File file = new File("C:\\ users\\home");

3 }

Description Triggered when a DOS Path is used.

12.4.12 LOOP-FOR-VAR-NOT-LOCAL

Type: Style

Source: Code

Description Triggered when a for-loop variable is declared outside the scope of

the loop.

Example:

177

Listing 12.68: Code exemplar for LOOP-FOR-VAR-NOT-LOCAL

1 int i;

2 for(i = 0; i < 10; i++) {

3
4 }

Description Triggered when a for-loop variable is declared outside the scope of

the loop.

12.4.13 LOWERCASE-CLASS-NAME

Type: Style

Source: Code

Description Triggered when a class name begins with a lowercase letter.

Example:

Listing 12.69: Code exemplar for LOWERCASE-CLASS-NAME

1 public class lowercaseClassname {

2
3 }

Description Triggered when a class name begins with a lowercase letter.

178

12.4.14 METHOD-STARTS-WITH-UPPERCASE

Type: Style

Source: Code

Description Triggered when a method name begins with an uppercase letter.

Example:

Listing 12.70: Code exemplar for METHOD-STARTS-WITH-

UPPERCASE

1 public int UppercaseMethodName () {

2
3 }

Description Triggered when a method name begins with an uppercase letter.

12.4.15 MISSING-COMMENT

Type: Style

Source: Diagnostic

Description Triggered when the compiler is expecting a JavaDoc comment

before the indicated code structure.

Example:

179

Listing 12.71: Code exemplar for MISSING-COMMENT

1 public class MissingComment {

2 public static void main(String [] args) {

3 System.out.println("Hello World");

4 }

5 }

Description Triggered when the compiler is expecting a JavaDoc comment

before the indicated code structure.

12.4.16 MULTIPLE-VAR-ON-LINE

Type: Style

Source: Code

Description Triggered when multiple variables are declared in a single state-

ment.

Example:

Listing 12.72: Code exemplar for MULTIPLE-VAR-ON-LINE

1 public void multipleVarDeclaredSingleLine () {

2 int x = 5, y = 6, z = 50;

3 System.out.println(x + y + z);

4 }

Description Triggered when multiple variables are declared in a single state-

ment.

180

12.4.17 NAMING-UNDERBARS

Type: Style

Source: Code

Description Triggered when a variable name contains underbars.

Example:

Listing 12.73: Code exemplar for NAMING-UNDERBARS

1 public void variableNameWithUnderbars(){

2 int howl_jenkins_pendragon = 0;

3 }

Description Triggered when a variable name contains underbars.

12.4.18 NO-SPACE-IN-FOR-LOOP

Type: Style

Source: Code

Description

Example:

Listing 12.74: Code exemplar for NO-SPACE-IN-FOR-LOOP

181

1 public int noSpaceInForLoop(int num) {

2 int sum = 0

3 for(int i=1;i<num;i++){

4 sum+=i;

5 }

6 return sum;

7 }

Description

12.4.19 OPERATORS-++

Type: Style

Source: Code

Description Triggered when pattern x = x + 1.

Example:

Listing 12.75: Code exemplar for OPERATORS-++

1 public void addingOneToVar() {

2 int count = 0;

3 count = count + 1;

4 }

Description Triggered when pattern x = x + 1.

182

12.4.20 PACKAGE-NAME-TOO-GENERAL

Type: Style

Source: Code

Description E.g., com as a package name

Example:

Listing 12.76: Code exemplar for PACKAGE-NAME-TOO-GENERAL

1 package mathlib;

2
3 public class PackageTooGeneral {

4 public static int absoluteValue(long number) {

5 return number >= 0 ? number : -number;

6 }

7 }

Description E.g., com as a package name

12.4.21 PACKAGE-NEEDLESS-QUALIFIED-NAME

Type: Style

Source: Code

Description Triggered when a package is imported and specified in a method

call.

183

Example:

Listing 12.77: Code exemplar for PACKAGE-NEEDLESS-QUALIFIED-

NAME

1 import java.util.Arrays;

2
3 public class PackageQualifiedName {

4 public void mumble() {

5 List <String > list = java.util.Arrays.asList("←↩
↪→ Person", "Woman", "Man", "Camera", "TV" ←↩
↪→);

6 System.out.println(list);

7 }

8 }

Description Triggered when a package is imported and specified in a method

call.

12.4.22 PACKAGE-QUALIFIED-NAMES

Type: Style

Source: Code

Description Triggered when a fully qualified method name is used in a call.

Example:

Listing 12.78: Code exemplar for PACKAGE-QUALIFIED-NAMES

1 public void packageQualifiedNames() {

184

2 List <String > list = java.util.Arrays.asList("←↩
↪→ Person", "Woman", "Man", "Camera", "TV" ←↩
↪→);

3 System.out.println(list);

4 }

Description Triggered when a fully qualified method name is used in a call.

12.4.23 PUBLIC-INSTANCE-VARIABLES

Type: Style

Source: Code

Description Triggered when instance variables are public.

Example:

Listing 12.79: Code exemplar for PUBLIC-INSTANCE-VARIABLES

1 public class SourceCodeExample {

2 public String name = "Georges";

3 public int age = 27;

4 public int grade = 12;

5
6 // call to default super constructor

7 public SourceCodeExample() {

8 super();

9 }

10 }

Description Triggered when instance variables are public.

185

12.4.24 RETURN-WITH-PARENS

Type: Style

Source: Code

Description Triggered when return value is bracketed within parens

Example:

Listing 12.80: Code exemplar for RETURN-WITH-PARENS

1 public int returnWithParens(int a, int b) {

2 return (a + b);

3 }

Description Triggered when return value is bracketed within parens

12.4.25 SHORT-USED

Type: Style

Source: Code

Description Triggered when the the primitive data type short is used.

Example:

Listing 12.81: Code exemplar for SHORT-USED

186

1 public void shortOrFloatUsed() {

2 short num = 0;

3 float f = 0.0;

4 }

Description Triggered when the the primitive data type short is used.

12.4.26 SPACE-BEFORE-COMMA

Type: Style

Source: Code

Description

Example:

Listing 12.82: Code exemplar for SPACE-BEFORE-COMMA

1 public void spaceBeforeComma() {

2 List <String > list = java.util.Arrays.asList("←↩
↪→ Person" ,"Woman" ,"Man" ,"Camera" ,"TV")←↩
↪→ ;

3 }

Description

187

12.4.27 SPACE-BEFORE-CURLY-BRACE

Type: Style

Source: Code

Description Triggered when there is no space before an opening curly brace.

Example:

Listing 12.83: Code exemplar for SPACE-BEFORE-CURLY-BRACE

1 public void missingSpaceBeforeCurlyBrace(){

2 for(int i = 1; i < 12; i++){

3 System.out.println("Hello");

4 }

5 }

Description Triggered when there is no space before an opening curly brace.

12.4.28 STRING-EQUALS-HINT

Type: Style

Source: AST

Description Triggered when comparing two strings using using ==.

Example:

188

Listing 12.84: Code exemplar for STRING-EQUALS-HINT

1 public boolean stringEqualsHint(String s1 , ←↩
↪→ String s2) {

2 return s1 == s2;

3 }

Description Triggered when comparing two strings using using ==.

12.4.29 STRING-EQUALS-LITERAL

Type: Style

Source: Code

Description Triggered when comparing a string literal using ==.

Example:

Listing 12.85: Code exemplar for STRING-EQUALS-LITERAL

1 public void stringEquals(String name) {

2 if (name == "Scooby Doo") {

3 System.out.println("Time for a Scooby Snack←↩
↪→ !");

4 }

5 }

Description Triggered when comparing a string literal using ==.

189

12.4.30 THIS-METHOD

Type: Style

Source: Code

Description Triggered when the keyword ”this” is used to call a method.

Example:

Listing 12.86: Code exemplar for THIS-METHOD

1 public class ThisMethodCall {

2 public int a () {

3 this.b();

4 }

5 public int b () {

6
7 }

8 }

Description Triggered when the keyword ”this” is used to call a method.

12.4.31 VAR-STARTS-WITH-UPPERCASE

Type: Style

Source: Code

Description Triggered when a variable starts with an uppercase letter.

190

Example:

Listing 12.87: Code exemplar for VAR-STARTS-WITH-UPPERCASE

1 public void varStartsWithUpperCase() {

2 int X = 5;

3 int a = 2;

4 System.out.println(X + a);

5 }

Description Triggered when a variable starts with an uppercase letter.

12.4.32 VECTOR-FOR-FIXED-ARRAY

Type: Style

Source: Code

Description Triggered when a Vector is instantiated at a specific size.

Example:

Listing 12.88: Code exemplar for VECTOR-FOR-FIXED-ARRAY

1 public static Vector <String > vectorForFixedArray←↩
↪→ () {

2 Vector <String > planets = new Vector(8);

3 int index = 0;

4 planets.add(index++, "Mercury");

5 planets.add(index++, "Venus");

6 planets.add(index++, "Earth");

7 planets.add(index++, "Mars");

8 planets.add(index++, "Jupiter");

9 planets.add(index++, "Saturn");

10 planets.add(index++, "Uranus");

191

11 planets.add(index++, "Neptune");

12 return planets;

13 }

Description Triggered when a Vector is instantiated at a specific size.

12.5 Test-Driven Development Antipatterns

These patterns deal with testing code. Learning how and what to test is among

the most challenging tasks for novice programmers. Often the solutions and

algorithms seems so obvious to them that any problems will be attributed to the

instructor’s inability to properly execute the code!

12.6 Design Development Antipatterns

Ultimately, we want to teach students good design pactices. This can seem like a

herculean task in the introductory computer science sequence where students are

still learning the syntax of a language. However, there are many opportunities

to identify design antipatterns and remediate them early on.

192

Part V

Final Thoughts

193

Chapter 13

Conclusion

13.1 Conclusion

There are two mirror research paths that started in the 1950s when we started

experimenting with using computers in the classroom as part of teaching pro-

gramming. In 1960 instructors were using computers to support teaching and

Hollingsworth published the first paper describing an Autograder [29]. The other

side of this research is supporting students and by the early 1980s researchers

had started to investigate how the computer could be used to provide critical

feedback to students that would help them learn to program [31].

WebTA is a code critiquer developed to identify novice antipatterns in student

code. WebTA functions both as an Autograder and a Code Critiquer presenting

opportunities for research in both areas. As a research platform, WebTA has

proven fruitful; enabling the compilation of a library of novice antipatterns and

the aggregation of a large corpus of student submission data, both of which are

195

also major contributions of this work.

Novice antipatterns typically do not appear in professional or academic software

engineering texts because they do not represent the kinds of misunderstandings

and mistakes that seasoned developers would exhibit. Using the antipattern

library, we can provide students feedback through WebTA that is more focused,

more appropriate to their level of understanding, and less intimidating than what

they would encounter in a more traditional development environment. Apart

from the challenge of automated detection, the concept of early programming

antipatterns is of interest in its own right, and we are continuing to mine student

submissions for new entries in our antipatterns library.

We expect the large corpus of student submission data to be a rich source of

information as we continue research in this area. We plan to use it to determine

the frequency of antipatterns and determine if student antipattern production

declines with use of WebTA. Continued and broader use of these resources will

provide us with the data needed to confirm the effectiveness of our automated

critique method.

I feel like I have more questions now than when I set out on this journey. I am

looking forward to exploring the future research laid out in Chapter 11.

196

References

[1] Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for

programming assignments. Computer science education, 15(2):83–102.

[2] Alexander, C. (1977). A pattern language: towns, buildings, construction.

Oxford university press.

[3] Ali, N. M., Hosking, J., and Grundy, J. (2010). A taxonomy of computer-

supported critics. In 2010 International Symposium on Information Technol-

ogy, volume 3, pages 1152–1157. IEEE.

[4] Ali, N. M., Hosking, J., and Grundy, J. (2013a). A taxonomy and mapping of

computer-based critiquing tools. IEEE Transactions on Software Engineering,

39(11):1494–1520.

[5] Ali, N. M., Hosking, J., and Grundy, J. (2013b). A taxonomy and mapping of

computer-based critiquing tools. IEEE Transactions on Software Engineering,

39(11):1494–1520.

[6] Altadmri, A. and Brown, N. C. (2015). 37 million compilations: Investigating

novice programming mistakes in large-scale student data. In Proceedings of

the 46th ACM Technical Symposium on Computer Science Education, SIGCSE

’15, pages 522–527, New York, NY, USA. ACM.

197

[7] AntiPattern Catalog (2012).

[8] Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harring-

ton, B., Kamil, A., Karkare, A., McDonald, C., Osera, P.-M., Pearce, J. L.,

and Prather, J. (2019). Compiler error messages considered unhelpful: The

landscape of text-based programming error message research. In Proceedings

of the Working Group Reports on Innovation and Technology in Computer

Science Education, ITiCSE-WGR 19, page 177210, New York, NY, USA. As-

sociation for Computing Machinery.

[9] Brown, C., Pastel, R., Siever, B., and Earnest, J. (2012a). Jug: A junit

generation, time complexity analysis and reporting tool to streamline grading.

Proceedings of the 17th ACM annual conference on Innovation and technology

in computer science education - ITiCSE ’12.

[10] Brown, C., Pastel, R., Siever, B., and Earnest, J. (2012b). Jug: A junit

generation, time complexity analysis and reporting tool to streamline grad-

ing. In Proceedings of the 17th ACM Annual Conference on Innovation and

Technology in Computer Science Education, pages 99–104, New York, NY,

USA.

[11] Brown, C. D. (2013). An experience-driven pedagogy for the instruction

of software testing in computer science. PhD thesis, Michigan Technological

University.

[12] Brown, W. H., Malveau, R. C., McCormick, H. W., and Mowbray, T. J.

(1998a). AntiPatterns: refactoring software, architectures, and projects in

crisis. John Wiley & Sons, Inc.

[13] Brown, W. J., Malveau, R. C., McCormick, H. W. S., and Mowbray, T. J.

(1998b). AntiPatterns: Refactoring Software, Architectures, and Projects in

Crisis. John Wiley & Sons.

198

[14] Collins, A. (1991). Cognitive apprenticeship and instructional technol-

ogy. Educational values and cognitive instruction: Implications for reform,

1991:121–138.

[15] Collins, A. (2006). Cognitive apprenticeship. na.

[16] Collins, A., Brown, J. S., and Holum, A. (1991). Cognitive apprenticeship:

Making thinking visible. American educator, 15(3):6–11.

[17] Collins, A., Brown, J. S., and Newman, S. E. (1988). Cognitive apprentice-

ship: Teaching the craft of reading, writing and mathematics. Thinking: The

Journal of Philosophy for Children, 8(1):2–10.

[18] DeNero, J., Sridhara, S., Pérez-Quiñones, M., Nayak, A., and Leong, B.

(2017). Beyond autograding: Advances in student feedback platforms. In

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education, pages 651–652, NY, NY. ACM, ACM.

[19] Denny, P., Luxton-Reilly, A., Tempero, E., and Hendrickx, J. (2011). Un-

derstanding the syntax barrier for novices. In Proceedings of the 16th annual

joint conference on Innovation and technology in computer science education,

pages 208–212.

[20] Douce, C., Livingstone, D., and Orwell, J. (2005). Automatic test-based

assessment of programming: A review. Journal on Educational Resources in

Computing (JERIC), 5(3):4.

[21] Edwards, S. H. and Perez-Quinones, M. A. (2008a). Web-CAT: Automat-

ically grading programming assignments. In Proceedings of the 13th Annual

Conference on Innovation and Technology in Computer Science Education,

pages 328–328.

199

[22] Edwards, S. H. and Perez-Quinones, M. A. (2008b). Web-cat: Automati-

cally grading programming assignments. Proceedings of the 13th annual con-

ference on Innovation and technology in computer science education - ITiCSE

’08.

[23] Estey, A. and Coady, Y. (2016). Can interaction patterns with supplemen-

tal study tools predict outcomes in cs1? In Proceedings of the 2016 ACM

Conference on Innovation and Technology in Computer Science Education,

ITiCSE ’16, pages 236–241, New York, NY, USA. ACM.

[24] Ettles, A., Luxton-Reilly, A., and Denny, P. (2018). Common logic er-

rors made by novice programmers. In Proceedings of the 20th Australasian

Computing Education Conference, pages 83–89.

[25] Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S. (2018). How

to design programs: an introduction to programming and computing. MIT

Press.

[26] Fokaefs, M., Tsantalis, N., Stroulia, E., and Chatzigeorgiou, A. (2011).

Jdeodorant: Identification and application of extract class refactorings. Pro-

ceeding of the 33rd international conference on Software engineering - ICSE

’11.

[27] Fowler, M., Highsmith, J., et al. (2001). The agile manifesto. Software

Development, 9(8):28–35.

[28] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design

Patterns: Elements of Reusable Object-Oriented Software Addison-Wesley.

Addison-Wesley.

[29] Hollingsworth, J. (1960). Automatic graders for programming classes. Com-

munications of the ACM, 3(10):528–529.

200

[30] Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. (2010). Re-

view of recent systems for automatic assessment of programming assignments.

Proceedings of the 10th Koli Calling International Conference on Computing

Education Research - Koli Calling ’10.

[31] Joni, S.-N. A. and Soloway, E. (1986). But my program runs! discourse

rules for novice programmers. Journal of Educational Computing Research,

2(1):95–125.

[32] Joy, M. and Griffiths, N. (2004). Online submission of coursework—A tech-

nological perspective. In Proceedings of the IEEE International Conference

on Advanced Learning Technologies, pages 430–434.

[33] Joy, M., Griffiths, N., and Boyatt, R. (2005). The boss online submission

and assessment system. Journal on Educational Resources in Computing,

5(3):2–es.

[34] Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., and Sahraoui, H. (2009). A

bayesian approach for the detection of code and design smells. In 2009 Ninth

International Conference on Quality Software, pages 305–314. IEEE.

[35] Koenig, A. (1995). Patterns and antipatterns. Journal of Object-oriented

Programming, 8:46–48.

[36] Kolb, A. Y. (2005). The kolb learning style inventory-version 3.1 2005

technical specifications. Boston, MA: Hay Resource Direct, 200(72).

[37] Martin, R. C. (2009). Smells and heuristics. In Clean Code: A Handbook

of Agile Software Craftsmanship, chapter 17. Prentice Hall.

201

[38] McDowell, C., Werner, L., Bullock, H. E., and Fernald, J. (2003). The im-

pact of pair programming on student performance, perception and persistence.

In 25th International Conference on Software Engineering, 2003. Proceedings.,

pages 602–607. IEEE.

[39] Munson, J. P. and Schilling, E. A. (2016). Analyzing novice programmers’

response to compiler error messages. J. Comput. Sci. Coll., 31(3):53–61.

[40] Nagappan, N., Williams, L., Williams, L., Ferzli, M., Wiebe, E., Yang,

K., Miller, C., and Balik, S. (2003). Improving the cs1 experience with pair

programming. ACM SIGCSE Bulletin, 35(1):359–362.

[41] Nienaltowski, M.-H., Pedroni, M., and Meyer, B. (2008). Compiler error

messages: What can help novices? In Proceedings of the 39th SIGCSE tech-

nical symposium on Computer science education, pages 168–172.

[42] Oman, P. W. and Cook, C. R. (1990). A taxonomy for programming style.

In Proceedings of the 1990 ACM annual conference on Cooperation, pages

244–250.

[43] Ottenstein, K. J. and Ottenstein, L. M. (1984). The program dependence

graph in a software development environment. In Proceedings of the First

ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, SDE 1, pages 177–184, New York, NY,

USA. ACM.

[44] Prather, J., Pettit, R., McMurry, K. H., Peters, A., Homer, J., Simone, N.,

and Cohen, M. (2017). On novices’ interaction with compiler error messages:

A human factors approach. In Proceedings of the 2017 ACM Conference on

International Computing Education Research, pages 74–82.

202

[45] Qiu, L. and Riesbeck, C. (2004a). Making critiquing practical: incremental

development of educational critiquing systems. In Vanderdonckt, J., Nunes,

N. J., and Rich, C., editors, Proceedings of the 9th International Conference

on Intelligent User Interfaces, IUI 2004, pages 304–306. ACM.

[46] Qiu, L. and Riesbeck, C. (2008a). An incremental model for developing

educational critiquing systems: Experiences with the java critiquer. Journal

of Interactive Learning Research, 19(1):119–145.

[47] Qiu, L. and Riesbeck, C. K. (2003). Facilitating critiquing in education:

The design and implementation of the java critiquer. In Proceedings of the

International Conference on Computers in Education.

[48] Qiu, L. and Riesbeck, C. K. (2004b). Making critiquing practical: Incremen-

tal development of educational critiquing systems. In Proceedings of the 9th

international conference on Intelligent user interfaces, pages 304–306. ACM.

[49] Qiu, L. and Riesbeck, C. K. (2008b). Human-in-the-loop: a feedback-driven

model for authoring knowledge-based interactive learning environments. Jour-

nal of Educational Computing Research, 38(4):469–509.

[50] Rodrigo, M. M. T., Andallaza, T. C. S., Castro, F. E. V. G., Armenta, M.

L. V., Dy, T. T., and Jadud, M. C. (2013). An analysis of java programming

behaviors, affect, perceptions, and syntax errors among low-achieving, aver-

age, and high-achieving novice programmers. Journal of Educational Com-

puting Research, 49(3):293–325.

[51] Royce, W. W. (1970). Managing the development of large software systems.

Proceedings of IEEE WESCON, 1970, pages 1–9.

[52] Schank, R. C., Berman, T. R., and Macpherson, K. A. (1999). Learning by

doing. Instructional-design theories and models: A new paradigm of instruc-

tional theory, 2(2):161–181.

203

[53] Sousa, B. L., Souza, P. P., Fernandes, E. M., Ferreira, K. A., and Bigonha,

M. A. (2017). Findsmells: Flexible composition of bad smell detection strate-

gies. 2017 IEEE/ACM 25th International Conference on Program Compre-

hension (ICPC).

[54] Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., and

Padua-Perez, N. (2006). Experiences with marmoset: designing and using an

advanced submission and testing system for programming courses. Proceed-

ings of the 11th annual SIGCSE conference on Innovation and technology in

computer science education - ITICSE ’06.

[55] Spacco, J. W. (2006). Marmoset: A Programming Project Assignment

Framework to Improve the Feedback Cycle for Students, Faculty and Re-

searchers. PhD thesis, University of Maryland at College Park, College Park,

MD, USA. AAI3241457.

[56] Trætteberg, H. and Aalberg, T. (2006). Jexercise. Proceedings of the 2006

OOPSLA workshop on eclipse technology eXchange - eclipse ’06.

[57] Traver, V. J. (2010). On compiler error messages: what they say and what

they mean. Advances in Human-Computer Interaction, 2010.

[58] Vihavainen, A. and Luukkainen, M. (2013). Results from a three-year tran-

sition to the extreme apprenticeship method. In 2013 IEEE 13th International

Conference on Advanced Learning Technologies, pages 336–340. IEEE.

[59] Vihavainen, A., Paksula, M., and Luukkainen, M. (2011). Extreme appren-

ticeship method in teaching programming for beginners. In Proceedings of the

42nd ACM technical symposium on Computer science education, pages 93–98.

ACM.

204

[60] Vihavainen, A., Vikberg, T., Luukkainen, M., and Pärtel, M. (2013). Scaf-

folding students’ learning using test my code. In Proceedings of the 18th ACM

Conference on Innovation and Technology in Computer Science Education,

ITiCSE ’13, pages 117–122, New York, NY, USA. ACM.

[61] Wiese, E. S., Rafferty, A. N., Kopta, D. M., and Anderson, J. M. (2019).

Replicating novices’ struggles with coding style. In 2019 IEEE/ACM 27th

International Conference on Program Comprehension (ICPC), pages 13–18.

IEEE.

205

	Critiquing Antipatterns In Novice Code
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	I Background
	Situating the Work
	Motivation
	Cognitive Apprenticeship

	Automated Assessment of Programming Assignments
	Automated Assessment of Programming Assignments
	Autograders
	Grading with analysis and feedback
	Critiquer Systems

	Patterns and Antipatterns
	Patterns and Antipatterns
	Patterns
	Antipatterns

	Antipatterns: Characteristics, Detection, and Response
	Misplaced Code
	Interface Pseudo-Implementation
	Localized Instance-Variable
	Knee-Jerk

	II Constructing Code Critiquers
	Basic Critiquer Design
	A Bit of Design
	User Story
	Aspects of Coding
	Describing Antipatterns and Critiques

	Critiquing Structure
	The Structure of a Program
	Detecting Structure Antipatterns
	Making Critiques from Diagnostics

	Critiquing Behavior
	The Behavior of a Program
	Testing with JUnit
	Using JUnit in a Behavior Critiquer

	Critiquing Style
	Style
	Static Analysis

	Critiquing Design
	Illuminating Patterns and Antipatterns
	Identifying Patterns with an Abstract Syntax Tree
	Identifying Antipatterns in Bad Code
	Using the AST to Prevent False Positives

	III A Critiquer for Introductory Computer Science
	WebTA: A Tool for Automated Code Critique
	WebTA
	Architecture
	Configuration
	Antipatterns

	Operation
	A WebTA walkthrough
	Instructor setup
	Student development
	Instructor evaluates submissions

	The Future of WebTA

	Corpus of Novice Code Submissions
	Corpus of Code
	Results from initial beta testing of WebTA
	Future Work: Analysis of Corpus Data
	Why do some students submit more?
	Efficacy & Impact of Stoplight.
	Which issues take the longest to address?
	Can we identify struggling students?
	Analyzing Use of Critiques
	Can we utilize machine learning?
	Analysis of Student Errors
	Detection of Code Smells

	IV Catalog of Patterns & Antipatterns
	Antipattern Library
	Identifying New Antipatterns
	Antipattern: Localized Instance Variable
	Antipattern: Magic Incantation
	Antipattern: Inheritance Pseudo-Implementation

	Structural Antipatterns
	BAD-ARGUMENT-TYPES
	BAD-TYPES-FOR-BINARY-OPERATOR
	BAD-TYPES-FOR-COMPARISON-OPERATOR
	BAD-TYPES-FOR-UNARY-OPERATOR
	BAD-TYPE-IN-CONDITIONAL-EXPRESSION
	CANNOT-FIND-SYMBOL
	CANNOT-INFER-TYPE-ARGUMENTS
	CLASS-CAST-EXCEPTION
	CLASS-INTERFACE-ENUM-EXPECTED
	CLASS-NOT-SAME-NAME-AS-FILE
	CONSTRUCTOR-RETURN-TYPE
	DIVISION-BY-ZERO
	EXTENDS-OBJECT
	IDENTIFIER-EXPECTED
	ILLEGAL-START-OF-EXPRESSION
	ILLEGAL-START-OF-TYPE
	IMPORTS-JAVA.LANG
	IMPORT-OWN-PACKAGE
	INCOMPATIBLE-TYPES
	MISSING-COLON-OR-ARROW
	MISSING-RETURN-STATEMENT
	MISSING-RETURN-VALUE
	MISSING-SEPARATOR
	NONSTATIC-IN-STATIC-CONTEXT
	NONSTATIC-VAR-STATIC-CONTEXT
	NOT-A-STATEMENT
	POSSIBLE-LOSS-OF-PRECISION
	RAWTYPE-FOUND
	REACHED-END-OF-FILE-WHILE-PARSING
	RETURN-TYPE-REQUIRED
	SUPER-DEFAULT
	SUPPRESS-WARNINGS-RAWTYPES
	SUPPRESS-WARNINGS-UNCHECKED
	UNCHECKED-ARRAY-CAST
	UNCHECKED-CALL
	UNCHECKED-CAST
	UNEXPECTED-RETURN-VALUE
	UNMATCHED-DOUBLE-QUOTE
	UNREACHABLE-STATEMENT
	VARIABLE-MAY-NOT-BE-INITIALIZED

	Behavioral Antipatterns
	ARITHMETIC-EXCEPTION-DIV-BY-ZERO
	ARRAY-INDEX-OUT-OF-BOUNDS-LOWER
	ARRAY-INDEX-OUT-OF-BOUNDS-UPPER
	ARRAY-STORE-EXCEPTION
	CONSOLE-SCANNER-IN-LOOP
	EMPTY-LOOP
	FILE-NOT-FOUND-EXCEPTION
	INPUT-MISMATCH-EXCEPTION-SCANNER
	NO-SUCH-ELEMENT-ITERATOR
	NO-SUCH-ELEMENT-SCANNER
	NULL-POINTER-EXCEPTION
	SCAN-STRING-FILENAME
	STRING-INDEX-OUT-OF-BOUNDS
	SUBSTRING-INDEX-OUT-OF-BOUNDS
	SUPPRESS-WARNINGS

	Style Antipatterns
	ARITHMETIC-ASSIGNMENT
	BRACES-MISSING
	CAPITALIZED-VARIABLE
	COMMA-WITHOUT-SPACE
	COMPARING-BOOLEANS
	COPYINTO
	CRAMMED-OPERATORS
	CRAMMED-PARENS
	FLOAT-USED
	IMPORTS-EVERYTHING-IN-PACKAGE
	LOCAL-PATHNAME
	LOOP-FOR-VAR-NOT-LOCAL
	LOWERCASE-CLASS-NAME
	METHOD-STARTS-WITH-UPPERCASE
	MISSING-COMMENT
	MULTIPLE-VAR-ON-LINE
	NAMING-UNDERBARS
	NO-SPACE-IN-FOR-LOOP
	OPERATORS-++
	PACKAGE-NAME-TOO-GENERAL
	PACKAGE-NEEDLESS-QUALIFIED-NAME
	PACKAGE-QUALIFIED-NAMES
	PUBLIC-INSTANCE-VARIABLES
	RETURN-WITH-PARENS
	SHORT-USED
	SPACE-BEFORE-COMMA
	SPACE-BEFORE-CURLY-BRACE
	STRING-EQUALS-HINT
	STRING-EQUALS-LITERAL
	THIS-METHOD
	VAR-STARTS-WITH-UPPERCASE
	VECTOR-FOR-FIXED-ARRAY

	Test-Driven Development Antipatterns
	Design Development Antipatterns

	V Final Thoughts
	Conclusion
	Conclusion

	References

