
Detection of microservice smells through
static analysis

JOÃO AFONSO ALMEIDA SAMÕES
Outubro de 2023

i

Detection of microservice smells through static

analysis

João Afonso Almeida Samões

Dissertation to obtain a master’s degree in informatics engineering, with
a Specialization in Software Engineering

Supervisor: Isabel Azevedo

Porto, 2023

ii

iii

Declaration of Integrity

I declare that I have conducted this academic work with integrity.

I have not plagiarised or applied any form of misuse of information or falsification of results

throughout the process that led to its preparation.

Therefore, the work presented in this document is original and of my own authorship and has

not been used previously for any other purpose.

I also declare that I am fully aware of P. PORTO's Code of Ethical Conduct.

ISEP, Porto, 13 October 2023

iv

v

Dedicated to my unwaveringly supportive parents and brother, who have consistently

provided me with the strength and resources that have shaped the person I am today.

vi

vii

Resumo

A arquitetura de microsserviços é um modelo arquitetural promissor na área de software,

atraindo desenvolvedores e empresas para os seus princípios convincentes. As suas vantagens

residem no potencial para melhorar a escalabilidade, a flexibilidade e a agilidade, alinhando-

se com as exigências em constante evolução da era digital. No entanto, navegar entre as

complexidades dos microsserviços pode ser uma tarefa desafiante, especialmente à medida

que este campo continua a evoluir.

Um dos principais desafios advém da complexidade inerente aos microsserviços, em que o seu

grande número e interdependências podem introduzir novas camadas de complexidade. Além

disso, a rápida expansão dos microsserviços, juntamente com a necessidade de aproveitar as

suas vantagens de forma eficaz, exige uma compreensão mais profunda das potenciais

ameaças e problemas que podem surgir. Para tirar verdadeiramente partido das vantagens

dos microsserviços, é essencial enfrentar estes desafios e garantir que o desenvolvimento e a

adoção de microsserviços sejam bem-sucedidos.

O presente documento pretende explorar a área dos smells da arquitetura de microsserviços

que desempenham um papel tão importante na dívida técnica dirigida à área dos

microsserviços.

Embarca numa exploração de investigação abrangente, explorando o domínio dos smells de

microsserviços. Esta investigação serve como base para melhorar um catálogo de smells de

microsserviços. Esta investigação abrangente obtém dados de duas fontes primárias:

systematic mapping study e um questionário a profissionais da área. Este último envolveu 31

profissionais experientes com uma experiência substancial no domínio dos microsserviços.

Além disso, são descritos o desenvolvimento e o aperfeiçoamento de uma ferramenta

especificamente concebida para identificar e resolver problemas relacionados com os

microsserviços. Esta ferramenta destina-se a melhorar o desempenho dos programadores

durante o desenvolvimento e a implementação da arquitetura de microsserviços.

Por último, o documento inclui uma avaliação do desempenho da ferramenta. Trata-se de

uma análise comparativa efetuada antes e depois das melhorias introduzidas na ferramenta.

A eficácia da ferramenta será avaliada utilizando o mesmo benchmarking de microsserviços

utilizado anteriormente, para além de outro benchmarking para garantir uma avaliação

abrangente.

Palavras-chave: Architecture smells, microservices, detection tools, technical debt

viii

ix

Abstract

The microservices architecture stands as a beacon of promise in the software landscape,

drawing developers and companies towards its compelling principles. Its appeal lies in the

potential for improved scalability, flexibility, and agility, aligning with the ever-evolving

demands of the digital age. However, navigating the intricacies of microservices can be a

challenging task, especially as this field continues to evolve.

A key challenge arises from the inherent complexity of microservices, where their sheer

number and interdependencies can introduce new layers of intricacy. Furthermore, the rapid

expansion of microservices, coupled with the need to harness their advantages effectively,

demands a deeper understanding of the potential pitfalls and issues that may emerge. To

truly unlock the benefits of microservices, it is essential to address these challenges head-on

and ensure a successful journey in the world of microservices development and adoption.

The present document intends to explore the area of microservice architecture smells that

play such an important role in the technical debt directed to the area of microservices.

It embarks on a comprehensive research exploration, delving into the realm of microservice

smells. This research serves as the cornerstone for enhancing a microservice smell catalogue.

This comprehensive research draws data from two primary sources: a systematic mapping

research and an industry survey. The latter involves 31 seasoned professionals with

substantial experience in the field of microservices.

Moreover, the development and enhancement of a tool specifically designed to identify and

address issues related to microservices is described. This tool is aimed at improving

developers' performance throughout the development and implementation of microservices

architecture.

Finally, the document includes an evaluation of the tool's performance. This involves a

comparative analysis conducted before and after the tool's enhancements. The tool's

effectiveness will be assessed using the same microservice benchmarking as previously

employed, in addition to another benchmark to ensure a comprehensive evaluation.

Keywords: Architecture smells, microservices, detection tools, technical debt

x

xi

Acknowledgements

First and foremost, I want to express my gratitude to my parents, who have been unwavering

pillars of support throughout this academic journey, providing me with the best opportunities

since I was a young boy, and instilling the invaluable lesson that hard work is the key to

success in life.

I'd like to extend my heartfelt thanks to my brother, who has consistently believed in me, and

provided invaluable guidance with the best advice, as any good older sibling would. He

remains one of the central influences in my journey and he always be my role-model.

A special and heartfelt thank you is reserved for my love, my partner, who demonstrated

patience in listening to everything I needed to share and for supporting me all these years.

Perhaps without her, none of this would have been possible, and for that, I owe her my

deepest gratitude. All the time I dedicated to this endeavour will soon be rewarded with

countless beach strolls, catching sunsets and delicious sushi!

I want to express my immense gratitude to my friends, particularly to those who have been

with me every step of the way in my academic journey, my friends João Dias and Diogo

Barbosa, who were the best. Without them, this wouldn’t be possible either. Also, thanks to

those who shared the ups and downs of the bachelor's degree and kept sharing stories after it

finished. Their support has played a crucial role in my growth, as they have consistently

encouraged me to strive for the best and I wish them all the greatest success.

I owe a great debt of gratitude to my supervisor, Isabel Azevedo, whose tireless dedication,

and unfailing support have been invaluable. She has consistently been available to address my

questions and engage in discussions on all matters pertaining to this project. Without her

guidance from the very outset, this achievement would undoubtedly not have been attainable.

Finally, I want to express my appreciation to all the survey respondents who generously

devoted their time and patience to complete the lengthy survey and offer valuable insights.

xii

xiii

Table of Contents

1 Introduction ... 1

1.1 Context ... 1

1.2 Problem ... 2

1.3 Goals .. 2

1.4 Document Structure .. 3

2 Background .. 5

2.1 Microservice Architecture .. 5
2.1.1 Advantages ... 6
2.1.2 Challenges .. 8

2.2 Software Smells ..10

3 Microservice smells research ... 13

3.1 Design ..13
3.1.1 Requirements ...13
3.1.2 Final Design ...14

3.2 Data from the research literature ...14
3.2.1 Protocol and definition of research questions ...15
3.2.2 Conducting the search for primary studies ...16
3.2.3 Screening ..17
3.2.4 Classification System ..18
3.2.5 Coding: data extraction and aggregation ...18
3.2.6 Analysis and Report ..20

3.3 Data from Industry ...27
3.3.1 Introduction – Demographic Questions ..27
3.3.2 Microservice Smells Catalogue Analysis ...30
3.3.3 Open-answer questions ..33

3.4 Threats to validity ...34

4 State of the Art .. 35

4.1 Microservice architectural smells ..35
4.1.1 Catalogues ...36

4.2 Detection Tools for Microservice Architecture Smells ..49
4.2.1 MSA-Nose ..49
4.2.2 µTOSCA toolchain ..53
4.2.3 MARS ...58

5 Solution ... 69

5.1 Proposed Catalogue ..69
5.1.1 Analysis ..69

xiv

5.1.2 Catalogue Improvements .. 70

5.2 MSA Nose Improvement ... 73
5.2.1 Analysis .. 73
5.2.2 Requirements ... 74
5.2.3 Design and Implementation ... 75

6 Evaluation .. 81

6.1 Methodology .. 81

6.2 Case Studies .. 82
6.2.1 Train Ticket ... 82
6.2.2 Teacher Management System .. 84
6.2.3 Piggy Metrics .. 85

6.3 Threats to validity ... 87

7 Conclusions .. 89

7.1 Contributions ... 89

7.2 Difficulties along the way ... 90

7.3 Future Work ... 91

References ... 93

Appendix A (Value Analysis) .. 97

Appendix B (Additional Pitfalls) ... 103

Appendix C (Survey) ... 105

xv

Table of Figures

Figure 1 - The scale cube defines three separate ways to scale an application. (Richardson,

2018). ... 6

Figure 2 - Z-axis scaling runs multiple identical instances of the monolithic application behind 7

Figure 3 – Taxonomy of microservices security (a) properties, (b) smells, and (c) refactorings.

For the sake of readability, the association between security properties and smells is

represented by aligning the corresponding boxes, whilst that between smells and refactorings

is represented with arrows (Ponce et al., 2022). ... 22

Figure 4 – Questionnaire: participant’s area of software engineering. 27

Figure 5 – Questionnaire: participant’s companies. .. 28

Figure 6 – Questionnaire: participant’s years of experience. .. 29

Figure 7 – Questionnaire: participant’s experience with microservices. 29

Figure 8 – Results of the participant’s answers depending on their area of software. 30

Figure 9 – Results of the participant’s answers depending on their experience in any software

engineering area. ... 31

Figure 10 – Results of the participant’s answers depending on their experience with

microservice architecture specifically. ... 32

Figure 11 – Results of the participant’s answers independently from any variable shown

before. .. 32

Figure 12 - MSANose architecture diagram (Walker et al., 2020). .. 50

Figure 13 – Shared Persistency (Walker et al., 2020) .. 51

Figure 14 - The 𝜇TOSCA toolchain (Soldani et al., 2021). .. 54

Figure 15 – TOSCA simple “Hello World” (OASIS, n.d.). ... 55

Figure 16 – Visual representation of the architectural smells and refactorings (Soldani et al.,

2021). ... 56

Figure 17 - Microservice Antipatterns Research Software (Tighilt et al., 2023). 58

Figure 18 – Wrong Cut pseudo-code description (Tighilt et al., 2023). 59

Figure 19 – Cyclic Dependencies pseudo-code description (Tighilt et al., 2023). 60

Figure 20 – Mega Service pseudo-code description (Tighilt et al., 2023). 60

Figure 21 – Nano Service pseudo-code description (Tighilt et al., 2023). 60

Figure 22 – Shared Libraries pseudo-code description (Tighilt et al., 2023). 61

Figure 23 – Hardcoded Endpoints pseudo-code description (Tighilt et al., 2023). 61

Figure 24 – Manual Configuration pseudo-code description (Tighilt et al., 2023). 62

Figure 25 - No Continuous Integration/Continuous Delivery pseudo-code description (Tighilt et

al., 2023) ... 63

Figure 26 – No API Gateway pseudo-code description (Tighilt et al., 2023). 63

Figure 27 – Timeouts pseudo-code description (Tighilt et al., 2023). 64

Figure 28 – Multiple Service Instances Per Host pseudo-code description (Tighilt et al., 2023).

 .. 64

Figure 29 – Shared Persistence pseudo-code description (Tighilt et al., 2023). 65

Figure 30 – No API Versioning pseudo-code description (Tighilt et al., 2023). 65

xvi

Figure 31 – No Health Check pseudo-code description (Tighilt et al., 2023). 66

Figure 32 – Local Logging pseudo-code description (Tighilt et al., 2023). 66

Figure 33 – Insufficient Monitoring pseudo-code description (Tighilt et al., 2023)................... 67

Figure 34 – Components Diagram. ... 73

Figure 35 – Functional requirements. .. 75

Figure 36 – Logical view of a components’ diagram with a level 2 abstraction. 76

Figure 37 – Process view (UC1). ... 77

Figure 38 – Process view (UC2). ... 77

Figure 39 – Process View (UC3). ... 78

Figure 40 – Process View (UC5). ... 78

Figure 41 – Process View (UC6). ... 79

Figure 42 – The innovation process (Koen et al., 2002) ... 97

Figure 43 – Relationship diagram representing the NCD model (Koen et al., 2002). 98

Figure 44 - Duration of use of microservice from the survey respondents (Loukides & Swoyer,

2020)... 100

Figure 45 - Ranking sources of technical debt. Choice 1 is represented by hatches; Choice 2,

dashes; and Choice 3, dots (Ernst et al., 2015). ... 101

xvii

Table of Tables

Table 1 – Microservice smells research requirements. ... 14

Table 2 – Research question 1 using the PICOC model (RQ1). ... 15

Table 3 – Research question 2 using the PICOC model (RQ2). ... 15

Table 4 – Research question 3 using the PICOC model (RQ3). ... 16

Table 5 – Microservice smells systematic mapping study I/E criteria. 16

Table 6 – Papers collected after the screening phase. .. 18

Table 7 – Classification system... 18

Table 8 – Microservice smells catalogue proposed by (Taibi & Lenarduzzi, 2018). 37

Table 9 – Internal microservice smells (Taibi et al., 2019). .. 38

Table 10 – Communication microservice smells (Taibi et al., 2019). ... 38

Table 11 – Other technical microservice smells (Taibi et al., 2019). ... 38

Table 12 – Team Oriented Microservice smells (Taibi et al., 2019). .. 39

Table 13 – Technology and Tool Oriented microservice smells (Taibi et al., 2019). 39

Table 14 – Missing microservice from other sources of research methods found by (Taibi et al.,

2019) .. 40

Table 15 – Design Antipatterns (Tighilt et al., 2020). ... 42

Table 16 – Implementation Antipatterns (Tighilt et al., 2020). ... 43

Table 17 – Deployment Antipatterns (Tighilt et al., 2020). .. 44

Table 18 – Monitoring Antipatterns (Tighilt et al., 2020). ... 45

Table 19 – Design microservice smells (Ding & Zhang, 2022). ... 46

Table 20 – Deployment microservice smells (Ding & Zhang, 2022)... 47

Table 21 – Monitor & Log microservice smells (Ding & Zhang, 2022). 47

Table 22 - Team & Tool microservice smells (Ding & Zhang, 2022). .. 48

Table 23 – Communication microservice smells (Ding & Zhang, 2022). 48

Table 24 – MSA-Nose improvement non-functional requirements. ... 74

Table 25 – Microservices information. .. 82

Table 26 – Train Ticket case study results (“B-Imp” means Before Improvement and “A-Imp”

means After Improvement). .. 83

Table 27 – Teacher Management System case study results (“B-Imp” means Before

Improvement and “A-Imp” means After Improvement). .. 85

Table 28 - Piggy Metrics case study results (“B-Imp” means Before Improvement and “A-Imp”

means After Improvement). .. 86

Table 29 – Goals achievement. .. 89

Table 30 – Architecture Smells versus maintainability measures (Zhong et al., 2022). 102

Table 31 – The main pitfalls proposed in non-peer-reviewed literature and practitioner 103

xviii

xix

Abbreviations list

API Application Programming Interface

IDE Integrated Development Environment

MSA Microservice Architecture

RAM Random Access Memory

SOA Service Oriented Architecture

TOSCA Topology and Orchestration Specification for Cloud Applications

URL Uniform Resource Locator

xx

1

1 Introduction

This chapter has the objective of introducing the work described in this document. It contains

the motivation context and the structure of the present document.

1.1 Context

The concept of code smells was first introduced in the late 90s by Kent Beck and Martin

Fowler, who came up with the idea of using the phrase to describe patterns or practices in

software development that negatively affect the quality of the code. (Fowler, 1999) helped to

popularize the idea.

A software smell is an indicator of situations - such as undesired patterns, antipatterns, or bad

practices - that negatively affect software quality attributes such as understandability,

testability, extensibility, reusability, and maintainability of the system under development.

There are many varieties of software smells like architecture smells (also known as bad smells),

code smells, security smells, and others, which are related to different areas of software: bad

smells to architecture (Azadi et al., 2019), code smells to code issues in general and security

smells to coding patterns that are indicative of security weakness and can potentially lead to

security breaches (A. Rahman et al., 2019). There are many tools to detect architecture and

code smells in applications (Azadi et al., 2019). However, they are not adequate for detecting

architecture smells oriented to microservices (Taibi & Lenarduzzi, 2018). Only recently the

subject has been studied and some tools have been proposed (Pigazzini et al., 2020; Walker et

al., 2020), but the topic remains underexplored.

A new architectural style based on a collection of tiny services, each with its process and

interacting through lightweight mechanisms called microservices. It was given this name in

May 2012 by a group of software architects who, a year earlier, had explored an architectural

style at a workshop in Venice in May 2011 (Fowler & Lewis, 2014). For some practitioners

seeking an architectural pattern even more "democratic" than what classic SOA could offer,

microservices arose as a novel strategy (STRIMBEI et al., 2015).

2

Microservices are autonomous, typically automated procedures that are developed around

business capabilities. In recent times, a significant number of systems have undergone or are

contemplating a transition from monolithic applications to a distributed architecture

composed of small, independent services. Due to the independence of these services, they

may be created at various rates and with various technologies, which enables the

implementation of some business capabilities in more suited ones. This aids in adapting to the

market's current rapid speed (Ponce et al., 2019).

1.2 Problem

Microservice architecture has become a popular topic of discussion in recent years as many

organizations look to adopt or migrate away from traditional monolithic architecture in favour

of a more modular approach. To ensure that the microservices architecture delivers the

desired results, it is important to proactively identify and address any potential challenges and

pitfalls, which are very likely to arise as some works were able to conclude (Lu et al., 2019;

Taibi et al., 2017). Problems like these can be easily detected in monolithic applications with

the usage of a set of tools and techniques, while it gets tougher to detect these in

microservice applications due to a lack of exploration.

These challenges can have a significant impact on the overall performance and stability of the

system, leading to increased downtime and reduced efficiency. Furthermore, the design and

implementation of a microservices architecture can be complex and time-consuming,

requiring specialized skills and expertise that may not be readily available within the

organization. This can result in longer development cycles and increased costs, which can

negatively impact the organization's ability to compete in the market.

1.3 Goals

A tool enabling developers to identify issues and architectural smells alongside as they

construct the microservices will be useful. A tool like this would be made expressly for the

microservices architecture, comparable to other current tools that identify code-level or

design-level smells in software development. Developers may enhance their microservices'

architecture, performance, and maintainability by using this tool, which can offer insightful

comments and recommendations. By having a tool that helps identify microservice smells,

organizations can adopt a more proactive approach to software development, reducing the

risk of technical debt and ensuring the successful implementation of their microservices

architecture.

3

The work aims to thoroughly explore microservice smells, guidelines, and tools for their

detection, thus contributing to this field of study. The objectives of this work are:

• explore and evaluate the comprehensiveness of existing catalogues of microservice

smells, also gauging the acceptance of the included smells.

• improve a microservice smell detector that incorporates and improves upon existing

applications. This detector aids in identifying smells in a microservice architecture,

thus helping to improve the design and implementation of microservices.

1.4 Document Structure

This document is divided into the following chapters:

• The first chapter introduces the theme to the reader, composed of the document's

context, problem, goals, and structure.

• The second chapter is the background which describes the concepts that are key for

understanding the remaining chapters.

• The third chapter comprises the microservice smell research, where it describes the

systematic mapping study and the questionnaire done to the industry, as well as its

results summary.

• The fourth chapter will show what is the State of the Art of the proposed theme – the

existing catalogues for the microservice smells and the tools (and the way) they can

detect these smells.

• The fifth chapter describes the solution, where the developments done to improve

one of the detection tools found during the research and the update to a microservice

smell catalogue is done, describing all the steps and analysis to its goal.

• The sixth chapter contains the evaluation, which outlines the criteria for assessing the

quality of this work.

• The seventh chapter are the Conclusions, where all the conclusions are summarized,

as well as the future works on this trend.

• The appendix contains one chapter that was created to accomplish one of the

requirements of this document which is the Value Analysis where the reader will be

able to check the value proposed by this document, containing the steps of the new

concept development model. It also contains a table created by (Taibi & Lenarduzzi,

2018) and the survey used in the third chapter.

4

5

2 Background

This chapter presents to the reader key concepts related to microservice architecture (the

advantages, challenges/pitfalls and antipatterns of this architecture) and software smells,

such as what are they and which types exist.

2.1 Microservice Architecture

Microservice Architecture (MSA) has been defined by many different authors. The authors

(Fowler & Lewis, 2014) started by defining it as “an approach to developing a single

application as a suite of small services, each running in its own process and communicating

with lightweight mechanisms, often an HTTP resource API” (Fowler & Lewis, 2014). This is the

most consensual definition as it is cited by many authors.

Another author (Dragoni et al., 2017) splits the definition between microservices and

microservice architecture, where the second is a distributed application where all its modules

are composed of the first. To this author “microservices (which are a cohesive, independent

process interacting via messages) should be independent components conceptually deployed

in isolation and equipped with dedicated memory persistence tools (e.g., databases) since all

the components of a microservice architecture are microservices, its distinguishing behaviour

derives from the composition and coordination of its components via messages” (Dragoni et

al., 2017).

Both authors agree on the main characteristic of microservices, which is the ability to develop

and deploy independently, and the communication between them via messages, which allows

for improved scalability, flexibility, and maintainability of the software system.

6

2.1.1 Advantages

The microservices architecture presents many characteristics and benefits that have made it a

trend in software development (Fowler, 2014; GitLab, n.d., 2022).

Scalability

To explain the scalability of the microservices, a scale model called the scale cube (as shown

in Figure 1) can be used (Richardson, 2018). It was inspired by other authors Martin Abbott

and Michael Fisher’s book The Art of Scalability.

Figure 1 - The scale cube defines three separate ways to scale an application. (Richardson,

2018).

The X-axis scaling (or horizontal duplication) is the common way to scale a monolithic

application which is by running many instances of one application behind a load balancer,

which distributes the requests among the many identical instances of the application

(Richardson, 2018).

The Z-axis scaling is where each instance is responsible for only a subset of data. which

consists of having a router that forwards requests to instances that match its responsibility. As

shown in Figure 2, there are N application instances that are identical, however, they are

responsible for a subset of users. As soon as the request arrives at the router, it decides where

it has to go, enabling the application to handle the increasing transaction and data volumes

(Richardson, 2018).

Finally, the Y-axis is to scale by functional decomposition, or, by microservices. The

application's capacity and availability are increased through X- and Z-axis scaling. However,

neither strategy addresses the issue of growing application and development complexity.

7

By decomposing a monolithic application into a set of services, the application makes itself

more controllable, because its services are independently scaled making it easier to handle

increased traffic or demand, as they will have an X-axis and Z-axis scaling by each service

instead of one for all the application.

Figure 2 - Z-axis scaling runs multiple identical instances of the monolithic application behind

a router, which routes based on a request attribute (Richardson, 2018)

Flexibility and Technology Diversity

The microservices architecture allows for the development and deployment of each service

independently, using a variety of languages, frameworks, and technologies. This flexibility

brings many benefits to the development process, such as language diversity, framework

diversity, technology diversity, team autonomy, best fit, innovation, and cost-effectiveness.

Teams can choose the best tools for their specific needs, leading to a more efficient and

effective development process, and ultimately, improving the overall quality of the software

(Viggiato et al., 2018).

Resilience and better fault isolation

The resilience of a system is a judgment of how well that system can maintain the continuity

of its critical services in the presence of disruptive events, such as equipment failure and

cyberattacks (CCSU, n.d.).

Microservices' capacity to continue operating even if one of them fails lessens the effect of

outages on the entire system. This is accomplished by creating services that are highly

coherent and loosely connected, allowing them to operate apart from one another.

Improved Modularity

Improved modularity is one of the key benefits of microservices architecture. The isolation of

microservices allows for a high degree of modularity, which makes them improve quality

attributes of the application like understandability (each microservice is a small and self-

8

contained unit of functionality, which makes it easy to understand the purpose and

functionality of each service), testability (each microservice can be tested independently,

which makes it easy to detect and fix bugs), maintainability, and reusability.

Easy To Deploy and faster time to market

The independence of microservices allows for a high degree of flexibility in the deployment

process, which makes it easy to deploy new features. By isolating each service, teams can

deploy them independently, without affecting the entire system. This allows teams to test

new features and make changes to one service without affecting the rest of the system. It also

allows teams to deploy new features and updates in a phased manner, which can reduce the

risk of introducing new bugs or breaking existing functionality. Additionally, this independence

allows teams to deploy and scale each service according to its specific needs, which can

improve the overall performance and availability of the system.

2.1.2 Challenges

The development team, to have all these benefits from the MSA, will face some challenges. If

not overcome, then the advantages will not be achieved. Due to this, a study realized by

(Söylemez et al., 2022) described what are the most described challenges of the adoption of

the microservice architecture in the literature.

Service Discovery

The difficulties with service discovery are related to issues with design, implementation, and

quality. Due to the numerous different service discovery techniques, including client-side,

server-side, and hybrid service discovery, creating the service discovery is regarded as

challenging at the design level. Based on the numerous demands and concerns for quality, the

right choice must be selected. It is difficult to come up with a workable design option when

several design alternatives might be found. The scale of the system and the architecture

chosen have a direct impact on how service discovery is implemented; thus, high availability

and scalability are the most crucial implementation criteria (Söylemez et al., 2022).

Data Management and Consistency

The distributed nature of MSA causes a challenge in terms of data management and

consistency. These challenges include issues with distributed transaction management,

backing up the system, and data integration. Architects and developers often use a database

per service pattern for distributed transaction management, which MSA also favours for

decentralized data management. This pattern has many benefits but also comes with

difficulties in managing distributed transactions. Backing up the entire system in an MSA can

be challenging and requires trade-offs, making it difficult for practitioners to decide on the

best approach. There may not be a mature mechanism for data sharing and synchronization in

some MSAs, which can lead to a more complex system. Sharing and synchronization

9

operations need to be handled in a way that does not impact other data (Söylemez et al.,

2022).

Testing

Testing is essential for making sure a system is prepared for deployment and enabling

developers to proceed with confidence, but due to the dispersed nature of MSA, it may be

difficult. The testing procedure is made more difficult by the fact that each microservice in

MSA can be created using various technologies, languages, and infrastructures. Regression

and acceptability testing, as well as testing for performance and robustness, provide

significant issues. Also, MSA might make it challenging to build a thorough testing framework

and automate tests. These issues need to be dealt with in an agile manner, automated, and as

part of the continuous delivery process, while simultaneously making sure they don't

compromise the dependability of the system (Söylemez et al., 2022).

Performance Prediction, Measurement and Optimization

Performance is a crucial quality aspect that must be considered at various phases of the

system's design, implementation, and operation. It is typically advantageous to predict how

well a software system will function before it is put into use since changing the system after it

has been put into use can be challenging or expensive. To meet the quality standards of MSA-

based systems, performance assessment and optimization become crucial after deployment

(Söylemez et al., 2022).

Communication and Integration

It is challenging to guarantee that the communication infrastructure is trustworthy and that

the protocol to be used for communication and integration can manage complicated

processes, even when microservices interact using a more lightweight protocol. Dependability

and durability are the most crucial requirements for both problems; if these requirements are

not fulfilled, the system's correct functioning and reliability will be compromised, which might

lead to cascade failures (Söylemez et al., 2022).

Service Orchestration

Microservice deployment, scalability, scheduling, management, and networking are all

included in the idea of service orchestration. Although several of these topics have been

addressed by container orchestration technologies, certain research has noted difficulties in

each of these areas. Scalability, dynamic and automated orchestration, storage service

orchestration, deployment, load balancing, and scheduling are some of these difficulties. Sub-

issues connected to these issues include dynamic resource adaptation for containers,

persistent storage across containers, and creating an all-encompassing solution to handle

workloads and resource issues. Decentralized deployments, load balancing, auto-scalability,

resource allocation and scheduling, as well as comprehending container failure-recovery

behaviour, are other difficult issues for practitioners to solve (Söylemez et al., 2022).

10

Security

Given that data is flowing among microservices, the need exists to secure such

communication through encryption techniques, but authentication mechanisms also must be

implemented (Larrucea et al., 2018). However, comparing the applicability of these

mechanisms in a monolithic architecture versus a microservice architecture, the second will of

course have more complexity because of its distributed nature. Furthermore, it is challenging

to integrate and use complex, non-lightweight frameworks comfortably, making the creation

of a complete framework to create security across microservices challenging. Monitoring

network traffic and implementing security rules that have been set up in accordance with

standards is another crucial concern (Söylemez et al., 2022).

Monitoring, Tracing ang Logging (MTL)

These important activities, which have a role in satisfying availability, performance, and

reliability concerns, consist of several challenging points related to identifying strongly

coupled services, the root cause of anomalies and performance problems, and the

heterogeneity of logs. It is essential to recognise these issues and respond quickly as soon as

you can. If not, the system's fault tolerance, availability, and dependability will all suffer. The

MTL process is expected to behave in a way whereby trouble areas are identified, and the

system is then made more available, scalable, dependable, and fault-tolerant by taking

prompt action or changing the architecture as needed (Söylemez et al., 2022).

Decomposition

After opting to adopt MSA, the first difficult decision is determining the suitable scale of the

business capability. If this cannot be done successfully, MSA will not be beneficial and may

result in several issues, most notably with scalability, performance, availability, and reliability

(Söylemez et al., 2022).

2.2 Software Smells

Software smells (or code smells (Fowler, 1999)) are anomalies within the codebases which do

not necessarily impact the performance or correct functionality of an application, however,

they affect a wide range of attributes including reusability, testability, and maintainability. If

these go unchecked the benefits of the selected architecture can be mitigated (Walker et al.,

2020).

Software smells can be categorized based on their granularity, scope and impact: architecture

(Garcia et al., 2009), design (Suryanarayana et al., 2014) and implementation (Fowler, 1999).

The level of granularity refers to the scope and impact of the smell, with architecture-level

smells having the highest scope and impact, and implementation-level smells having the

lowest scope and impact, which means that architecture smells affect a set of components

and require considerable effort to refactor (Sharma et al., 2020).

11

Implementation Smells

Any indication that might potentially have a deeper negative impact on the software process

and the quality and maintainability of software is referred to as an "implementation smell."

(Fowler, 1999). Implementation smells are warning signs that show that there might be

deeper problems with the implementation of a software system. These symptoms might be

caused by a variety of things, including bad design, a lack of testing, or poor resource and code

management. Implementation flaws can hinder the software development process and lower

the software system's quality and maintainability. They frequently appear when developers

give short-term objectives and rapid fixes precedence over long-term stability and

dependability.

It is crucial to follow recognised best practices and apply a methodical approach to software

development to prevent implementation smells, assure the quality, and maintainability of a

software system. This involves following coding standards and rules, doing regular code

reviews, and putting good testing techniques into practice.

One example of an implementation smell is the “Long Method” smell. This occurs, as the

name can tell, when a method is too long and contains too many statements or operations. A

long method can be difficult to understand, maintain, and test, and can also be a sign that the

method is doing too much and violating the Single Responsibility Principle.

To improve this implementation smell, the long method could be broken down into smaller,

more focused methods that each perform a single task. This can make the code easier to read

and understand, as well as make it more modular and easier to maintain.

Design Smells

Design smells are certain structures in the design that indicate a violation of fundamental

design principles and negatively impact design quality (Suryanarayana et al., 2014). These

smells can be caused by:

• Violation of design principles – Design principles guide designers in creating high-

quality software solutions; when these principles are violated in the design, they

manifest as design smells.

• Inappropriate use of design patterns – Design patterns are well-known solutions to

problems in software design but applying them without fully understanding their

consequences can negatively impact design quality. Architects and designers should

use design patterns thoughtfully and carefully consider the specific consequences of

each variant. Design smells and design patterns have a close relationship, as

addressing a design smell can often involve using a specific design pattern, but

misapplying a design pattern can also lead to a design smell.

• Language limitations.

• Procedural thinking in OO – Programmers with a procedural programming background

may misunderstand the object-oriented paradigm and view classes as "doing" things

12

instead of "being" things which can lead to design smells such as imperative class

names, functional decomposition, missing polymorphism with explicit type checks,

and others.

• Viscosity – Developers may resort to hacking and introduce design smells due to the

concept of viscosity, which is the resistance encountered when applying the correct

solution to a problem.

One example of a design smell is the "Shotgun Surgery" smell (Refactoring Guru, n.d.). This

smell occurs when a change in a feature requires modifications to be made in multiple

unrelated parts of the codebase, indicating poor design or code coupling. In other words, a

single logical change requires changes to be made in multiple classes or modules, leading to

code duplication and maintainability issues.

Architecture Smells

An architecture smell is “a commonly (although not always intentionally) used architectural

decision that negatively impacts system quality” which “may be caused by applying a design

solution in an inappropriate context, mixing design fragments that have undesirable emergent

behaviours, or applying design abstractions at the wrong level of granularity” (Garcia et al.,

2009). Architectural smells can have a significant impact on the overall quality of a software

system. They can negatively affect key properties of the software lifecycle such as

performance and reliability, among others. The resolution of architectural smells requires a

trade-off between different quality properties. System architects must carefully evaluate the

situation and determine whether the correction of a particular smell will result in an overall

improvement in the system. The process of addressing architectural smells involves making

changes to the internal structure and behaviours of the system components, while

maintaining the external behaviour of the system unchanged (Garcia et al., 2009).

One example of architecture smells is the “Cyclic Dependency”, also known as “Strong Circular

Dependencies Between Packages” or “Shape detection”. This smell arises when two or more

architecture components depend on each other directly or indirectly, violating the principles

of Health Dependency Structure (the presence of this AS implies that the participating classes

and packages cannot be deployed and maintained separately) and the Modularity (the

presence of this AS implies that there are two pieces of code, that are highly coupled to each

other directly or indirectly) (Azadi et al., 2019).

13

3 Microservice smells research

This chapter outlines the design of the research plan, presents its results, and concludes with

potential threats to its validity.

3.1 Design

3.1.1 Requirements

As discussed in the Problem section (see Section 1.2), microservices have gained immense

popularity as an architectural approach, but they often present challenges during

implementation. These challenges can be categorized as "microservice smells." There is a

pressing need for research that focuses on cataloguing these microservice smells and

developing effective tools for their identification. While literature has addressed various

challenges in the realm of microservice applications, there is a noticeable research gap when

it comes to systematically classifying these challenges as microservice architecture smells.

Nevertheless, there have been instances where catalogues have emerged to classify these

microservice smells.

Within the realm of tools, a selection of detection tools and mechanisms is available. Still, the

scope narrows when it comes to tools that employ static analysis for detection, a subset that

has also been expounded.

The requirements for this research were defined and shown in Table 1.

14

Requirement number Description

1 Expose the problems of microservices development

2 Recognise the most common smells

3 Compare data between literature and industry

4 Contribute to the most recent catalogue found

5 Contribute to MSA-Nose to detect all possible microservice smells

6 Analyse all the data related to microservice smell detection via static
analysis

7 Analyse data published since 2020 for the microservice catalogue
contribution

Table 1 – Microservice smells research requirements.

3.1.2 Final Design

The design of this study embraces the utilization of a systematic mapping study as the chosen

approach for conducting the literature research. The primary aim of employing this method is

to not only enhance the credibility and reliability of the study's outcomes but also to forward

an environment conducive to replication by the reader. It is noteworthy that, particularly

within the domain of software engineering, systematic mapping studies are held in high

regard for their consistency and inherent value (Sampaio, 2015). This stems from their

adeptness in extracting patterns, trends, and knowledge from a diverse array of sources,

ultimately contributing to a comprehensive understanding of the research landscape.

Regarding the industry research to gather data, the chosen method is the utilization of

questionnaires. This deliberate selection is underscored by a myriad of advantages that this

method brings to the forefront. Questionnaires offer an efficient and structured means of

gathering data from a diverse pool of respondents. The standardized format ensures that all

participants are presented with the same set of questions, eliminating potential biases that

could arise from variations in interview or conversation styles. The scalability of surveys is also

important. With the ability to deliver surveys to many participants at the same time, this

approach is especially beneficial for obtaining a diverse viewpoint in a manageable period.

3.2 Data from the research literature

As mentioned earlier in this chapter, the chosen methodology to conduct the literature

research was the systematic mapping study. (Sampaio, 2015) developed a detailed process for

mapping studies based on guidelines from (Kitchenham, Barbara Charters et al., 2007;

Petersen et al., 2008)(Barbara Kitchenham, 2004; Petersen et al., 2008) and others from social

sciences, from MS studies in software engineering and orientations for systematic literature

research.

15

Based on all those, (Sampaio, 2015) created a process consisting of 6 stages that go as follows:

1. Protocol and definition of research questions.

2. Conducting the search for primary studies.

3. Screening.

4. Classification system.

5. Coding: data extraction and aggregation.

6. Analysis and report.

3.2.1 Protocol and definition of research questions

The main purpose of this phase is to develop the protocol that will rigorously guide the

mapping study effort. This will provide as outcomes a protocol able to guide the review and

cover all the stages. (Sampaio, 2015) suggests that these research questions can be framed

according to the PICOC (Population, Intervention, Comparison, Outcomes, Context) model, as

this framework represents the “anatomy” of a well-focused research question. Table 2, Table

3 and Table 4 are presented the research question of this study.

Research Question What are the available microservice smell catalogues?

Population Reports of documents that assemble microservice smells and
antipatterns

Intervention Identify all the catalogues available to understand what is done.

Comparison The number of new smells reported as new catalogues are found.

Outcomes Identification of existing microservice smell catalogues and their
characteristics.

Context Research on microservice smell catalogues.

Study Design Using different sources of information, it is expected that this RQ
identifies most of the existing microservice smell catalogues that were
created.

Table 2 – Research question 1 using the PICOC model (RQ1).

Research Question What problems when developing using the microservice architecture
style can be found in recent studies?

Population Surveys, books about microservices and reports about issues found
while developing using this architectural style

Intervention Identify problems reported.

Comparison Check if the issues reported are part of the microservice smell
catalogues from RQ1.

Outcomes Identification of issues that can be recognised using microservices.

Context Research on microservice development issues.

Study Design Some patterns should be followed when implementing microservices.
This RQ is intended to explore the effects of not following microservice
patterns.

Table 3 – Research question 2 using the PICOC model (RQ2).

16

Research Question What are the available microservice smell detection tools?

Population Papers about tools developed to detect microservice smells and/or
antipatterns

Intervention Identify tools that detect smells statically.

Comparison Smells detected per tool.

Outcomes Identification of tools created to detect microservice smells.

Context Research on microservice smell detection tools.

Study Design In this RQ the goal is to find the available tools to explore them and
check what is the coverage of this area to find where to continue the
research.

Table 4 – Research question 3 using the PICOC model (RQ3).

It is also in this phase that the inclusion/exclusion (I/E) criteria are developed, simultaneously

with the PICOCS model. The purpose of this criteria is to simplify the screening process. Table

5 shows the defined criteria.

Criterion Description

I1 Papers describing a microservice smell catalogue, independently from the
year of publication.

I2 Technical reports describing developments in microservice and what
problems were found.

I3 Papers describing microservice smells detection tools that use static analysis.

E1 Studies published before 2021 (for RQ2).

E2 Studies not written in English.

E3 Studies not available as full text.

E4 Studies that use only dynamic analysis to detect smells (RQ3).

Table 5 – Microservice smells systematic mapping study I/E criteria.

3.2.2 Conducting the search for primary studies

This phase of the Systematic Mapping Study (Sampaio, 2015) serves the purpose of guiding

the process to find primary studies that hold potential relevance for the review. The outcomes

of this endeavour encompass all the papers selected through searches, accompanied by

comprehensive recorded information about each search. This recorded information includes

details such as the library source, search date, search restrictions, search queries, records

retrieved, the count of records, and any other relevant information necessary for the search.

It is in this phase that search strings are refined and, if not defined, they must be (Sampaio,

2015). For that reason, the search string goes as follows:

(detect ∗ OR " ") AND microser ∗ AND (problems OR antipatterns OR smells)

After searching on the different digital libraries (e.g.: IEEE Xplore and ACM Digital Library), 95

documents were identified.

17

3.2.3 Screening

From the documents identified, the I/E criteria shown in Table 5 were applied. In Table 6 we

can see the documents found 13 documents that were found to help answer the research

questions.

Document Title Authors Publication
Year

On the Definition of Microservice Bad
Smells

Davide Taibi
Valentina Lenarduzzi

2018

Microservices Anti-Patterns: A
Taxonomy

Davide Taibi
Valentina Lenarduzzi
Claus Pahl

2019

On the Study of Microservices
Antipatterns: a Catalog Proposal

Rafik Tighilt
Manel Abdellatif
Naouel Moha
Hafedh Mili
Ghizlane El Boussaidi
Jean Privat
Yann-Gaël Guéhéneuc

2020

How Can We Cope with the Impact of
Microservice Architecture Smells?

Xiang Ding
Cheng Zhang

2022

On the Nature of Issues in Five Open
Source Microservices Systems: An
Empirical Study

Muhammad Waseem
Peng Liang
Mojtaba Shahin
Aakash Ahmad
Ali Rezaei Nasab

2021

Smells and refactorings for
microservices security: A multivocal
literature review

Francisco Ponce
Jacopo Soldani
Hernán Astudillo
Antonio Brogi

2022

Revisiting the practices and pains of
microservice architecture in reality: An
industrial inquiry

Xin Zhou
Shanshan Li
Lingli Cao
He Zhang
Zijia Jia
Chenxing Zhong
Zhihao Shan
Muhammad Ali Babar

2023

Challenges and Solution Directions of
Microservice Architectures: A
Systematic Literature Review

Mehmet Söylemez
Bedir Tekinerdogan
Ayça Kolukısa Tarhan

2022

Impacts, causes, and solutions of
architectural smells in microservices:
An industrial investigation

Chenxing Zhong
Huang Huang
He Zhang
Shanshan Li

2022

18

Document Title Authors Publication
Year

On the Way to Microservices: Exploring
Problems and Solutions from Online
Q&A Community

Menghan Wu
Yang Zhangy
Jiakun Liu
Shangwen Wangy
Zhang Zhangy
Xin Xiax
Xinjun Mao

2022

Automated Code-Smell Detection in
Microservices Through Static Analysis:
A Case Study

Andrew Walker
Dipta Das
Tomas Cerny

2020

The 𝝁TOSCA toolchain: Mining,
analysing, and refactoring microservice-
based architectures

Jacopo Soldani
Giuseppe Muntoni
Davide Neri
Antonio Brogi

2021

On the maintenance support for
microservice-based systems through
the specification and the detection of
microservice antipattern

Rafik Tighilt
Manel Abdellatif
Imen Trabelsi
Loïc Madern
Naouel Moha
Yann-Gaël Guéhéneuc

2023

Table 6 – Papers collected after the screening phase.

3.2.4 Classification System

(Sampaio, 2015) shows that the purpose of this phase is to define the classification system to

be used to classify papers, which will retrieve a way to organize the papers in order to answer

the research questions. In Table 7 is shown how the documents are going to be classified.

Group Number Description

1 Catalogues/Lists of microservice architecture smells

2 Reports of problems faced while developing, industry surveys, solutions
and approaches and microservice patterns

3 Detection tools for microservice smells/antipatterns.

Table 7 – Classification system.

3.2.5 Coding: data extraction and aggregation

The goal of this stage is to extract and record data from the relevant primary studies, and map

these studies to the categories (of the system) developed previously the outcome of this stage

is the map, that is, the relevant papers organized (classified) according to the classification

system (Sampaio, 2015).

19

From the analysis, the catalogues of microservice smells (group 1) are:

• “On the Definition of Microservice Bad Smells” (Taibi & Lenarduzzi, 2018)

• “Microservices Anti-Patterns: A Taxonomy” (Taibi et al., 2019)

• “On the Study of Microservices Antipatterns: a Catalog Proposal” (Tighilt et al., 2020)

• “How Can We Cope with the Impact of Microservice Architecture Smells?” (Ding &

Zhang, 2022)

The papers that belong to group 2 of the classification system will be presented in a different,

having a small description of what is the paper about.

Starting with (Waseem et al., 2021) the authors conducted an empirical study on 1,345 issue

discussions extracted from five open source microservices systems hosted on GitHub. Their

analysis led to the first-of-its-kind taxonomy of the types of issues in open-source

microservices systems, revealing that problems originating from Technical debt (321, 23.86%),

Build (145, 10.78%), Security (137, 10.18%), and Service execution and communication (119,

8.84%) are prominent (Waseem et al., 2021).

(Ponce et al., 2022) conducted a multivocal review of the existing white and grey literature on

the state of the art and practice in securing microservices. They systematically analysed 58

primary studies, selected among those published from 2011 until the end of 2020. The

authors identified ten bad smells for securing microservices, which they organized into a

taxonomy, associating each smell with the security properties it may violate and the

refactorings enabling it mitigate its effects (Ponce et al., 2022).

(Zhou et al., 2023) carried out a series of industrial interviews with practitioners from 20

software companies. The collected data was then codified using qualitative methods which

resulted in eight pairs of common practices and pains of microservices in industry after

synthesizing the rich and detailed data collected and five aspects that require careful

decisions were extracted to help practitioners balance the possible benefits and pains of MSA.

Furthermore, five research directions that need further exploration were identified based on

the pains associated with MSA.

(Söylemez et al., 2022) had as its main goal identifying the state of the art of microservices

and describing the challenges in applying it together with the identified solution directions. A

systematic literature review was performed using the published literature since the

introduction of microservices. 3842 papers were discovered using a well-planned review

protocol, and 85 of them were selected as primary studies and analysed regarding research

questions. Nine basic categories of challenges were identified and detailed into 40 sub-

categories, for which potential solution directions were explored.

(Zhong et al., 2022) had as a goal to bridge the gap by investigating the possible impacts,

causes, and solutions of architectural smells in microservices-based systems. An industrial

case study was conducted to gather repository data and practitioners' insights regarding six

20

typical architectural smells in a real microservice-based telecommunication system.

Quantitative data was analysed using statistical analysis, while qualitative data was analysed

using coding techniques. The results revealed that architectural smells affect various aspects

of the microservice architecture-based system, including modularity, modifiability,

analysability, and testability, leading to increased cross-team communication and the

presence of change- and fault-prone microservices. To explore the causes of AS, the authors

proposed a five-aspect conceptual classification, including technology, project, organization,

business, and professional aspects, with a particular emphasis on the business and

organizational factors.

(Wu et al., 2022) analysed 17,522 Stack Overflow posts related to microservices in a

comprehensive study, creating the first taxonomy of microservice-related topics within the

software development process. Their analysis highlighted a shortage of experts in the

microservice domain, particularly in microservice design. They manually reviewed 6,013

accepted answers, identifying 47 general solution strategies for microservice-related issues,

including 22 novel approaches.

Regarding the detection tools for microservice smells (group 3) the papers that were gathered

during the analysis are:

• Automated Code-Smell Detection in Microservices Through Static Analysis: A Case

Study (Walker et al., 2020)

• The 𝝁TOSCA toolchain: Mining, analysing, and refactoring microservice-based

architectures (Soldani et al., 2021)

• On the maintenance support for microservice-based systems through the

specification and the detection of microservice antipattern (Tighilt et al., 2023)

3.2.6 Analysis and Report

In this section, the focus shifts to analysing the constructed map and generating a

comprehensive report covering all study phases. The report aims to deliver informative

insights, often using statistics presented through tables and charts to illustrate key patterns

and correlations. The section also ensures that all research questions are thoroughly

answered, contributing to the study's overall depth and quality (Sampaio, 2015).

3.2.6.1 RQ1 - What are the available microservice smell catalogues?

As indicated in Table 2, the objective of this research question is to discern the currently

available microservice smell catalogues and their distinctive attributes. This information

served as the foundation for conducting a comprehensive state-of-the-art analysis, which is

elaborated upon in Section 4.1 of this document.

21

3.2.6.2 RQ2 - What problems when developing using the microservice architecture style can

be found in recent studies?

This research question has as its objective the identification of issues that can be recognised

using microservices, as can be seen in Table 3. To fulfil the aim of this research the selected

documents from the screening phase will be analysed and it is intended to show what are the

problems described in each.

On the Nature of Issues in Five Open Source Microservices Systems: An Empirical Study

(Waseem et al., 2021)

In this study, (Waseem et al., 2021) used five open-source microservices systems hosted on

GitHub to gather a total of 1345 issues. This resulted in a taxonomy of 17 categories, 46

subcategories and 138 types, which means that there are different issues on microservice

systems, being the most discussed ones the ones related to Technical Debt (321 out of 1345,

around 23.86%), Build (145 out of 1345, around 10.78%), Security (132 out of 1345, around

10.18%) and Service execution and communication (119 out of 1345, 8.84%) (Waseem et al.,

2021). There are categories such as Exception Handling (8.77%), Compilation (6.91%),

Documentation (4.53%), Testing (4.23%), Typecasting (3.71%), Configuration (2.75%), Updates

and Installation (2.75%), Storage (2.6%), Performance (0.65%) and Networking (0.65%).

However, the focus will be only on the top four, like what the authors do with their study.

Of these Technical Debt issues, the majority are linked to code debt (270 out of 321),

underscoring the significance of code quality in microservices systems. In contrast, Service

Design Debt, which pertains to the neglect of established best practices in designing open-

source microservices systems, constitutes a smaller portion of the Technical Debt issues (51

out of 321). The authors discerned multiple issue types within the realm of Service Design

Debt, which can be further categorized into aspects like business logic, service dependencies,

missing functionality, and issues related to design patterns implementation and orphan

responses (Waseem et al., 2021).

In the context of Build issues (which influences the process in which source code is converted

into executable files for staging and production environments), the authors categorized them

into three distinct groups: Build Errors (comprising 85 out of 145 issues), Broken or Missing

Artifacts (consisting of 51 out of 145 issues), and Others (which encompassed 9 out of 145

issues). These issues predominantly revolve around challenges such as Build Errors, Docker

Build Failures, issues associated with Broken or Missing Artifacts, and concerns regarding

Obsolete APIs (Waseem et al., 2021).

In terms of Security issues (137 issues found), the authors created 5 different subcategories:

Authentication and Authorization (41), Access Control (46), Encryption and Decryption (6),

Secure Certificate and Connection (27) and Others (17). Issues such as Shared Authentication,

API Key Security, Data Encryption, and HTTP Cookie can be found under this category

(Waseem et al., 2021).

22

Finally, there are the Service Execution and Communication issues. In distributed

environments, communication challenges can be misleading as services traverse multiple

servers and hosts. These services engage in interactions utilizing various protocols, including

HTTP, AMQP, and TCP, depending on the specific characteristics of the services. These are

divided into two subcategories, Service Communication (102 out of 119) and Service

Execution (17 out of 119).

Smells and refactorings for microservices security: A multivocal literature review (Ponce et

al., 2022)

In (Ponce et al., 2022) multivocal literature review, 58 primary studies were analysed, among

those published from 2011 until the end of 2020. This review resulted in the gathering of ten

bad smells for securing microservices, which were organised in a taxonomy, associating each

smell with the security properties it may violate and the refactorings enabling it to mitigate its

effects (Ponce et al., 2022).

The identified smells are as shown in Figure 3:

Figure 3 – Taxonomy of microservices security (a) properties, (b) smells, and (c) refactorings.

For the sake of readability, the association between security properties and smells is

represented by aligning the corresponding boxes, whilst that between smells and refactorings

is represented with arrows (Ponce et al., 2022).

Revisiting the practices and pains of microservice architecture in reality: An industrial

inquiry (Zhou et al., 2023)

(Zhou et al., 2023) carried out a series of industrial interviews with practitioners from 20

software companies and the collected data was then codified using qualitative methods. From

the industry data analysis, eight sets of typical practices and challenges in microservices were

identified. These findings highlight the importance of making informed decisions in five key

23

areas to strike a balance between the potential advantages and drawbacks of Microservices

Architecture. Five research avenues were pinpointed, driven by the challenges associated with

MSA, warranting further investigation and exploration.

The first set of practices and challenges pertains to componentization via services. The

practice involves achieving independence through separation, while the challenge is managing

chaotic independence. The next set focuses on organizing around business capabilities, where

the practice involves structured organizational transformation, but the challenge lies in

dealing with ad-hoc changes (Zhou et al., 2023).

There is the pair concerning smart endpoints and dumb pipes. Here, the practice entails

choosing the right communication protocol, while the challenge arises from the complexity of

API management. The concept of decentralized governance forms the basis of the next pair,

with the practice emphasizing support for technology diversity, but the challenge emerges

from excessive diversity (Zhou et al., 2023).

In the realm of decentralized data management, the practice centres on compromising with

database decomposition, while the challenge manifests as data inconsistency. Infrastructure

automation constitutes the following pair, where Continuous Integration/Continuous

Deployment (CI/CD) is the recommended practice, yet the challenge often relates to

inadequate automation (Zhou et al., 2023).

The pair tied to design for failure introduces microservices governance as the practice, while

the challenge arises from unsatisfactory monitoring and logging. Lastly, evolutionary design

concludes the list, with the recommended practice being stepwise evolution and the

challenge relates to subjective decomposition (Zhou et al., 2023).

Challenges and Solution Directions of Microservice Architectures: A Systematic Literature

Review (Söylemez et al., 2022)

In their study, (Söylemez et al., 2022) performed a systematic literature review using the

published literature since the introduction of microservices architecture in 2014. 3842 papers

were discovered and 85 of them were selected as primary studies and analysed regarding

research questions. Nine fundamental challenge categories were created (Service Discovery,

Data Management and Consistency, Testing, Performance Prediction, Measurement and

Optimization, Communication and Integration, Service Orchestration, Security, Monitoring,

Tracing and Logging, and Decomposition), further breaking them down into 40 sub-categories,

and delved into potential solutions. The authors also affirm that neglecting these identified

challenges could hinder the realization of its anticipated benefits (Söylemez et al., 2022).

24

In their study, (Söylemez et al., 2022) identified a range of challenges across various aspects of

microservices:

Service Discovery Challenges: These encompass issues such as Discovery Latency and

Overhead, Design Choices and Decisions, Handling Service Discovery in Megascale Distributed

Systems, Handling Service Discovery for Stateful Microservices, and Managing Unavailable

Services.

Data Management and Consistency Challenges: This category includes Distributed

Transaction Management, Data Sharing and Synchronization, and Backing-up Systems.

Testing Challenges: Challenges in this area involve Resilience Testing, Acceptance Testing,

Test Automation, Defining a Comprehensive Testing Framework, Regression Testing, and

Performance Testing.

Communication and Integration Challenges: (Söylemez et al., 2022) identified challenges

related to Communication Infrastructure and Communication and Integration Protocols.

Performance Prediction, Measurement, and Optimization Challenges: These encompass

Performance Prediction, Performance Measurement, and Performance Optimization.

Service Orchestration Challenges: This category includes challenges like Flow Control,

Scalability, Storage Service Orchestration, Dynamic and Automated Orchestration,

Understanding Failure-Repair Behaviour of Containers, Load Balancing, Resource Allocation

and Scheduling, Communication and Collaboration, and Deployment. Specific challenges

within Deployment encompass Heterogeneity of Functional and Non-Functional Requirements,

Necessity of Deployment across Data Centre, Large Pulling Traffic and Long Response Times,

and Deployment of Stateful Microservices and Service Recovery.

Monitoring, Tracing, and Logging Challenges: Challenges here involve managing a Large

Number of Microservices, Distributed Tracing, Heterogeneity of Logs, Dependency Analysis,

Architecture Extraction, and Root Cause Analysis for Anomalies and Performance Issues.

Decomposition Challenge: The sole challenge in this category is Identifying Microservices.

Security Challenges: Söylemez et al. (2022) identified challenges in Access Control, Providing a

Comprehensive Framework, and Monitoring Network Traffic in the realm of microservices

security.

Within each of these categories, (Söylemez et al., 2022) provided comprehensive descriptions

of the challenges encountered, along with their corresponding solutions. This detailed analysis

offers valuable insights into addressing the multifaceted challenges posed by microservices

architecture.

25

Impacts, causes, and solutions of architectural smells in microservices: An industrial

investigation (Zhong et al., 2022)

In their study, (Zhong et al., 2022) described five causes of architectural smells in

microservices:

Cause 1: Business Aspects

Among the practitioners in the MSA landscape, business aspects take centre stage as one of

the primary drivers of architectural smells. This cause is intricately linked to the unique

characteristics of the domain in which the microservices are applied and the development

costs associated with microservice architecture. The inherent challenges posed by specific

industries or business domains, coupled with the financial considerations involved in adopting

microservice architecture, can catalyse the emergence of architecture smells (Zhong et al.,

2022).

Cause 2: Organizational Structure and Culture

Improper management of responsibilities within an organization and a reluctance to share

code can create a fertile ground for the cultivation of architectural smells. This cause delves

into the organizational aspects of microservice architecture implementation. The way

responsibilities are structured and the prevailing culture within the organization play pivotal

roles in the formation of architectural smells.

Cause 3: Technical Choices

Technically, the choices made in terms of inter-service communication and the trade-offs

among various quality attributes, such as performance, can significantly contribute to the

occurrence of architectural smells. The intricacies of technical decisions within microservice

architecture can inadvertently lead to architectural issues.

Cause 4: Project Management

Effective project management is critical in MSA-based systems. Causes within this category

encompass aspects related to the development process, such as the pursuit of development

speed, and the delivery process, including deployment, maintenance, and deliverables. Flaws

in project management can introduce architectural smells at various stages of the

microservice architecture lifecycle.

Cause 5: Stakeholder Proficiency

The proficiency and experience of stakeholders involved in designing microservices systems

are essential factors in preventing architectural smells. Insufficient professionalism and

expertise, particularly in the domain of microservices design, can lead to the introduction of

architectural smells because of misinformed decisions and design choices.

26

Furthermore, (Zhong et al., 2022) present solutions for architectural smells, adapting current

microservice-oriented decomposition approaches with additional considerations regarding

addressing architectural smells in microservices.

On the Way to Microservices: Exploring Problems and Solutions from Online Q&A

Community (Wu et al., 2022)

(Wu et al., 2022) have developed a comprehensive taxonomy encompassing discussions

related to microservices. This taxonomy comprises four distinct phases, delving into ten

overarching categories, and further dissecting into sixteen specific topics. This structured

framework provides a valuable roadmap for understanding and exploring the multifaceted

landscape of microservices, offering insights into their various facets and intricacies.

As said previously, their taxonomy encompasses four distinct phases, each covering multiple

categories and topics:

In the Architecture Design Phase (12.24% of the issues), the primary category is Microservice

Design, which comprises one topic focusing on Design Strategy.

Moving to the Construction Phase (29.25% of the issues), it branches into the following

categories:

• Microservice Communication, which includes topics on Inner-communication and

Web Interaction.

• Failure Tolerance, with a specific focus on Exception Handling.

• Microservice Data Management, centring around Data Management.

In the Delivery Phase (25.82% of the issues), the taxonomy covers:

• Microservice Testing, with an emphasis on Testing when Deployment.

• Project Building, addressing Project Building itself.

• Project Deployment, encompassing topics such as Containers, Web Application

Deployment, Deployment Pattern, and Deployment Platforms.

Lastly, in the Governance Phase (32.96% of the issues), the taxonomy branches into the

following categories:

• Microservice Monitoring, which explores topics like Observability/Logging.

• Service Management, incorporating topics including Spring Cloud Components,

Resource Management, and API Governance.

• Microservice Security, encompassing topics related to Authorization and

Authentication.

(Wu et al., 2022) not only offer an elucidation of these phases alongside their associated

categories and topics but also enrich the study by incorporating solutions to specific

microservices-related problems.

27

3.2.6.3 RQ3 - What are the available microservice smell detection tools?

Much like the response to RQ1, the analysis of the documents selected during the screening

phase and RQ3 is also included in the state-of-the-art section (Section 4.2) of this document.

This comprehensive examination provides insights into the research landscape surrounding

RQ3.

3.3 Data from Industry

A questionnaire was distributed to several software industry professionals who have

experience with microservice architecture to gather data from the industry. This

questionnaire was shared using different communication channels such as LinkedIn (private

messages and with posts) and it was also spread in different companies (like Inditex) by using

different proprietary business communication platforms like Microsoft Teams and Slack. A

total of thirty-one answers were gathered and it can be seen in Appendix C (Survey).

3.3.1 Introduction – Demographic Questions

The initial section of the questionnaire focused on gathering information about the

respondent's software engineering background. In a survey, the goal of inquiring about

someone's experience with software engineering is to comprehend the context and viewpoint

from which the respondent is providing feedback. This will make it more probable that the

survey findings are insightful and that any recommendations or insights are founded on a

thorough knowledge of the target population, as the people who don’t have enough

experience will not be able to answer the remaining questionnaire.

As can be analysed in Figure 4 most of the participants work in/have more experience in the

area of software development (around 80.6%), with four participants (around 12.9%) in the

area of software architecture and two participants (around 6.4%) in the area of software

management.

Figure 4 – Questionnaire: participant’s area of software engineering.

28

The questionnaire was distributed and shared via LinkedIn, resulting in a diverse pool of

respondents from various companies. Among the companies represented in the survey, Kodly

had the highest number of respondents, followed by Inditex, as shown in Figure 5. Given that

the majority of responses were submitted by consultancies, the survey results may provide

insights from a variety of contexts, as these consultancies often work with multiple companies

and industries.

Figure 5 – Questionnaire: participant’s companies.

Figure 6 displays the distribution of participants' years of experience in software engineering.

As shown, the majority of participants (approximately 64.5%) reported having more than 5

years of experience in the field, while 8 participants (around 25.8%) had 3 to 5 years of

experience, and 3 had 1 to 2 years of experience (around 9.7%). Although participants were

given the option to indicate experience levels below 1 year, no such responses were received.

It is worth noting that any participant who indicated less than 1 year of experience would

have been unable to complete the remainder of the questionnaire.

29

Figure 6 – Questionnaire: participant’s years of experience.

To conclude the demographic questions, participants were asked to indicate their experience

specifically with microservice architecture. As Figure 7 illustrates, this question revealed a

range of experience levels among respondents. The majority of answers came from

participants with significant experience in microservices, with the largest group comprising 10

participants who reported 3 to 5 years of experience. Close behind were 9 participants with

more than 5 years of experience. The remaining participants reported having 1 to 2 years of

experience (7 participants) or less than a year of experience (5 participants)

Figure 7 – Questionnaire: participant’s experience with microservices.

30

3.3.2 Microservice Smells Catalogue Analysis

In this crucial section, participants were actively engaged in evaluating the effect of

microservice smells as outlined in the catalogue provided by (Taibi et al., 2019). To ensure a

comprehensive understanding, each participant was presented with a concise description of a

specific microservice smell. They were then asked to evaluate and assess the importance of

that smell in its potential impact on a microservice-based system.

By leveraging the collective expertise of these participants, the aim was to capture diverse

insights and perspectives on the significance of each microservice smell. Their evaluations will

contribute to refining the understanding of the potential risks and challenges associated with

the smells that this catalogue provides in a microservice architecture.

Analysing the results based on participants' areas of software expertise, as depicted in Figure

8, reveals interesting discrepancies that can be attributed to their specific roles and

responsibilities within the software domain. For instance, participants working in the area of

Software Management (involving responsibilities such as overseeing project execution and

coordinating teams) tend to place higher importance on microservice smells such as "Lack of

Monitoring" or "No DevOps tools" than participants that work in the area of Software

Development or Software Architecture.

It is important to note that the representation of Software Architecture and Software

Management participants in this questionnaire was relatively small, with a total of 6 out of 31

participants. This limited sample size could be a contributing factor to the potentially inflated

values observed in the evaluations.

Figure 8 – Results of the participant’s answers depending on their area of software.

Figure 9 illustrates the importance of microservice smells based on participants' years of

experience in any software engineering area. Notably, participants with 3 to 5 years of

31

experience and those with more than 5 years of experience demonstrate a high degree of

agreement in their evaluations. While there are a few instances where their perspectives

diverge, overall, a pattern emerges as the opinions of these two groups align.

In contrast, participants with 1 to 2 years of experience present a distinct pattern and offer

differing opinions compared to their more experienced counterparts. This disparity indicates

that as developers gain more experience, their perspectives on the importance of

microservice smells tend to converge.

Figure 9 – Results of the participant’s answers depending on their experience in any software

engineering area.

The results from the survey’s most varied group are shown in Figure 10. Due to the increased

number of diverse participants in terms of experience with microservice architecture, it was

expected that it would be difficult to draw unambiguous conclusions from the data. However,

despite these challenges, some noteworthy patterns emerge.

Notably, participants with less experience in the field of microservices demonstrate consistent

opinions across different years of experience. This finding suggests that their perspectives on

certain microservice smells, such as "Inappropriate Service Intimacy" and "No API Gateway,"

remain relatively stable over time.

This observation raises interesting questions about the underlying factors influencing these

participants' perceptions. It is possible that early experiences in microservices strongly shape

their understanding and evaluation of specific smells, leading to consistent opinions

regardless of increasing years of experience. By exploring these consistent patterns among

less experienced participants, valuable insights into the long-term implications and potential

challenges associated with specific microservice smells would be provided.

32

Figure 10 – Results of the participant’s answers depending on their experience with

microservice architecture specifically.

To conclude this section on the analysis of the catalogue, Figure 11 presents a graph

displaying the average results independent of participants' experience levels and areas of

expertise. The graph reveals that the highest rating given by participants is the No DevOps

tools with a mean of 8.5 and the lowest being the ESB Usage with a mean value of 5.6.

Figure 11 – Results of the participant’s answers independently from any variable shown

before.

The respondents' choice of "No DevOps Tools" as the top microservice smell likely reflects

their awareness of how essential DevOps tools are for successful microservice architectures.

33

The absence of these tools can significantly impact operational efficiency, scalability, security,

and overall system reliability, making it a critical concern for those evaluating microservice

smells.

3.3.3 Open-answer questions

After the questionnaire, participants were allowed to contribute any additional smells they

deemed relevant to the catalogue. The goal of this open-answer question was to provide

participants with an opportunity to contribute their insights and perspectives by suggesting

any additional microservice smells that they believed were important but not included in the

existing catalogue. By incorporating participants' suggestions, the goal was to ensure a more

comprehensive and inclusive representation of microservice smells in the final catalogue,

thereby enhancing its usefulness and relevance in real-world scenarios.

Out of the 31 participants, 7 responses were received. However, it is important to note that 2

of these responses were considered invalid, resulting in a final count of 5 responses on smells

suggested by participants.

One of the participants talked about “Data distortion and duplication across persistencies”

which refers to a common issue encountered in microservice architectures where data

becomes distorted or duplicated when it is stored across multiple persistency layers or

databases.

The respondent specifically notes that this issue can be particularly problematic when dealing

with personally identifiable information (PII), which is subject to regulations like the General

Data Protection Regulation (GDPR). This suggests that the mishandling of PII data, such as

inaccurate or inconsistent storage across persistencies, can have severe consequences in

terms of legal compliance and data privacy.

Regarding data management issues on microservices, there were another three respondents

who raised a problem regarding boundaries on business logic. These responses address the

importance of clearly defining boundaries and bounded contexts within the microservice

architecture. Participants suggest that when there is failure to establish clear boundaries and

ownership of each team's bounded context can result in ambiguity, overlapping

responsibilities, and potential conflicts.

By determining whether a microservice is business logic bound or database query bound,

developers gain valuable insights into the specific areas where performance improvements

are needed. Addressing these performance-related smells is crucial for optimizing the overall

efficiency and scalability of the microservice architecture.

Another participant mentioned that the deployment of a settings service that contains all the

microservice settings would be important to avoid bigger deployment times (since the

configuration settings are tightly coupled with the microservice, any modification to a single

setting necessitates deploying the entire microservice again) and unnecessary redeployments.

34

It is also suggested that to address this smell and improve configuration management, the

respondent suggests using a Helm1 repository or a similar tool which is a package manager for

Kubernetes that allows the separation of configuration settings from the microservice

deployment.

3.4 Threats to validity

There are, naturally, threats to validity and this section is intended to identify and discuss

potential limitations and threats that may impact the validity of this research.

Starting with the research done using systematic mapping, the inclusion and exclusion criteria

used to select studies may inadvertently exclude relevant research or include irrelevant

studies, leading to a biased sample and the search strategy which if it is not comprehensive,

may miss important studies. There can also be errors or subjectivity in data extraction and

categorization of studies that can introduce bias if different researchers interpret and classify

studies differently.

Regarding the survey, as it was done online there are a few different threats to its validity. As

this was a long survey, respondents may have become fatigued and provided less thoughtful

or consistent responses. Another threat is, as the survey response rate is low, and those who

responded differ systematically from non-respondents in ways that can affect the study's

outcomes.

1 https://helm.sh/

35

4 State of the Art

To effectively tackle the problem at hand, it is imperative to have a clear understanding of the

current knowledge and state of the field. This involves identifying what aspects can be

improved or what has yet to be addressed. To achieve these objectives, this chapter is

structured into two sections that delve into these topics in depth.

4.1 Microservice architectural smells

The objective of this section is to examine the literature and identify any existing compilations

of microservice architecture smells for research purposes.

To conduct a thorough investigation of microservice architecture smells catalogues, it is

necessary to begin by examining the topic from a broad perspective and then gradually move

towards the specifics. Generally, the subject of architectural smells has not been extensively

researched, which is why there are only a limited number of catalogues available for

exploration. In this regard (Azadi et al., 2019) have referenced some of the work that has been

done in this area as well as proposed a catalogue of architectural smells detected by tools.

This catalogue includes a total of 12 architectural smells, each of which is characterized by a

description, the violated principles, and the tools that can detect the particular architectural

smell. This catalogue also provides a comparison of the detection capabilities of the different

tools that can detect each architectural smell.

36

4.1.1 Catalogues

“On the Definition of Microservice Bad Smells” - (Taibi & Lenarduzzi, 2018)

As we delve further into the topic of microservice architectural smells, it is worth noting that

one of the earliest works in this area was conducted by (Taibi & Lenarduzzi, 2018). Their study

highlighted the fact that no empirical research had been conducted on bad practices,

antipatterns, or smells specifically related to microservices. The authors began their

investigation by analysing a book titled "Microservices AntiPatterns and Pitfalls" (Richards,

2016) which identified three main pitfalls: Timeout, I Was Taught to Share, and Static Contract

Pitfall. Subsequently, the authors reviewed other relevant works and compiled a table of

additional pitfalls, which can be found in Appendix B of this document.

After reuniting the pitfalls mentioned, the authors conducted a survey among experienced

developers, who were interviewed first to know if they were qualified to have a useful answer

to the survey. The survey's objective was to determine which bad practices had the most

effects on system development and what remedies were being used to correct them. To do

this, it was necessary to ask the respondents to rate each detrimental practice on a scale of 0

to 10, where 0 denoted that the activity was not harmful and 10 denoted that it was

exceedingly damaging. The rankings were used to identify which detrimental behaviours were

more prevalent and to direct the creation of remedial measures. It was highlighted that the

individual values themselves lacked importance and that only the rankings of the harmful

behaviours did.

A total of 72 interviews were conducted with experienced developers, software architects,

project managers, and agile coaches from 61 different organizations, no inexperienced

participants were included in the study and all interviewees had at least five years of

experience in software development. The participants belonged to different industries,

including banks, companies that produce and sell their software as a service, consultancy

companies specializing in migration to microservices, public administrations, and

telecommunications companies. The practitioners reported a total of 265 different bad

practices with their corresponding solutions, which were grouped based on open and

selective coding, resulting in 11 microservice smells. The resulting smells and their

descriptions are reported in Table 8. The full survey also includes the possible solutions for the

smells, the adoption timeline for microservices by the organizations and the number of bad

practices reported by each participant on average.

37

Microservice Smell Description

API Versioning APIs are not semantically versioned. Also proposed as Static Contract
Pitfall.

Cyclic Dependency A cyclic chain of calls between
microservices exists.

ESB Usage The microservices communicate via an enterprise service bus (ESB).
An ESB is used for connecting microservices

Hard-Coded Endpoints Hardcoded IP addresses and ports of the services between
connected microservices
exist. Also proposed as Hardcoded IPs and Ports.

Inappropriate Service
Intimacy

The microservice keeps on connecting to private data from other
services instead of dealing with its own data.

Microservice Greedy Teams tend to create new microservices for each feature, even when
they are not needed. Common examples are microservices created
to serve only one or two static HTML pages.

Not Having an API
Gateway

Microservices communicate directly with each other. In the worst
case, the service consumers also communicate directly with each
microservice, increasing the complexity of the system and decreasing
its ease of maintenance.

Shared Libraries Shared libraries between different microservices are used.

Shared Persistence Different microservices access the same relational database. In the
worst case, different services access the same entities of the same
relational database. Also proposed as Data Ownership.

Too Many Standards Different development languages, protocols, frameworks, etc. are
used. Also proposed as the Lust and Gluttony bad practices.

Wrong Cuts Microservices are split based on technical layers (presentation,
business, and data layers) instead of business capabilities.

Table 8 – Microservice smells catalogue proposed by (Taibi & Lenarduzzi, 2018).

“Microservices Anti-Patterns: A Taxonomy” - (Taibi et al., 2019)

The authors (Taibi et al., 2019) replicated and extended their work done on (Taibi &

Lenarduzzi, 2018) using a mixed research method that combined an industrial survey,

literature review, and interviews. They interviewed 27 experienced developers from 27

different organizations, who completed the same survey as in their previous study and were

also asked if they had experienced any of the microservice smells presented in Table 8.

Upon concluding the study, a total of 20 microservice smells were collected, which is 9 more

than what was gathered in the authors' previous study. This time, the microservice smells

were categorized by the authors into two main groups: technical (including internal,

communication, and other types) and organizational (including team-oriented and technology

and tool-oriented types).

Technical microservice smells, as was said previously, can be categorized into three groups:

internal, communication and others. Internal microservice smells impact the individual

microservice and are listed in Table 9. Communication microservice smells are anti-patterns

38

that relate to the communication between microservices and are listed in Table 10. In

addition, there are other types of technical microservice smells that do not fit into either the

internal or communication categories and are listed in Table 11.

It should be noted that in each table, the microservice smells that are underlined indicate that

they were newly added in the present study. While the study presents a way to detect each

smell, as well as the issues it may cause and the solutions proposed by the interviewees, only

the descriptions of the smells are provided.

Microservice Smell Description

API Versioning APIs are not semantically versioned. Also proposed as “Static Contract
Pitfall”.

Hardcoded
Endpoints

Hardcoded IP addresses and ports of the services between connected
microservices.
Also proposed as “Hardcoded IPs and Ports”.

Inappropriate
Service Intimacy

The microservice keeps on connecting to private data from other
services instead of dealing with its own data.

Megaservice A service that does a lot of things. A monolith.

Local Logging Logs are stored locally in each microservice, instead of using a
distributed logging system.

Table 9 – Internal microservice smells (Taibi et al., 2019).

Microservice Smell Description

Cyclic Dependency A cyclic chain of calls between microservice

ESB Usage The microservices communicate via an Enterprise Service Bus (ESB).
Usage of ESB for connecting microservices

No API Gateway Microservices communicate directly with each other. In the worst
case, the service consumers also communicate directly with each
microservice, increasing the complexity of the system and decreasing
its ease of maintenance.

Shared Libraries Usage of shared libraries between different microservices. Also
named “I was taught to share”.

Table 10 – Communication microservice smells (Taibi et al., 2019).

Microservice Smell Description

Lack of Monitoring Lack of usage of monitoring systems, including systems to monitor if a
service is alive or if it responds correctly.

Shared Persistence Different microservices access the same relational database. In the
worst case, different services access the same entities of the same
relational database. Also proposed as “data ownership”.

Wrong Cuts Microservices should be split based on business capabilities, not on
technical layers (presentation, business, data layers).

Table 11 – Other technical microservice smells (Taibi et al., 2019).

39

Organizational microservice smells can be categorized into two groups: Team-Oriented and

Technology and Tool Oriented. Team Oriented smells are anti-patterns that are related to the

team’s dynamics and are listed in Table 12. Technology and Tool Oriented are listed in Table

13.

Microservice Smell Description

Legacy Organization The company still work without changing its processes and policies.
As example, with independent Dev and Ops teams, manual testing
and scheduling common releases. Also proposed as “Red Flag”.

Non-homogeneous
Adoption

Only a few teams migrated to microservices, and the decision to
migrate or not is delegated to the teams. Also defined as
“Scattershot Adoption”.

Common Ownership One team own all the microservices

Microservice Greedy Teams tend to create new microservices for each feature, even
when they are not needed. Common examples are microservices
created to serve only one or two static HTML pages.

Table 12 – Team Oriented Microservice smells (Taibi et al., 2019).

Microservice Smell Description

Focus on the latest
technologies

The migration is focused on the adoption of the newest and coolest
technologies, instead of based on real. The decomposition is based
on the needs of the different technologies aimed to be adopted.
Also proposed as “Focusing on Technology”.

Lack of Microservice
Skeleton

Each team develop microservices from scratch, without benefit of a
shared skeleton that would speed up the connection to the shared
infrastructure (e.g., connection to the API-Gateway).

No DevOps Tools The company does not employ CD/CI tools and developers need to
manually test and deploy the system.

Too Many
Technologies

Usage of different technologies, including development languages,
protocols, frameworks... Also proposed as “Lust” and “Gluttony”.

Table 13 – Technology and Tool Oriented microservice smells (Taibi et al., 2019).

As previously mentioned, the authors utilized multiple research methods, including industrial

surveys, interviews, and literature reviews. Through the literature review, additional

microservice smells were identified but were not included in any of the existing categories as

the interviewees did not consider them to be problematic. Table 14 presents these

microservice smells that were previously missing.

40

Microservice Smell Description Group

Lack of Service
Abstraction

Service interfaces are designed for generic
purposes and not specifically designed for each
service.

Technical
Internal

Timeout Management of remote process availability and
responsiveness. It is recommended to use a
timeout value for service responsiveness or
sharing the availability and the unavailability of
each service through a message bus, to avoid
useless calls and potential timeout due to service
unresponsiveness.

Technical
Communication

Magic Pixie Dust Believing a sprinkle of microservices will solve the
development problems

Organizational
Team-Oriented

Microservice as the
goal

Migrating to microservices because everybody
does it, and not because the company need it.

Organizational
Team-Oriented

Pride Testing in the world of transience. Organizational
Team-Oriented

Sloth Creation of a distributed monolith due to the lack
of independence of microservices.

Organizational
Team-Oriented

Table 14 – Missing microservice from other sources of research methods found by (Taibi et al.,

2019)

“On the Study of Microservices Antipatterns: a Catalog Proposal” - (Tighilt et al., 2020)

In this paper the authors (Tighilt et al., 2020) present a catalogue of microservice antipatterns

that were discovered after a systematic literature review of papers on microservice

architecture design and also after analysis of microservice-based systems.

The authors followed a systematic literature review process based on the guidelines proposed

by (Barbara Kitchenham, 2004). They began by collecting research papers using relevant

search queries related to microservices and antipatterns. The search was conducted in

scientific search engines, resulting in a total of 1,195 unique references. The authors filtered

these references based on title, abstract, and content, resulting in 21 papers specifically

focused on the design of microservice-based systems. They then employed forward and

backward snowballing techniques to identify additional relevant papers, iterating the process

five times. In the end, a total of 27 papers describing microservice antipatterns were included

(Tighilt et al., 2020).

To gain a deeper understanding of microservice antipatterns the authors conducted a manual

analysis of 67 open-source microservice-based systems. This analysis aimed to identify

potential violations of microservice design practices, which could indicate the presence of

antipatterns. The implementation of each detected antipattern in the source code and

documented the symptoms or hints associated with them were examined by the authors. This

process helped them identify the specific refactoring solutions or practices that should be

employed to address and eliminate these antipatterns (Tighilt et al., 2020).

41

Through discussions among the authors and considering previous studies on service-oriented

architecture (SOA) patterns and antipatterns, the specifications and definitions of each

microservice antipattern, along with their symptoms and possible refactoring solutions, were

generalized. To describe the microservice antipatterns, the authors adapted a template from

(Dudney et al., 2002), which includes the following elements:

• Antipattern: Name of the specific antipattern.

• Context: The circumstances in which the antipattern may occur.

• General form: How the antipattern is manifested.

• Symptoms: Indications or elements that indicate the presence of the antipattern.

• Consequences: The drawbacks associated with the presence of the antipattern.

• Refactored solution: The steps required to remove the antipattern and apply best

practices.

• Advantages of refactoring: The benefits gained from eliminating the antipattern

through the suggested refactoring solution.

• Trade-offs: The considerations and trade-offs involved in deciding whether to keep or

remove the antipattern.

Similarly to the previous catalogue (Taibi et al., 2019), the authors organized their proposed

antipattern catalogue into four categories, aligning with the development cycle of a

microservice-based system. These categories are as follows (Tighilt et al., 2020):

• Design: This category encompasses antipatterns related to the specification of the

architectural design of a microservice-based system.

• Implementation: Antipatterns in this category pertain to how the microservices are

implemented within the system.

• Deployment: This category covers antipatterns associated with the packaging and

deployment of microservice-based systems.

• Monitoring: Antipatterns within this category are concerned with the monitoring of

microservice-based systems, including their behaviour and changes.

To assess the impact of each antipattern, the authors utilized the scale proposed by (Taibi et

al., 2019). This scale assigns a level of impact (high, moderate, or low) to developers and end-

users based on observations. The impact levels are determined as follows (Tighilt et al., 2020):

• High: Antipattern consequences directly affect end-users.

• Moderate: End-users may indirectly experience some impact, either in terms of

performance or application evolution.

• Low: Antipattern consequences have minimal to no impact on end-users, primarily

resulting in increased maintenance or deployment costs.

The resulting catalogue comprises a total of 16 antipatterns, which will be detailed in the

subsequent tables, such as Table 15, Table 16, Table 17 and Table 18Table 17. In the

42

forthcoming sections, a similar approach will be followed as described earlier. Each table will

highlight newly added microservice smells by underlining their names. However, in this case,

the context and symptoms will be provided.

Microservice Antipattern Context Symptoms

Wrong Cut A microservice should
encapsulate a group of
functionalities to allow the
independent delivery of
business capabilities. It should
be owned, developed, and
deployed by a single team. It
should fulfil a single purpose.

Some of the following aspects
can indicate the presence of the
Wrong Cut antipattern in a
microservice-based system: (1)
high microservice coupling; (2)
process calls; (3) front-
end/ORM microservices; or (4)
deployment dependencies.

Cyclic Dependencies Microservices should be
independent processing units
that communicate through
lightweight mechanisms (Fowler
& Lewis, 2014) to avoid
managing dependencies and
the “distributed monolith"
pitfall (Taibi & Lenarduzzi,
2018).

Cyclic dependencies manifest
through (1) direct calls between
microservices; (2) frequent
communications between
microservices; or, (3) the
presence of HTTP requests in
call-backs.

Mega Service Microservices should be small
and independent units,
independently deployable and
serving a single purpose (Fowler
& Lewis, 2014).

A mega microservice is a
microservice with a high
number of lines of code,
modules, or files, as well as a
high fan-in.

Nano Service Refactoring a monolith system
into a microservices-based
system is a complex problem.
Microservices should fulfil single
business capabilities, no more
but also no less.

The nano microservice
antipattern exists when (1) the
system has a large number of
microservices; (2) microservices
exchange a lot of information;
or (3) cyclic dependencies exist.

Table 15 – Design Antipatterns (Tighilt et al., 2020).

43

Microservice Antipattern Context Symptoms

Shared Libraries Microservices should avoid
sharing runtime libraries and
code directly.

The presence of executable files
or runtime libraries shared
among multiple microservices,
added at compile or packaging
time, can indicate this
antipattern.

Hardcoded Endpoints Microservices must
communicate with one another.
They are independently
deployed and usually
communicate through REST
APIs. Microservices can reach
one another endpoints via IP
addresses and port numbers.

Hardcoded endpoints
antipattern show via the
presence of IP addresses or fully
qualified domain names in
source code, configuration files,
or environment variables.

Table 16 – Implementation Antipatterns (Tighilt et al., 2020).

Microservice Antipattern Context Symptoms

Manual Configuration Microservices efficiency relies on
automation and everything that
can be automated should be
automated.

Configuration files in every
microservice and the reliance
on environment variables can
indicate the presence of this
antipattern

No Continuous Integration /
Continuous Delivery
(CI/CD) (also known as No
DevOps tools (Taibi et al.,
2019))

The independent deployment of
microservices allows relatively
small teams -within a single
enterprise- to easily apply
iterative continuous
development and delivery
(DevOps) processes, and thereby
increase system agility. The
integration of Development and
Operations, and the continuous
delivery result in (1) reducing
delivery time; (2) increasing
delivery efficiency; (3)
decreasing time between
releases; and (4) maintaining
software quality.

Some of the following
symptoms can indicate the
presence of the no CI/CD
antipattern: (1) no version
control repositories
on microservices; (2) no
unit/integration/functional
tests; (3)
no automated delivery tools; or
(4) no staging environments.

No API Gateway When building microservices-
based systems, consumer
applications need to
communicate with a lot of
microservices, and every
consumer needs a very specific
set of information.

Consumer applications sending
multiple HTTP requests, or
requests to multiple different
URLs, and systems that have
multiple front ends (Web,
mobile, etc.) can be indicative
of the presence of this
antipattern

44

Microservice Antipattern Context Symptoms

Timeouts Service availability refers to the
possibility for a service consumer
to connect and send a request to
a service. Service responsiveness
is the time taken by the service
to respond to that request. It is
common practice in distributed
systems to have consumer
applications/tasks use timeouts
to handle service unavailability
or unresponsiveness.

Request retrial and timeout
values are good signs of the
presence of this antipattern.

Multiple Service Instances
Per Host

When microservices are built,
multiple deployment strategies
could be applied. We can choose
to deploy either each
microservice instance in its host
or multiple microservices
instances in a single host.

The hints of the presence of this
antipattern could be (1) a single
deployment platform; (2) a
single version control
repository; or (3) a global
deployment script.

Shared Persistence Microservices architecture is a
way of building systems that
decompose application code into
small independent services. Each
of these small services may need
to persist and access data.
However, to fully benefit from
the microservices architecture,
software architects need to
handle data storage in a way
where each microservice can
store and access its data without
affecting other microservices.

This antipattern is characterized
by one or more of the following
symptoms: (1) multiple
microservices share the same
configuration files and
deployment environments; (2)
database tables are prefixed; or
(3) databases have a lot of
schemas

No API Versioning Sometimes, multiple versions of
the exposed API of a
given microservice must be
supported. This is generally the
case when a service API has
undergone major changes and
we need to support both the
new and old versions for some
period.

Some of the following are hints
to the presence of this
antipattern: (1) microservices
endpoint URLs do not contain
version numbers; (2) no custom
header information is sent by
the client; and (3) multiple
microservices have similar
names.

Table 17 – Deployment Antipatterns (Tighilt et al., 2020).

45

Microservice Antipattern Context Symptoms

No Health Check The nature of microservices is
volatile. A microservice can be
deployed anywhere and can be
unavailable for a particular
amount of time or in a particular
context.

No periodic HTTP request, no
API gateway or no
service discovery can be hints
of the presence of this
antipattern.

Local Logging Each microservice produces a lot
of information that is being
logged in different file systems.
This information is very useful in
a monitoring context and should
be easily accessed and stored.

Some indications of this
antipattern are (1) the
presence of log files inside
microservices; (2) files being
written by the microservice; (3)
the usage of time-aware
databases; and (4) logging
frameworks and tools.

Insufficient Monitoring
(also known as “Lack of
Monitoring” (Taibi et al.,
2019))

Because provided microservices
are often subject to service level
agreements (SLA), monitoring
their behaviour and performance
is crucial.

Some indications of this
antipattern include the use of
local logging for some
microservices or the absence
of health check endpoints.

Table 18 – Monitoring Antipatterns (Tighilt et al., 2020).

How Can We Cope with the Impact of Microservice Architecture Smells? (Ding & Zhang,

2022)

This article presents a comprehensive Systematic Literature Review (SLR) that addresses the

problems. The review involved an exploration of 13 white and 10 grey literature sources to

gather relevant information. All the information was synthesized using the meta-ethnography

qualitative method to answer specific questions.

The article investigates and provides an explicit definition of Microservice Architectures Smells

based on their distinct characteristics, aiming to offer developers valuable insights into each

Microservice Architecture Smells. It also defines five categories of Microservice Architectures,

namely Design, Deployment, Monitor & Log, Communication, and Team & Tool. These

categories were established by comparing the violated design principles and their influences

on software systems. Additionally, the paper proposes a description template for defining

Microservice Architectures. The paper delves into the issues caused by Microservice

Architectures during the migration process from a monolithic system to Microservices. By

aligning the identified issues and Microservice Architectures, the authors offer valuable

solutions for developers and scholars involved in this migration process.

To achieve its objectives, the article puts forth two research questions which are: (1) How can

one define and classify the existing Architectural Smells in the context of Microservice

46

architecture? (2) What issues arise in the migration process from Monolith to Microservice

architecture, caused by architecture smells?

This study employed a combination of 13 white literature and 10 grey literature sources to

gather information on Microservice Architecture Smells. To enhance the comprehension of

specific smells, the researchers developed a template that included essential details such as

the category, name of the smell, definition, design violation, interest, solution, and similar

smells.

In total, the study identified and presented 22 distinct Microservice Architecture Smell,

classifying them into five categories: Design, Deployment, Monitor & Log, Communication,

and Team & Tool. These smells will be shown through the presented in Table 19, Table 20,

Table 21, Table 22, and Table 23. In the forthcoming tables, a similar approach will be

followed as described earlier. Each table will highlight newly added microservice smells by

underlining their names. However, in this case, only name, definition and interest will be

provided.

Microservice Antipattern Definition Interest

Use of business logic in
communication among
services

If the communication layer
contains business logic means it
has this smell such as data
transfer in the communication
layer.

There will be additional
maintenance costs and
changes in the service logic will
cause the communication layer
to change as well. And
communication team must
understand the details in the
logic of services.

Mega Microservice One microservices takes
responsibility for any concerns.

It will cause difficulty in
maintaining, testing and
complexity of software.

Nano Microservice The granularity of a monolith
system divided into
microservices is so fine that a
single microservice does not fulfil
one business capability.

The principle for monolith to
microservice is based on
business capability and
suitable granularity. It will
cause the coupling of the
services.

Cyclic Dependencies The dependencies or calls of
microservices are like a cycle.

The microservices are not
independent and if one fails
will cause other microservices
to fail too.

Wrong Cuts The principle for dividing
microservices should be based
on business capability and
microservices just focus on one
single concern. If dividing
microservice does not follow the
principle will cause the smell.

It will cause the complexity and
high coupling of microservice.
It is harder to maintain the
microservices

Table 19 – Design microservice smells (Ding & Zhang, 2022).

47

Microservice Antipattern Definition Interest

Wobbly service
interactions

Microservice needs to be
independent and clear
boundaries of others. If the
interaction of microservices is
wobbly that means it is this
smell.

If one microservice fails will
cause another one to fail too
and cause the coupling of
different microservices.

Shared Libraries Microservices share runtime
libraries or execution files.

It causes the coupling of
different microservices.

Shared Persistence Multi microservices share one
database.

It will cause the coupling of
different microservices and
harder to maintain them.

Table 20 – Deployment microservice smells (Ding & Zhang, 2022).

Microservice Antipattern Definition Interest

Insufficient message
traceability

When messages contain
insufficient data that causes
difficult to find the source of the
messages

It will make it harder to find
dependencies of
microservices

Manual Configuration Configuration of instances,
services and hosts is done
manually by developers.

Manual configuration is
time-consuming and error-
prone

Dismiss Documentation Inconsistent documents or
outdated documents for software
will cause this smell

With the development of
microservices, if the
documents of API are
dismissed that will hinder
the cooperation of different
teams.

No health check No endpoints for checking the
health of the microservice

Consumers may wait a long
time to get a response from
microservices that are down.

Local Logging The information or logs of
microservices are stored in local
storage

The logs locally are difficult
to analyse and monitor.

Table 21 – Monitor & Log microservice smells (Ding & Zhang, 2022).

48

Microservice Antipattern Definition Interest

Single Layer Team One team takes responsibility
for many services. Each team
has no explicit responsibility
boundary for services.

It destroys the independence
among services and causes
external communication costs
among teams

Inadequate techniques
support

The techniques or tools for
Microservice are not enough
and dismiss a lot of key points
of Microservice.

The automation of the service
is broken and most of its
advantages are not
demonstrated.

Too many Standards In one program, many
developing languages or
frameworks are used. Each
team uses their techniques and
no specific standard to limit
them.

Add unnecessary complexity
and maintenance problems.

Table 22 - Team & Tool microservice smells (Ding & Zhang, 2022).

Microservice Antipattern Definition Interest

Lack of communication
standards among
microservices

Lack of API or message format
for microservices. Each team
has its standards for
communication

Need costs more to transform
the messages and add the
complexity of software.

Hardcoded Endpoints The IP addresses, ports, and
endpoints of microservices are
explicitly/directly specified in
the source code

It is difficult to track the URLs
and endpoints and when the
ports change the deploying of
microservices also needs to
change.

No API Gateway Microservices are exposed and
consumers communicate with
them directly.

Consumers need to know
each microservices in detail
and harder to maintain the
endpoints of microservices.

Timeouts The unsuitable time set for
sending messages or waiting for
a response.

Too short timeout will cause
not enough time to handle
the request and too long time
will waste the time to wait for
unavailable microservices.

No API Versioning No information is available on
the microservice version. The
microservice should support
multi-API versions including the
new and the old ones.

Changes to a microservice API
will impact all consumers or
consumers can not
communicate microservice
using different API versions.

ESB misuse Central ESB is used for
connecting microservices in an
application.

ESB abuse may lead to
undesired centralization of
business logic and dumb
services and coupling of
microservices

Table 23 – Communication microservice smells (Ding & Zhang, 2022).

49

4.2 Detection Tools for Microservice Architecture Smells

To aid in the identification of software smells, researchers and practitioners have developed a

range of software tools. These tools use automated analysis techniques to scan code and

identify potential smells, making it easier for developers to detect and correct issues promptly.

Currently, several technologies, such as Arcan, Designite, and Structure 101, are available for

detecting architecture smells. Despite their capability, none of these technologies can

accurately detect microservice smells like the ones outlined in Section 4.1.1. As their detection

and resolution may call for more specialised tools, these architectural smells provide a

challenge for the development community. The creation of tools that can precisely identify

and address these microservice architecture smells is thus urgently needed.

In this section, some of the microservice smell detection tools that are currently available will

be explored, including their features and capabilities, as well as their future works. The focus

will be on a few examples of existing tools, such as MSA-Nose (Walker et al., 2020), µTOSCA

(Soldani et al., 2021), and MARS (Tighilt et al., 2023) and discuss how they can be used to

improve microservice applications.

4.2.1 MSA-Nose

(Walker et al., 2020) build a solution as an open-source tool designed to identify a range of

architectural smells. With its ability, this tool is a valuable addition to the arsenal of

architecture analysis tools available to developers.

To fully detect architectural smells, MSA-Nose first analyses each microservice before

integrating them into a bigger service mesh. Firstly, they make a graph that represents the

relationships between the different microservices. This is accomplished via a scanning and

matching-based, two-phase analytical technique. During the first phase, MSA-Nose identifies

REST endpoints and collects metadata, including the endpoint's HTTP type, route, arguments,

and return type. This is done by analysing the microservice's application configuration files to

resolve IP addresses and paths, which define the fully qualified URLs for each endpoint. MSA-

Nose then lists these endpoints and REST calls based on static code analysis using annotation-

based REST API configuration commonly used in enterprise frameworks. In the second phase,

MSA-Nose matches each endpoint with each REST call across different microservice modules

based on the URL and metadata. URLs are generalized to address different naming of path

variables across different microservice modules, and each resultant matching pair indicates

inter-microservice communication (Walker et al., 2020).

Afterwards, MSA-Nose analyses the underlying dependency management configuration file

for each microservice to find the dependencies and libraries used by each of the applications.

Finally, the application configuration is analysed to determine information such as the port for

the module, the databases it connects to, and other relevant environment variables for the

application. The overall architecture of MSA-Nose is shown in Figure 12. The Resource Service

50

module takes the path of the source files and extracts metadata from those files. These

metadata are then fed into the Entity Service and API Service modules, which produce

descriptions of entities and definitions of API endpoints, respectively. The REST Discovery

Service module takes the definitions of the API endpoints and resolves inter-microservice

communications. Once the processing of each module is done, MSA-Nose begins the process

of code-smell detection (Walker et al., 2020).

Figure 12 - MSANose architecture diagram (Walker et al., 2020).

4.2.1.1 What and how microservice smells can be detected

For (Walker et al., 2020) paper’s purpose, the catalogue proposed by (Taibi & Lenarduzzi,

2018) was used due to its recentness at the time and every microservice smell mentioned on

it was used on this tool. These are ESB Usage, Too Many Standards, Wrong Cuts, Not Having

an API Gateway, Hard-Coded Endpoints, API Versioning, Microservice Greedy, Shared

Persistency, Inappropriate Service Intimacy, Shared Libraries, and Cyclic Dependency.

ESB Usage

To determine if an Enterprise Service Bus (ESB) is in use, the process involves counting

connections between different system modules. An ESB module is recognized by having a

notably high number of connections, a balanced proportion of incoming and outgoing

connections, and it should connect to nearly all other modules. This method helps identify the

central hub facilitating communication in complex systems (Walker et al., 2020).

Too Many Standards

Detecting an excessive use of standards in an application is complex because the definition of

"too many" standards varies. Standards, in this context, refer to predefined guidelines or

specifications that developers adhere to when designing software components. Developers

often choose different standards for system modules based on factors like speed, features,

and security. (Walker et al., 2020) keep track of the standards used in each application layer

51

(presentation, business, and data layer) and allow users to set their own "too many" threshold

for each layer to adapt to specific requirements.

Wrong Cuts

To detect wrong microservice cuts, MSA-Nose looks for an unbalanced distribution of

artefacts within microservices across different layers of the application. For presentation

microservices, it looks for an abnormally high number of front-end artefacts; for business

microservices, it looks for an unbalanced number of service objects; and for data

microservices, it looks for an unbalanced number of entity objects. Outliers in the number of

these artefacts are identified and reported to the user. An outlier counts greater than two

times the standard deviation away from the average count of artefacts in each microservice

(as shown in the following equation), MSA-Nose reports the possibility of a wrongly cut

microservice to the user (Walker et al., 2020).

2 ∗ √
∑ (𝑥𝑖 − �̅�) 𝑛

𝑖=0

𝑛 − 1

Not Having an API Gateway

If the scanned application has more than 50 distinct modules, MSA-Nose suggests using an API

gateway, as it may not be possible to determine the absence of an API gateway from code

analysis alone. This is a best practice suggestion and not an error because it is challenging to

determine the absence of an API gateway, especially in cloud applications that rely on routing

frameworks such as AWS API Gateway2, which uses an online configuration console and is not

discoverable from code analysis (Walker et al., 2020).

Shared Persistency

MSA-Nose detects shared persistency in an application by parsing its configuration files and

comparing the persistence settings of each submodule to find shared data sources, such as

those in a Spring Boot application's YAML file (Walker et al., 2020). A diagram explaining what

this microservice smell is can be seen in Figure 13.

Figure 13 – Shared Persistency (Walker et al., 2020)

2 https://aws.amazon.com/api-gateway

52

Inappropriate Service Intimacy

Inappropriate service intimacy is when one microservice requests the private data of another.

It can be detected by looking for a module directly accessing another's data source in addition

to its own, or by looking for two modules with the same entities where one is only modifying

or requesting the other's data (Walker et al., 2020).

Shared Libraries

MSA-Nose detects shared libraries by scanning the dependency management files of each

module to locate all shared libraries, with a focus on in-house libraries. If necessary,

developers can extract them into a separate module to make the application more robust

against changes in the libraries (Walker et al., 2020).

Cyclic Dependency

To detect all cycles between modules, MSA-Nose utilizes a modified depth-first search (Tarjan,

1972). First, MSA-Nose extracts the REST communication graph for the microservice mesh. In

the graph, each vertex represents a microservice, and each edge represents a REST API call.

Then, MSA-Nose runs its cyclic dependency detection algorithm on the graph. MSA-Nose

maintains a recursive stack of vertices while traversing the graph. Since the graph is

unidirectional (client to server), MSA-Nose marks it as a cycle if a vertex already exists in the

stack.

Hard-Coded Endpoints

MSA-Nose detects hard-coded endpoints during the bytecode analysis phase by examining

the parameters passed into function calls used to connect to other microservices. For example,

in Spring Boot, MSA-Nose looks for any calls from RestTemplate and links the passed address

back to any parameters passed to the function or any class fields to find the path parameters

used. The system tests for both hardcoded port numbers and IP addresses, which should be

avoided for easier scalability of the system in the future.

API Versioning

MSA-Nose locates unversioned APIs in an application by identifying all fully qualified paths,

and then matching each path against a regular expression pattern “./v[0-9]+(.?[0-9]).*” to

detect unversioned paths. Any unversioned APIs are then reported to the user.

Microservice Greedy

MSA-Nose finds superfluous microservices by analysing front-end files, service objects, and

entity objects in the application, looking for outliers that could indicate potential greedy

modules. They define outliers using the same equation as for wrongly cut microservices but

focus only on those that are undersized instead of too large.

53

4.2.1.2 Future trends

The area of microservice verification is a relatively new field, and there is still much to be

explored. While there has been some examination of issues such as security, data constraints,

and networking, there is still much work to be done in terms of verification. The pool of code

smells for microservice-based applications has yet to be fully developed. However, this work

shows that established code smells from industry advice and examination can be adapted for

microservice-based applications. This can be achieved through an extensive survey among

industry specialists, and the creation of a taxonomy of code smells exclusively for MSA.

The implementation of MSA-Nose, as described by (Walker et al., 2020), has a clear separation

between metadata extraction and code-smell detection, making it easy to add new detection

mechanisms without affecting the existing algorithms. This research could be also expanded

into other languages and enterprise standards. Exploration for containerized microservices

and rigorous deployment configuration analysis can be done for cloud-native applications.

The authors also propose that MSA-Nose can be integrated into the software development

lifecycle, such as being added to the CI/CD pipeline to run an automatic screening test before

performing the deployment. This can accelerate the code review process and reduce manual

efforts and human errors of code reviewers and DevOps engineers, resulting in a shortened

release and update cycle of microservice applications along with improved code quality.

4.2.2 µTOSCA toolchain

(Soldani et al., 2021) present a methodology for identifying and resolving architectural smells

in microservice-based architectures. The authors build on a previous industry-oriented review

and identify a set of architectural smells that could violate key design principles of

microservices, along with corresponding architectural refactoring (Neri et al., 2020).

In this work, the authors propose using the Topology and Orchestration Specification for

Cloud Applications (TOSCA) and introduce 𝜇TOSCA, a type system to specify microservice-

based architectures as typed topology graphs. They formally define the conditions to identify

the occurrence of the identified architectural smells and illustrate how to refactor the

architecture to resolve them.

In the same work, they present 𝜇Freshener, a prototype tool that enables editing 𝜇TOSCA

topology graphs and implements their methodology. However, manually representing the

architecture of a complex microservice-based application in 𝜇TOSCA can be time-consuming

and error-prone, so the authors propose a technique for automatically mining the

architecture of a "black-box" microservice-based application. They present 𝜇Miner, a

prototype tool that implements this technique to automatically derive a 𝜇TOSCA topology

graph modelling the architecture of a microservice-based application starting from its

deployment in Kubernetes.

54

The 𝜇TOSCA toolchain represented in Figure 14, consisting of 𝜇Miner and 𝜇Freshener, is a

powerful combination for designing and analysing microservice-based applications. By

utilizing the Kubernetes deployment of a microservice-based application, 𝜇Miner can

automatically generate a 𝜇TOSCA file that describes the application's architecture. This file

can then be fed into 𝜇Freshener, which uses automated analysis techniques to identify any

architectural smells that may be present in the application's design. If any smells are detected,

𝜇Freshener provides suggestions for potential architectural refactorings that can be used to

eliminate them. The 𝜇TOSCA toolchain enables architects to obtain "smell-free" 𝜇TOSCA

specifications, improving the quality and maintainability of microservice-based applications.

Figure 14 - The 𝜇TOSCA toolchain (Soldani et al., 2021).

4.2.2.1 TOSCA

TOSCA is “an OASIS open standard that defines the interoperable description of services and

applications hosted on the cloud and elsewhere; including their components, relationships,

dependencies, requirements, and capabilities, thereby enabling portability and automated

management across cloud providers regardless of underlying platform or infrastructure; thus,

expanding customer choice, improving reliability, and reducing cost and time-to-value” (OASIS,

n.d.).

The characteristics of TOSCA make them extremely portable and well-suited for DevOps

environments by enabling the seamless, continuous delivery of applications across their full

lifecycle. This results in greater agility and accuracy for businesses operating in the cloud, as

they can easily match service and application requirements with the capabilities of cloud

service providers. Automation of this process through TOSCA enables companies to take

advantage of specialised expertise and promotes a competitive ecosystem for cloud platforms

and service providers, allowing them to develop and better meet the demands of cloud-based

companies. In summary, TOSCA helps companies overcome commoditization and maintain

their leadership positions in the continually changing cloud world.

In Figure 15 a simple example of TOSCA is provided.

55

Figure 15 – TOSCA simple “Hello World” (OASIS, n.d.).

4.2.2.2 What and how can microservice smells be detected

As mentioned previously, (Soldani et al., 2021) singled out the most recognized architectural

smells violating key principles of microservices and the architectural refactorings enabling to

resolution of the occurrence of such smells. Out of all the microservice smells that were

collected, only four were selected by the researchers. These four were specifically chosen as

they contradict three significant design principles, namely horizontal scalability, failure

isolation, and decentralization.

The four microservice smells that can be identified and represented using µFreshener, along

with the respective key design principle they go against, are:

• No API Gateway (horizontal scalability)

• Endpoint-based Service Interaction (horizontal scalability)

• Wobbly Service Interaction (isolation of failures)

• Shared Persistence (decentralisation)

For a better understanding of how this tool can detect the smells, the authors elaborated one

visual representation of how the smells will be detected and how they will be solved. This

visual representation can be seen in Figure 16.

56

Figure 16 – Visual representation of the architectural smells and refactorings (Soldani et al.,

2021).

No API Gateway

The no API gateway smell in a microservice-based application occurs when external clients

directly access internal components without passing through an API gateway, which violates

the horizontal scalability of microservices. When a component is scaled out by adding

replicated instances, external clients may continue to invoke the original instance and ignore

the newly added replicas. To check for this smell in a microservice-based application modelled

by a 𝜇TOSCA topology graph, it is necessary to verify whether any edges in the architecture do

not contain a message router (Soldani et al., 2021).

Figure 16 visually depicts occurrences of the no API gateway smell in a 𝜇TOSCA topology graph

when a component (either a service or an asynchronous message broker) is placed at the edge

of the architecture. Also, it shows two architectural refactorings that can solve this issue,

which involve introducing a message router acting as an API gateway or reusing an existing

one in the application. These refactorings prevent the component from being directly

accessed from outside the application (Soldani et al., 2021).

57

Endpoint-based service interaction

An endpoint-based service interaction smell occurs in a microservice-based application when

a service directly calls another service without using a message router or dynamically

discovering the actual endpoint of the service being called. This smell also violates the

horizontal scalability of microservices because new instances of the called service cannot be

reached by the invoker. This can happen when the location of the instance of the invoked

service is hardcoded in the source code of the invoker (Soldani et al., 2021).

Figure 16 shows how to address endpoint-based service interaction smell in a 𝜇TOSCA

topology graph of a microservice-based app by introducing an intermediate integration

pattern like a message router or a service discovery mechanism. The refactoring aims to

decouple the interaction between the invoking service and the invoked service. It's important

to update the outgoing interaction and reuse an existing message router/broker if available

(Soldani et al., 2021).

Wobbly service interaction

In a service interaction, when a failure in the invoked service can cause a failure in the invoker

and start a chain reaction of failures, the interaction is considered "wobbly". This occurs when

the invoker consumes the functionality of the invoked service without handling potential

failures through mechanisms such as circuit breakers or timeouts (Soldani et al., 2021).

Figure 16 visually depicts the occurrences of wobbly service interactions in 𝜇TOSCA topology

graphs, where one service invokes another without any failure-handling mechanisms like

circuit breakers or timeouts. Architectural refactoring to resolve this issue is also shown,

including using circuit breakers or timeouts, replacing the interaction with an asynchronous

message broker, and decoupling interactions between services. These refactorings can avoid

failures or prevent services from getting stuck waiting for a response, and can also resolve

endpoint-based service interaction smells if present (Soldani et al., 2021).

Shared Persistence

A shared persistence smell affects a microservice-based architecture when multiple services

interact with the same database, directly or through intermediate message routers.

Figure 16 shows the shared persistence smell in a microservice architecture where multiple

services interact with the same database. Three architectural refactorings are shown to

reduce the number of services accessing the database. These refactorings are diverse and

apply to different situations depending on the services accessing the database. The solutions

include splitting the database, using a data manager to proxy the access, or merging the

services into one.

58

4.2.2.3 Future works

Regarding architecture smells, (Soldani et al., 2021) plan to expand their capabilities to detect

and resolve more architectural smells, including those identified by industry-driven reviews

and other researchers. This can be achieved by extending the existing 𝜇TOSCA types to model

additional entities, detecting new smells based on these entities, and adapting 𝜇Freshener

accordingly. For instance, 𝜇TOSCA has already added a type for grouping nodes to represent

team assignments and plans to formalize team-related architectural smells described in

industry-oriented reviews and extend 𝜇Freshener to address these smells.

4.2.3 MARS

(Tighilt et al., 2023) present MARS, a tool-based approach designed for the specification and

detection of microservice antipatterns, described in Figure 17. The approach relies on a

comprehensive metamodel that encompasses the essential data required for specifying and

applying detection rules to the source code of microservice-based systems (Tighilt et al., 2023).

Figure 17 - Microservice Antipatterns Research Software (Tighilt et al., 2023).

(Tighilt et al., 2023) present significant novel contributions to the field of microservice

antipattern detection. Originally, MARS, a highly automated tool, is introduced, equipped with

a novel metamodel specifically designed for detecting 16 distinct microservice antipatterns.

This collection of antipatterns was curated through a multifaceted approach that draws upon

the outcomes of a comprehensive and diverse literature review, coupled with a meticulous

manual analysis of 64 microservice-based systems, conducted in previous research (Tighilt et

al., 2020).

4.2.3.1 What and How Microservice Smells Can Be Detected

Utilizing the MARS toolset, 16 specific antipatterns were meticulously specified and their

occurrences were successfully detected within a dataset comprising 24 microservice-based

59

systems. Subsequently, a manual validation process was employed to assess the precision and

recall of the detected instances (Tighilt et al., 2023). In the next subsections will be presented

an explanation of the microservice antipatterns detected as well as the detection rules with a

textual and pseudo-code description.

Wrong Cuts (WC)

Microservices are organised around technical layers (business, presentation, and data) instead

of functional capabilities, which causes strong coupling among microservices and impedes the

delivery of new business functions (Tighilt et al., 2023).

In microservices, a single file type is utilized within the source code, exemplified by a

microservice consisting exclusively of presentation code interfacing with another microservice

dedicated solely to business logic, and the identification of this antipattern is based on file

extensions, content, and programming languages (Tighilt et al., 2023). In Figure 18 it is

possible to check the pseudo-code description of this antipattern.

Figure 18 – Wrong Cut pseudo-code description (Tighilt et al., 2023).

Cyclic Dependencies (CD)

Multiple microservices are circularly co-dependent and thus no longer independent, which

goes against the very definition of microservices (Tighilt et al., 2023).

The authors employ the call graph of the microservice-based system, which is analysed to

identify circular dependencies among microservices (Tighilt et al., 2023). In Figure 19 it is

possible to check the pseudo-code description of this antipattern.

60

Figure 19 – Cyclic Dependencies pseudo-code description (Tighilt et al., 2023).

Mega Service (MS)

A microservice provides multiple business functions. A microservice should be manageable by

a single team and should pertain to a single business function (Tighilt et al., 2023).

A mega service, distinguished by its support for multiple business functionalities and potential

size, is compared to microservices lacking this antipattern. The identification of mega services

by MARS involves assessing both the lines of code and the number of files within a

microservice, with criteria established by an expert specifying certain threshold values (Tighilt

et al., 2023). In Figure 20 it is possible to check the pseudo-code description of this antipattern.

Figure 20 – Mega Service pseudo-code description (Tighilt et al., 2023).

Nano Service (NS)

Results from a fine-grained decomposition of a system, i.e., when one business function

requires many microservices to work together (Tighilt et al., 2023).

A nano service, an excessively fine-grained microservice offering only a fragment of a business

function within a microservice-based system, often arises from an overly detailed system

decomposition. MARS identifies nano services by examining the microservice's lines of code

and file count, which should not surpass predetermined expert-defined thresholds (Tighilt et

al., 2023). In Figure 21 it is possible to check the pseudo-code description of this antipattern.

Figure 21 – Nano Service pseudo-code description (Tighilt et al., 2023).

61

Shared Libraries (SL)

This relates to the sharing of libraries and files (e.g., binaries) by multiple microservices, which

breaks their independence as they rely on a single source to fulfil their business function

(Tighilt et al., 2023).

Source files, libraries, or other artefacts from one microservice are shared and utilized by

other microservices (Tighilt et al., 2023). In Figure 22 it is possible to check the pseudo-code

description of this antipattern.

Figure 22 – Shared Libraries pseudo-code description (Tighilt et al., 2023).

Hardcoded Endpoints (HE)

URLs, IP addresses, ports, and other endpoints are hardcoded in the source code of

microservices and/or configuration files, which interferes with load balancing and deployment

(Tighilt et al., 2023).

Within certain source code, deployment files, configuration files, or environment files, REST

API calls are found to contain statically defined IP addresses, port numbers, and/or URLs, with

potential instances of hard-coded endpoints even in the absence of a discovery service (Tighilt

et al., 2023). In Figure 23 it is possible to check the pseudo-code description of this antipattern.

Figure 23 – Hardcoded Endpoints pseudo-code description (Tighilt et al., 2023).

62

Manual Configuration (MC)

Refers to configurations that must be manually pushed in some microservices and, since

microservice-based systems evolve rapidly, their management should be automated,

including their configuration (Tighilt et al., 2023).

Each microservice possesses individual configuration files, with no microservice taking on the

role of configuration management, and the system's dependencies do not include any

configuration management tools (Tighilt et al., 2023). In Figure 24 it is possible to check the

pseudo-code description of this antipattern.

Figure 24 – Manual Configuration pseudo-code description (Tighilt et al., 2023).

No Continuous Integration/Continuous Delivery (NCI)

Not using CI/CD, which is important for microservices to automate repetitive steps during

testing and deployment, undermines the microservice architectural style, which encourages

automation wherever possible (Tighilt et al., 2023).

The absence of continuous integration/delivery-related data in configuration files and version

control repositories is noted, and the analysis is based on an adaptable roster of CI/CD tools

(Tighilt et al., 2023). In Figure 25 it is possible to check the pseudo-code description of this

antipattern.

63

Figure 25 - No Continuous Integration/Continuous Delivery pseudo-code description (Tighilt et

al., 2023)

No API Gateway (NAG)

Consumer applications communicate directly with microservices and must know how the

whole system is decomposed, managing endpoints and URLs for each microservice (Tighilt et

al., 2023).

The absence of common API gateway implementation signatures is observed in the source

code, and there are no frameworks or tools about API gateways within the microservices'

dependencies (Tighilt et al., 2023). In Figure 26 it is possible to check the pseudo-code

description of this antipattern.

Figure 26 – No API Gateway pseudo-code description (Tighilt et al., 2023).

Timeouts (TO)

Timeout values are set and hardcoded in HTTP requests, which leads to unnecessary

disconnections or delays (Tighilt et al., 2023).

Timeout values are included in REST API calls, while there are no indicators of common circuit

breaker implementations in the source code, and the microservices' dependencies do not

64

include any circuit breakers (Tighilt et al., 2023). In Figure 27 it is possible to check the

pseudo-code description of this antipattern.

Figure 27 – Timeouts pseudo-code description (Tighilt et al., 2023).

Multiple Service Instances Per Host (MSIPH)

Multiple microservices are deployed on a single host, which prevents their independent

scaling and may cause technological conflicts inside the host (Tighilt et al., 2023).

The utilization of deployment technologies, such as Docker Compose, is absent in the system's

configuration. Instead, a single deployment file within the source code is responsible for

deploying the entire system (Tighilt et al., 2023). In Figure 28 it is possible to check the

pseudo-code description of this antipattern.

Figure 28 – Multiple Service Instances Per Host pseudo-code description (Tighilt et al., 2023).

Shared Persistence (SP)

Multiple microservices share a single database meaning that they no longer own their data

and cannot use the most suitable database technology for their business function (Tighilt et al.,

2023).

Data-source URLs are shared among microservices, resulting in the creation of a single

database that multiple microservices access within the system (Tighilt et al., 2023). In Figure

29 it is possible to check the pseudo-code description of this antipattern.

65

Figure 29 – Shared Persistence pseudo-code description (Tighilt et al., 2023).

No API Versioning (NAV)

Happens when no information is available about a microservice version, which can break

changes and force backward compatibility when deploying updates (Tighilt et al., 2023).

Endpoints and URLs do not contain version numbers and no version information is present in

the configuration files (Tighilt et al., 2023). In Figure 30 it is possible to check the pseudo-code

description of this antipattern.

Figure 30 – No API Versioning pseudo-code description (Tighilt et al., 2023).

No Health Check (NHC)

This relates to microservices that lack regular health checks, which can result in undetected

unavailability, potentially causing timeouts and other errors (Tighilt et al., 2023).

No ‘‘health check’’ or ‘‘health’’ endpoint exists and no common implementation of health

checks is used (Tighilt et al., 2023). In Figure 31 it is possible to check the pseudo-code

description of this antipattern.

66

Figure 31 – No Health Check pseudo-code description (Tighilt et al., 2023).

Local Logging (LL)

Results from microservices have their logging mechanism, which prevents aggregation and

analyses of their logs and the monitoring and recovery of systems (Tighilt et al., 2023).

The author detects this antipattern by examining whether (1) there is a lack of distributed

logging in the dependencies, and/or (2) there is no common logging microservice, with each

microservice maintaining its log file paths (Tighilt et al., 2023). In Figure 32 it is possible to

check the pseudo-code description of this antipattern.

Figure 32 – Local Logging pseudo-code description (Tighilt et al., 2023).

Insufficient Monitoring (IM)

Describes neglecting to record data on performance levels and failures of microservice-based

systems that would be useful for maintenance purposes (Tighilt et al., 2023).

The author detects this antipattern by searching for a monitoring framework or library, such

as Prometheus, in the microservice dependencies (Tighilt et al., 2023). In Figure 33 it is

possible to check the pseudo-code description of this antipattern.

67

Figure 33 – Insufficient Monitoring pseudo-code description (Tighilt et al., 2023).

4.2.3.2 Results and Comparisons

After applying MARS on 24 microservice-based systems written in Java, the results obtained

demonstrate that MARS enables the specification and detection of microservice antipatterns

with an impressive average precision rate of 82% and a commendable recall rate of 89%. This

outcome underscores the potential of this highly automated approach, which was further

substantiated by its application in a large-scale study. Specifically, MARS accurately identified

prevalent antipatterns such as Shared Libraries, Multiple Service Instances Per Host, and Cyclic

Dependencies, showcasing its effectiveness in detecting common issues within microservice

architectures. The tool also achieved impressive precision and recall scores in identifying

issues related to Wrong Cuts, Manual Configurations, No CI/CD, No API gateways, Timeouts,

and Shared Persistence antipatterns. (Tighilt et al., 2023) points out that while these results

are encouraging, it's worth noting that MARS generated a higher number of false positives

when detecting the remaining seven antipatterns.

In this document, (Tighilt et al., 2023) ran a comparison with MSA-Nose, a tool that was

already covered in the previous sections that also focuses on Java-based microservice systems

and encompasses 11 antipatterns, eight of which overlap with MARS's detection scope. The

comparison was limited to these common antipatterns, with an attempt to replicate MSA-

Nose's results using the Ticket-Train system from the dataset. MSA-Nose primarily identified

Shared Libraries while missing occurrences of the No API Versioning antipattern. For Shared

Libraries, the tool exhibited an average detection precision of 1.5% and a recall of 100%,

attributed to its reliance on comparing library names without accounting for duplicated local

libraries in microservice repositories. Regarding No API Versioning, the tool achieved an

average detection precision of 57% and a recall of 47%, primarily due to its examination of

microservice files rather than the system's complete configuration files (Tighilt et al., 2023).

(Tighilt et al., 2023) concludes that MARS significantly outperforms MSA-Nose in microservice

antipattern detection, excelling not only in shared libraries and no API versioning but also

covering a broader range of microservice antipatterns.

The authors anticipate that this research will lay the groundwork for future practical and

research applications, ultimately contributing to the enhancement of microservices' design

and implementation.

68

4.2.3.3 Future works

(Tighilt et al., 2023) intends to enhance the detection capabilities for specific antipatterns,

notably circular dependencies, while also extending the analysis to identify new antipatterns

and assess their prevalence in a wider array of established microservice-based systems. There

is a plan to conduct empirical and quantitative investigations into the prevalence of

microservice antipatterns within a larger dataset, with a focus on examining their

repercussions on maintenance practices. These efforts are poised to furnish valuable insights

for developers and researchers, offering guidance on best practices and cautionary

considerations when developing microservice-based systems.

69

5 Solution

In this chapter, the intention is to provide an in-depth description of the process involved in

enriching a microservice architecture smell catalogue with additional microservice

architectural smells. The focus will be on elucidating the steps and methodologies employed

to expand the repository of architectural observations, thereby enhancing its

comprehensiveness and utility.

In addition, this chapter describes the developments made to improve the MSA-Nose tool

(Walker et al., 2020).

5.1 Proposed Catalogue

5.1.1 Analysis

As detailed in Section 5.2, the process of gathering and analysing documents related to

microservice architecture smells and anti-patterns was conducted during the screening,

analysis, and reporting phases. This section now aims to assess the remaining unexplored

aspects that warrant attention in updating the microservice smells catalogue proposed by

(Taibi et al., 2019), which aligns closely with the proposed update.

Moreover, the intention is to leverage the open responses from users to augment and refine

this update further. By considering both unexamined areas and user input, a more

comprehensive and improved microservice smells catalogue can be developed.

70

5.1.2 Catalogue Improvements

Following the thorough analysis conducted in Section 4.1 concerning the catalogue by (Taibi et

al., 2019) and the subsequent analysis of documents in Section 5.2, opportunities for

enhancement have become evident. After the final analysis is done the updates to the

catalogue will be shown throughout this section, which means that only the smells to add to

the (Taibi et al., 2019) catalogue will be shown.

One improvement is the inclusion of security-related smells within the realm of microservices,

as described in the study by (Ponce et al., 2022). Integrating these security-related smells is

deemed valuable for fortifying the integrity of the microservice system. The smells that were

selected will be presented below.

Insufficient Access Control

This smell arises when access control measures are lacking within one or more microservices.

This deficiency can potentially compromise the confidentiality of data and business functions

in those microservices. The presence of this smell can expose microservices to security

vulnerabilities, such as the "confused deputy problem," where attackers can manipulate

services to access unauthorized data (Ponce et al., 2022).

In the context of microservices, traditional identity control models are inadequate. They

require client details and permissions to be dynamically validated with each request.

Microservices necessitate an automated decision-making process for permitting or denying

calls between services. In addition, development teams must manage user identities without

introducing excessive latency or contention through frequent interactions with a centralized

service (Ponce et al., 2022).

This smell was also reported in the study done by (Waseem et al., 2021) and by (Söylemez et

al., 2022).

Unnecessary Privileges to Microservices

The "Unnecessary Privileges to Microservices" smell occurs when microservices are granted

access levels, permissions, or functionalities that exceed what is required for their business

functions (Ponce et al., 2022).

This situation arises when a microservice is granted access to databases or message queues,

even when these resources are not essential for the microservice's intended business function.

Consequently, unnecessary exposure of resources increases the attack surface, posing risks to

confidentiality and integrity. In the event of an intruder gaining control of a service, they can

potentially access and modify all data and messages accessible to that service (Ponce et al.,

2022).

71

Using Own Crypto Code

Using proprietary encryption solutions and algorithms poses significant risks to the

confidentiality, integrity, and authenticity of data in software applications. Unless extensively

tested, these custom encryption solutions can lead to security vulnerabilities. When

development teams implement their encryption solutions, they may inadvertently introduce

inadequate security measures, potentially resulting in confidentiality, integrity, and

authenticity issues (Ponce et al., 2022).

Interestingly, the usage of Own Crypto Code can be more detrimental than having no

encryption solution at all. This is because it can create a false sense of security, leading

organizations to believe their data is adequately protected when it remains vulnerable to

threats (Ponce et al., 2022).

This smell was also pointed out as an issue in the study done by (Waseem et al., 2021), as

developers do not use encryption/decryption tools properly.

Non-secured service-to-service communications

This smell occurs when two microservices in an application interact without establishing a

secure communication channel, even if they reside within the same network. Given the highly

distributed nature of microservice-based applications, the proliferation of communication

interfaces and channels increases the overall attack surface of the application. Each exposed

API and communication channel represents a potential attack vector that malicious intruders

could exploit (Ponce et al., 2022).

Microservices frequently rely on intercommunication to perform their business functions, and

if these channels lack security measures, the transmitted data becomes susceptible to man-in-

the-middle, eavesdropping, and tampering attacks. This vulnerability not only jeopardizes the

confidentiality of service-to-service communications but also compromises their integrity and

authenticity. Intruders could intercept and manipulate data in transit, potentially leading to

security breaches (Ponce et al., 2022).

Multiple User Authentication

This smell manifests when a microservice-based application offers multiple access points for

user authentication. Each of these access points represents a potential vulnerability that could

be exploited by an intruder to gain unauthorized access as an end-user. This approach

increases the attack surface and poses a risk to the authenticity of the microservice-based

application.

Utilizing multiple access points for user authentication introduces challenges in terms of

maintainability and usability. The need to develop, maintain, and utilize user login

functionality in various parts of the application can lead to complexity and potential usability

issues.

72

(Zhong et al., 2022) also mentioned that the fact of repeating development means a lack of

consideration for modularity, thus reflecting poor architectural practices.

(Ponce et al., 2022) identified additional microservice smells, some of which propose solutions

involving the adoption of essential microservice development best practices. One of these

smells aligns with an existing microservice architectural smell related to the existence of an

API Gateway, exemplified by the "Publicly Accessible Microservices" smell.

Another example is the "Hardcoded Secrets" smell, also highlighted by (Ponce et al., 2022).

Detecting such smells can be facilitated by implementing or utilizing CI/CD tools like

SonarQube. Notably, this approach corresponds to an already recognized microservice issue

included in the catalogue proposed by (Taibi et al., 2019).

Regarding the industrial inquiry conducted by (Zhou et al., 2023) developers and architects

from various organizational domains reported challenges in developing with microservice

architecture. These challenges were categorized into pairs of practices and associated pains,

as outlined in the initial analysis presented in Section 3.2.6.2.

One of the smells that is raised from pain 3 (Complexity of API Management) is Inconsistent

API Management and Understanding. This smell encompasses challenges such as the

difficulty in ensuring that APIs adhere to their contracts, repetitive implementation of

interfaces, different teams having varying levels of understanding regarding APIs, difficulties in

identifying and resolving problems due to independent service releases, a lack of effective

methods for maintaining consistent API understanding, and the adoption of complex internal

regulations, including naming rules, and manual verification to enforce API development

standards (Zhou et al., 2023).

It's worth noting that while this study has the potential to uncover additional smells, some of

them have already been defined. For instance, pains akin to "Excessive Technology Diversity"

(corresponding to the "Focus on Latest Technologies" smell) and "Unsatisfying Monitoring and

Logging" (related to "Lack of Monitoring") were previously identified.

Nonetheless, certain pains may arise when applying the prescribed patterns intended to

address smells in the catalogue provided by (Taibi et al., 2019). These specific pains

encompass "Inadequate Automation" and “Chaotic Independence” (arising from the

application of "No DevOps tools"), "Data Inconsistency" (stemming from the application of

"Shared Persistence"), and “Ad-hoc organizational transformation” (like the disadvantages of

having the smell “Legacy Organization”).

73

5.2 MSA Nose Improvement

In this section, it is intended to describe the improvements made to the MSA-Nose tool

developed by (Walker et al., 2020).

Different repositories were created to fit and separate all the developments. The

developments done on the MSA-Nose tool can be found on GitHub

(https://github.com/JSamoes/msa-nose) and this contains all the extensive work done in this

research project. This repository provides as a comprehensive resource, carefully

documenting how to use the project. Not only does it provide the codes and implementations,

but it also includes thorough documentation.

The extension and UI can be found also on GitHub (https://github.com/JSamoes/msa-nose-

extension).

5.2.1 Analysis

In this section, all the requirements for the final solution will be analysed so that this work can

contribute to an improvement of the MSA-Nose (Walker et al., 2020) tool. Before any update,

a representation of the components of this tool can be found in Figure 34.

Figure 34 – Components Diagram.

74

In Section 4.2, the analysis encompassed various microservice smell detection tools. After this

evaluation, it was determined that MSA-Nose stood out as the tool most relevant to the

objectives of this document, primarily due to its static analysis capabilities, as it can help

identify issues before runtime. The fact that MSA-Nose is open-source, developed in Java, and

designed for use with Java microservices also factored into its choice. Furthermore, it aligns

with one of the original catalogues of microservice smells (also discussed in Section 4.1). Given

that this catalogue has been updated by other authors, integrating these updates into the tool

represents a significant improvement.

This enhancement aims to elevate the overall experience of developers working with

microservice architecture. The tool will effectively highlight common problems, although it's

worth noting that not all the latest microservice smells can be incorporated, as some may

require specific organizational knowledge. Nonetheless, diligent efforts will be made to

analyse, design, and develop those that can be identified through code analysis.

To further enhance the developer's experience, an extension to Visual Studio Code editor will

be included in the solution. This extension is designed to streamline the tool's usability,

making it more accessible and user-friendly.

5.2.2 Requirements

The identified requirements (non-functional and functional) will be described throughout this

section.

This work's core purpose is to enhance the MSA-Nose tool, with a primary focus on expanding

its functionality and refining its usability. To achieve these objectives, strict adherence to

established microservice architecture patterns and guidelines is imperative, ensuring the

accurate verification of detected smells. This rigorous adherence serves to not only improve

the tool but also facilitates the effective implementation of microservice architecture, thereby

mitigating architectural issues and promoting a smoother adoption of this architectural style

within projects. The summarized view of the non-functional requirements can be seen in

Table 24.

Requirement number Description

1 Improve MSA-Nose usability and functionality attributes

2 Implement microservices with fewer architectural issues

3 Microservice architecture patterns must be followed

Table 24 – MSA-Nose improvement non-functional requirements.

The functional requirements of the work can be seen in the use case diagram shown in Figure

35.

75

Figure 35 – Functional requirements.

All the use cases have as actors the developer as it is the one that needs to have the smells

detected to improve its experience.

As previously mentioned, the use cases will be around the implementation of new

microservice smells that were added to the newest catalogues. There’s, however, a use case

that has as its goal the update of the implementation of detection of missing API Gateway

(UC2).

UC6 pertains to usability and enables users/developers to visualize the microservice

architecture smells that have been detected. This use case encompasses both the

implementation of the front end and the extension.

5.2.3 Design and Implementation

Logical and process views following the 4+1 view model of architecture (Kruchten, 1995) are

presented in the following sections.

5.2.3.1 Logical view

Figure 36 represents the component diagram of the MSA-Nose system created to enhance the

tool created by (Walker et al., 2020).

76

Figure 36 – Logical view of a components’ diagram with a level 2 abstraction.

As described in the section before, the user will have contact with “Visual Studio Code”, which

is a code editor, via an extension that contains a webview interface and sends all the required

information that is made available by the front end. This last one sends all the required

information that came from the extension and is inputted by the user to the backend which is

the MSA-Nose tool.

After all the process is done in the backend, the user will be shown the detected smells in its

IDE.

5.2.3.2 Process View

In this section, the process view for each use case (see Figure 35) is detailed.

UC1 – Detect missing Healthcheck API

At a higher level of abstraction, the developer initiates a request to the MSA-Nose system via

the NoseController, providing details about the microservice to be examined, including the

path to its root. Upon receiving this information, the NoseController forwards it to the

APIService, where a new function is created for retrieving a map of the available APIs within

the specified microservice. This map enables the system to collect all the endpoint paths and

subsequently filter for any that do not conform to the provided health check regular

expression.

If no endpoints are found to match the regular expression, the microservice is labeled as

"missing" and added to a list. This list is then returned to the user in the form of a Data

Transfer Object (DTO). This process is further illustrated in Figure 37.

77

Figure 37 – Process view (UC1).

UC2 – Detect missing API Gateway

As previously mentioned, this use case was initiated to enhance an existing rule. The initial

implementation verified whether the number of microservices exceeded 50.

To improve this rule, a new function was introduced that calls the LibraryService. Within this

function, it assesses whether any dependencies across all the microservices are associated

with a gateway dependency, such as Spring Cloud Gateway. Additionally, it examines other

files for any indications of APIGateway usage, for example, the presence of a "nginx.conf" file,

which suggests the utilization of Nginx.

For a visual representation of the interactions between the various components of the MSA-

Nose tool, please refer to Figure 38, which presents a sequence diagram illustrating the

process.

Figure 38 – Process view (UC2).

UC3 – Detect “Mega Service”

78

In the pursuit of identifying this microservice antipattern, a pivotal constraint considered was

the collective size of all the files within the microservice. If the total number of lines across all

files surpassed 2000, the microservice was categorized as a "Mega service," and the name of

its controller was included in an array. The flow of this process is visually depicted in Figure 39.

Figure 39 – Process View (UC3).

UC4 – Detect “Nano Service”

This rule was put into practice by utilizing the same approach as the previous use case.

However, in this instance, the assessment is based on the total number of lines within the

microservice, scrutinizing if it falls below the threshold of 200 lines. Microservices that meet

this criterion are designated as "Nano Services".

UC5 – Detect “Timeout”

Implementing this rule involved conducting two distinct checks. The first check was performed

on the properties file located within the resources folder, while the second check was applied

to all classes annotated with "@Configuration." In the latter case, the examination focused on

methods that monitored alterations to read and connect timeout values. For a visual

representation of the sequence of operations in this use case, please refer to Figure 40.

Figure 40 – Process View (UC5).

UC6 – Visualize detected smells

In this use case, the objective is to enhance the understanding of the detected smells. To

achieve this, the idea is to develop a Visual Studio Code extension that features a webview

79

containing comprehensive information regarding the validation results. It's important to note

that this webview necessitates a frontend service for its presentation. To illustrate the

functioning of this approach, a sequence diagram for UC6 is provided, as depicted in Figure 41.

Figure 41 – Process View (UC6).

80

81

6 Evaluation

This chapter has the goal of explaining how the solution will be implemented be evaluated, as

well as the metrics, the hypotheses, the test methodology and the result.

6.1 Methodology

Evaluation methodologies are systematic frameworks and techniques used to assess the

effectiveness, performance, and impact of programs, projects, policies, products, or any other

initiative. These methodologies are essential tools for collecting data, analysing outcomes,

and making informed decisions based on evidence.

Evaluation methodologies encompass a wide range of approaches, each tailored to specific

contexts and objectives. One of these is by conducting numerous assessment tests on diverse

microservices apps, which is imperative to gain a precise understanding of the performance

and suitability of the implemented solution. To gauge the effectiveness and accuracy of the

tool, it is essential to subject it to testing across a diverse range of scenarios. An important

aspect of evaluating the advancements made in the MSA-Nose tool is to compare its

performance against the same microservice applications utilized in the case study conducted

by (Walker et al., 2020) in their Case Study to have a full comparison not only because of

performance but also to have the same results in what wasn’t touched. This comparative

analysis not only allows for the assessment of performance but also ensures that any

untouched aspects yield consistent results.

However, the testing efforts will not be limited to just these applications; a broader scope is

intended. Table 25 provides a comprehensive list of microservices, along with their respective

repository URLs, sourced from the Microservices Project List (M. Rahman et al., 2019)

(available at https://github.com/davidetaibi/Microservices_Project_List). This expanded

82

testing scope provides a more holistic perspective on the tool's performance and applicability,

encompassing a wider range of microservices and scenarios.

Microservice name Repository URL

Train Ticket https://github.com/FudanSELab/train-ticket/

Teacher Management System https://github.com/cloudhubs/tms2020

Piggy Metrics https://github.com/sqshq/PiggyMetrics

Table 25 – Microservices information.

6.2 Case Studies

In this section the tests are described per microservice, mirroring the approach taken by

(Walker et al., 2020) study, the analysis will commence with a meticulous manual analysis of

the microservices to determine the presence of any microservice-related issue. Subsequently,

a rigorous evaluation of the MSA-Nose application, along with any implemented

enhancements, is carried out through a series of comprehensive tests. It's worth emphasizing

that these tests were conducted on a system equipped with an Intel i7-8750H processor and

16GB of RAM.

6.2.1 Train Ticket

The selection of this microservice benchmark stemmed from its moderate size, making it an

ideal candidate to comprehensively assess all tool conditions. Designed to mirror real-world

interactions among microservices within an industrial context, this benchmark was considered

one of the largest available at the time according to (Walker et al., 2020) study. It's

noteworthy, however, that the number of microservices has since evolved, increasing from 41

to 47 microservices.

Table 26 shows the results of the analysis, comparing the results before and after the

improvements, comparing manual and MSA-Nose analyses and time spent for each of the

code smells.

Smell Manual (B-
Imp)

Manual
(A-Imp)

MSA-Nose
(B-Imp)

MSA-Nose
(A-Imp)

Time (ms)
(B-Imp)

Time (ms)
(A-Imp)

ESB Usage No No No No 1 1

Too Many
Standards

No No No No 213 263

Wrong
Cuts

0 0 2 1 1487 1456

Not
Having an
API
Gateway

No Yes No Yes 1 77

83

Smell Manual
(B-Imp)

Manual
(A-Imp)

MSA-Nose
(B-Imp)

MSA-Nose
(A-Imp)

Time (ms)
(B-Imp)

Time (ms)
(A-Imp)

Hard-Coded
Endpoints

28 0 28 0 1 1

API
Versioning

76 90 76 90 1981 2318

Microservice
Greedy

0 0 0 0 2093 2246

Shared
Persistency

0 0 0 0 123 106

Inappropriate
Service
Intimacy

1 0 1 0 1617 1864

Shared
Libraries

4 7 4 7 237 461

Cyclic
Dependency

No No No No 1 1

Mega Service NA 0 NA 0 NA 2219

Nano Service NA 0 NA 0 NA

Timeout NA No NA No NA 2141

Health check
API

NA 40 NA 80 NA 2038

 Total 7755 15192

Table 26 – Train Ticket case study results (“B-Imp” means Before Improvement and “A-Imp”

means After Improvement).

This microservice, being notably substantial in size, served as an excellent litmus test for

gauging the effectiveness of the recent enhancements. Notably, following the implementation

of these improvements, the time invested in detecting these microservice-related issues

increased by nearly twofold compared to the pre-implementation period. This shift in timing

can be attributed to the fact that the API Gateway now performs comprehensive checks

across all the "pom.xml" files of each microservice. This process assesses whether they

contain any dependencies related to API Gateways or if there are any configuration files of

alternative API Gateways.

Concerning the outcomes related to the newly identified microservice smells, specifically for

the Mega and Nano Service categories, we considered any microservice containing Java files

with a total line count exceeding 2000 lines as a Mega Service and those with fewer than 200

lines as a Nano Service. Fortunately, none of the microservices fell within these extreme size

ranges, indicating that this test was successfully passed.

Concerning Timeout, multiple methods exist for ascertaining how to establish read or connect

timeouts in an API. To determine if a microservice had defined timeouts, the analysis involved

examining the "application.properties" or "application.yml" files for any indications of

properties such as "spring.httpclient.read-timeout" or "spring.httpclient.connection-timeout."

All Java files annotated with "@Configuration" were inspected to locate methods returning a

84

"RestTemplate" object. If such methods were found, a verification process was carried out to

check if the "setReadTimeout" and "setConnectTimeout" functions were being used or not.

Notably, the manual analysis yielded a "false" result, mirroring the outcome of the MSA-Nose

tool improvement, which means that this test was also successful.

In the context of the Health Check API, existing resources utilized in the collection of

Unversioned APIs smell were leveraged. This approach not only streamlined the process but

also prevented code and functionality duplication. To detect this smell, each microservice

controller was scrutinized to identify and map all endpoints. Subsequently, this mapping was

subjected to analysis, wherein each key (corresponding to a microservice controller name)

had its values (APIs) examined against a predefined regular expression. In cases where none of

the APIs adhered to this regular expression, the key was retained, and an array was generated

containing the names of all microservice controllers that did not comply with the specified

pattern. On this smell’s behalf, there is a one-to-one relationship between the microservice

controller name and the microservice, implying that each microservice should ideally have just

one controller. However, this ideal scenario does not always hold.

The manual analysis revealed that none of the 40 controllers contained a single health check

endpoint. However, the MSA-Nose analysis identified the absence of a health check endpoint

in any of the 80 controllers gathered. This discrepancy in the number of controllers identified

suggests that the detection of these issues was not entirely successful, given that the number

of controllers had doubled compared to the initial manual analysis.

6.2.2 Teacher Management System

The Teacher Management System (TMS) is an enterprise application designed by Baylor

University to support the Texas Educator Certification training program, focusing on

Computational Thinking, Coding, and Tinkering. TMS comprises four microservices: User

Management System (UMS), Question Management System (QMS), Exam Management

System (EMS), and Configuration Management System (CMS). These microservices are

developed using the Spring Boot framework, following a structured architecture with

controller, service, and repository layers. The application is packaged with Docker, deployed

using Docker-compose, and employs NGINX for routing (Walker et al., 2020).

Just like in the initial case study, Table 27 displays the outcomes of MSA-Nose both before and

after enhancements. It presents a comparison of manual analysis and MSA-Nose analysis,

along with the time taken for each detection.

Smell Manual
(B-Imp)

Manual
(A-Imp)

MSA-Nose
(B-Imp)

MSA-Nose
(A-Imp)

Time (ms)
(B-Imp)

Time (ms)
(A-Imp)

ESB Usage No No No No 1 1

Too Many
Standards

No No No No 66 58

Wrong Cuts 0 0 0 0 279 19

Smell Manual Manual MSA-Nose MSA-Nose Time (ms) Time (ms)

85

(B-Imp) (A-Imp) (B-Imp) (A-Imp) (B-Imp) (A-Imp)

Not Having an
API Gateway

Yes Yes No Yes 1 190

Hard-Coded
Endpoints

2 3 2 0 1 1

API Versioning 62 69 62 65 546 492

Microservice
Greedy

0 0 0 0 271 499

Shared
Persistency

0 0 0 0 60 17

Inappropriate
Service Intimacy

0 0 0 0 1 1

Shared Libraries 2 2 2 2 47 22

Cyclic
Dependency

No No No No 1 1

Mega Service NA 1 NA 1 NA 489

Nano Service NA 0 NA 0 NA

Timeout NA No NA No NA 448

Health check API NA 12 NA 17 NA 521

 Total 1074 2759

Table 27 – Teacher Management System case study results (“B-Imp” means Before

Improvement and “A-Imp” means After Improvement).

In the realm of performance, a phenomenon like the one observed in the previous case study

occurred. The time required to identify the microservice smells was significantly influenced by

the introduction of the new features, more than doubling the execution time in the case of

the TMS microservice.

Concerning the outcomes related to the new smells, the manual analysis correctly classified

the QMS microservice as a Mega Service, aligning with the result obtained from the MSA-Nose

analysis. Likewise, both the Nano Service and Timeout smells were correctly identified

through manual analysis and confirmed by the MSA-Nose tool.

However, when it comes to the Health Check API, a situation analogous to the previous case

study emerged. In this instance, more controllers were identified than the actual number in

existence, resulting in the erroneous identification of this microservice smell.

6.2.3 Piggy Metrics

Piggy Metrics represents a straightforward financial advisory application designed to

showcase the Microservice Architecture Pattern, utilizing technologies like Spring Boot, Spring

Cloud, and Docker. This application is divided into three fundamental microservices,

specifically the Account service, Statistics service, and Notification service. Each of these

microservices can be independently deployed, and they are structured around distinct

business domains, providing modularity and flexibility to the application. In line with the

86

methodology employed in previous case studies, the outcomes will be presented in a tabular

format (see Table 28). This table will encompass the results of both manual and MSA-Nose

analysis, along with the corresponding time taken to detect each microservice smell. Given

that (Walker et al., 2020) did not analyse this particular microservice benchmark, there was no

preceding manual assessment or time measurements available for the fifth column

(representing the pre-improvement period). These time measurements were obtained using

the system properties described earlier in this section.

Smell Manual MSA-Nose
(B-Imp)

MSA-Nose
(A-Imp)

Time (ms)
(B-Imp)

Time (ms)
(A-Imp)

ESB Usage No No No 1 1

Too Many
Standards

No No No 33 39

Wrong Cuts 0 0 0 12 11

Not Having an API
Gateway

Yes No No 1 130

Hard-Coded
Endpoints

0 0 0 1 1

API Versioning 3 9 4 349 299

Microservice
Greedy

0 0 0 398 248

Shared Persistency 0 0 0 13 8

Inappropriate
Service Intimacy

0 0 0 1 1

Shared Libraries 4 4 4 37 32

Cyclic Dependency No No No 1 1

Mega Service 1 NA 1 NA 236

Nano Service 0 NA 0 NA

Timeout No NA No NA 259

Health check API 3 NA 3 NA 225

 Total 847 1491

Table 28 - Piggy Metrics case study results (“B-Imp” means Before Improvement and “A-Imp”

means After Improvement).

As mentioned earlier, this microservice was initially characterized as comprising only three

microservices. However, it's important to note that MSA-Nose lacks the capability to

distinguish between business-specific microservices and others. This distinction becomes

evident when examining the results of the API versioning smell, which included endpoints

from microservices that do not pertain to those with core business logic. It's worth adding

that the method employed to retrieve APIs from a microservice effectively eliminates

duplicates. Consequently, in cases where different controllers within a microservice share the

same path, only one of those duplicates will appear in the results.

The method used to retrieve APIs also had an impact on the way controllers with the Health

Check API smell were collected, causing it to not identify their names accurately. Nevertheless,

it's important to note that the count of controllers or microservices with this smell is accurate.

87

Therefore, while it is technically a false positive in terms of the method used to identify them,

the overall count is correct. The issue lies in the method, not the outcome.

Concerning the API Gateway smell, following the implemented improvements, it failed to

detect the utilization of the gateway within this microservice. This was attributed to the

microservice's reliance on a dependency that had been without any updates for over four

years, however with no reported vulnerabilities on their dependencies since May 23, 2019.

6.3 Threats to validity

To mitigate potential threats to validity, a new microservice was introduced into the test

dataset. This was done to address the possibility that the initial dataset was biased due to its

origin from specific projects.

However, despite this effort, certain threats to validity persist. Reproducibility may not align

with (Walker et al., 2020)’s original setup, as variations in settings can introduce discrepancies

that impact result validity.

Furthermore, alterations in the microservices employed and the absence of continuous

improvements since its release in the tool can also influence the outcome.

88

89

7 Conclusions

This chapter describes the contributions arising from the conducted work. Subsequently,

attention turns to the primary limitations and constraints encountered during the

development and writing process. Finally, a section presents information regarding potential

improvements that could be explored in future work.

7.1 Contributions

The objectives of this study were first created, as detailed in Section 1.3, and Table 29

subsequently details these goals and their related successes.

Number Goal Success

1 Explore and evaluate the comprehensiveness of existing
catalogues of microservice smells, also gauging the
acceptance of the included smells.

Achieved

2 Improve a microservice smell detector that incorporates
and improves upon existing applications. This detector
aids in identifying smells in a microservice architecture,
thus helping to improve the design and implementation
of microservices.

Achieved

Table 29 – Goals achievement.

Beginning with goal number 1, which involved exploring, evaluating, and contributing to a

microservice catalogue, significant progress was made. This achievement was made possible

through the completion of a systematic mapping study, which involved the analysis of various

articles published since 2021, focusing on issues related to the implementation of

microservice smells. Additionally, we conducted an industrial survey, which garnered

90

participation from 31 practitioners experienced in microservices. This survey played a pivotal

role in identifying the challenges and concerns that developers encounter in microservice

implementation, thus providing valuable insights for future research endeavours.

As for goal number 2, which pertained to enhancing the MSA-Nose detection tool, progress

was made in expanding the repertoire of detectable microservice smells. While there is

certainly room for further refinement, this solution is now accessible as an open-source

project, conveniently located at the beginning of Section 5.2. for reference. Detailed results

stemming from this implementation can be in Chapter 6.

7.2 Difficulties along the way

Throughout the course of developing this document, several challenges were encountered,

which influenced the outcomes of this work.

The initial challenge, as previously noted in Section 3.4, was the length of the industry survey.

Its extensive nature dissuaded some potential participants from completing it, despite the

majority of the questions being close-ended. This ultimately resulted in a smaller number of

survey respondents.

In addition, there were constraints experienced during the implementation phase. Certain

microservice smells could not be feasibly detected through code analysis or static analysis

methods. Consequently, the number of implemented smells was limited to those for which

detection methods could be successfully devised, resulting in a smaller set of implemented

smells.

Furthermore, the initial concept revolved around selecting a variety of tools capable of

detecting microservice-related smells and consolidating them into a single extension. The goal

was to provide users with a comprehensive toolkit for assessing their microservice

applications. However, it became evident that many of these detection tools were identifying

the same set of microservice smells. Consequently, the decision was made to opt for the tool

that detected the largest number of these smells, ensuring a more efficient and focused

approach to microservice smell detection.

91

7.3 Future Work

There is room for enhancements in the implementation of new microservice smells,

incorporating both static and dynamic analysis approaches. Dynamic analysis, for instance,

can aid in identifying additional security-related issues. Moreover, the existing microservice

smells discussed in this document could benefit from further refinement by subjecting them

to testing across a wider range of microservices to identify additional issues.

Additionally, an envisaged improvement, initially considered, is the creation of a repository

containing a microservice replete with anti-patterns. Such a repository would serve as a

valuable resource, providing developers with a tangible example of what to avoid when

implementing microservices.

Lastly, concerning the new microservice smells and the development of the smells catalogue,

there is ample opportunity for further exploration. As evidenced by the research conducted,

there are numerous areas yet to be explored. Consequently, there is the potential for ongoing

updates and expansions to the catalogue.

92

93

References

Alshuqayran, N., Ali, N., & Evans, R. (2016). A systematic mapping study in microservice
architecture. Proceedings - 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications, SOCA 2016, 44–51. https://doi.org/10.1109/SOCA.2016.15

Arcelli Fontana, F., Lenarduzzi, V., Roveda, R., & Taibi, D. (2019). Are architectural smells
independent from code smells? An empirical study. Journal of Systems and Software,
154, 139–156. https://doi.org/10.1016/j.jss.2019.04.066

Azadi, U., Fontana, F. A., & Taibi, D. (2019). Architectural smells detected by tools: A catalogue
proposal. Proceedings - 2019 IEEE/ACM International Conference on Technical Debt,
TechDebt 2019, May, 88–97. https://doi.org/10.1109/TechDebt.2019.00027

Barbara Kitchenham. (2004). Procedures for Performing Systematic Reviews. Keele University
Technical Report, 33(2004), 1–26.

CCSU. (n.d.). CS 410/510 - Software Engineering Resilience Engineering.
https://cs.ccsu.edu/~stan/classes/CS410/Notes16/14-ResilienceEngineering.html

Di Francesco, P., Lago, P., & Malavolta, I. (2019). Architecting with microservices: A systematic
mapping study. Journal of Systems and Software, 150, 77–97.
https://doi.org/10.1016/j.jss.2019.01.001

Ding, X., & Zhang, C. (2022). How Can We Cope with the Impact of Microservice Architecture
Smells? ACM International Conference Proceeding Series, 8–14.
https://doi.org/10.1145/3524304.3524306

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L.
(2017). Microservices: Yesterday, today, and tomorrow. Present and Ulterior Software
Engineering, 195–216. https://doi.org/10.1007/978-3-319-67425-4_12

Dudney, B., Krozak, J., Wittkopf, K., Asbury, S., & Osborne, D. (2002). J2EE Antipatterns.

Ernst, N. A., Bellomo, S., Ozkaya, I., Nord, R. L., & Gorton, I. (2015). Measure it? Manage it?
Ignore it? Software practitioners and technical debt. 2015 10th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2015 - Proceedings, 50–60.
https://doi.org/10.1145/2786805.2786848

Foundation, E. (2020). 2020 Jakarta EE Developer Survey Report (Vol. 0, Issue C).

Foundation, E. (2021). 2021 Jakarta EE Developer Survey Report (Vol. 0, Issue C).

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics): Vol. 857 LNCS. https://doi.org/10.1007/bfb0020422

94

Fowler, M. (2014, March 25). Microservices.
https://martinfowler.com/articles/microservices.html

Fowler, M., & Lewis, J. (2014, March 25). Microservices - a definition of this new architectural
term. https://martinfowler.com/articles/microservices.html#footnote-monolith

Garcia, J., Daniel, P., Edwards, G., & Medvidovic, N. (2009). Identifying Architectural Bad
Smells. Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR, 255–258. https://doi.org/10.1109/CSMR.2009.59

GitLab. (n.d.). What are microservices? | GitLab. Retrieved January 21, 2023, from
https://about.gitlab.com/topics/microservices/

GitLab. (2022, September 29). What are the benefits of a microservices architecture? | GitLab.
https://about.gitlab.com/blog/2022/09/29/what-are-the-benefits-of-a-microservices-
architecture/

Kitchenham, Barbara Charters, S., Budgen, D., Brereton, P., Turner, M., Linkman, S., Jørgensen,
M., Mendes, E., & Visaggio, G. (2007). Guidelines for performing Systematic Literature
Reviews in Software Engineering.

Koen, P. A., Ajamian, G. M., Boyce, S., Clamen, A., Fisher, E., Fountoulakis, S., Johnson, A., Puri,
P., & Seibert, R. (2002). Fuzzy Front End : and Techniques. Industrial Research, pp, 5–35.
http://www.stevens.edu/cce/NEW/PDFs/FuzzyFrontEnd_Old.pdfNEW/PDFs/FuzzyFrontE
nd_Old.pdf

Kruchten, P. B. (1995). The 4+1 View Model of Architecture. IEEE Software, 12(6), 42–50.
https://doi.org/10.1109/52.469759

Larrucea, X., Santamaria, I., Colomo-palacios, R., & Ebert, C. (2018). Microservices.

Loukides, M., & Swoyer, S. (2020, July 15). Microservices Adoption in 2020 – O’Reilly.
https://www.oreilly.com/radar/microservices-adoption-in-2020/

Lu, N., Glatz, G., & Peuser, D. (2019). Moving mountains – practical approaches for moving
monolithic applications to Microservices.

Neri, D., Soldani, J., Zimmermann, O., & Brogi, A. (2020). Design principles, architectural smells
and refactorings for microservices: a multivocal review. Software-Intensive Cyber-
Physical Systems, 35(1–2), 3–15. https://doi.org/10.1007/s00450-019-00407-8

OASIS. (n.d.). OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)
TC | FAQ. Retrieved February 25, 2023, from https://www.oasis-
open.org/committees/tosca/faq.php

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in
software engineering. 12th International Conference on Evaluation and Assessment in
Software Engineering, EASE 2008, June. https://doi.org/10.14236/ewic/ease2008.8

Pigazzini, I., Fontana, F. A., Lenarduzzi, V., & Taibi, D. (2020). Towards microservice smells
detection. Proceedings - 2020 IEEE/ACM International Conference on Technical Debt,

95

TechDebt 2020, May, 92–97. https://doi.org/10.1145/3387906.3388625

Ponce, F., Marquez, G., & Astudillo, H. (2019). Migrating from monolithic architecture to
microservices: A Rapid Review. Proceedings - International Conference of the Chilean
Computer Science Society, SCCC, 2019-Novem(September).
https://doi.org/10.1109/SCCC49216.2019.8966423

Ponce, F., Soldani, J., Astudillo, H., & Brogi, A. (2022). Smells and refactorings for microservices
security: A multivocal literature review. Journal of Systems and Software, 192, 111393.
https://doi.org/10.1016/J.JSS.2022.111393

Rahman, A., Parnin, C., & Williams, L. (2019). The Seven Sins: Security Smells in Infrastructure
as Code Scripts. Proceedings - International Conference on Software Engineering, 2019-
May, 164–175. https://doi.org/10.1109/ICSE.2019.00033

Rahman, M., Panichella, S., & Taibi, D. (2019). Joint Proceedings of the Inforte Summer School
on Software Maintenance and Evolution. CEUR-WS.

Refactoring Guru. (n.d.). Shotgun Surgery. Retrieved February 26, 2023, from
https://refactoring.guru/smells/shotgun-surgery

Rich, N., & Holweg, M. (2000). VALUE ANALYSIS. INNOREGIO: Dissemination of Innovation and
Knowledge Management Techniques, 0–31.

Richards, M. (2016). Microservices AntiPatterns and Pitfalls.

Richardson, C. (2018). Microservices Patterns: With Examples in Java.

Sampaio, A. (2015). Improving Systematic Mapping Reviews. ACM SIGSOFT Software
Engineering Notes, 40(6), 1–8. https://doi.org/10.1145/2830719.2830732

Sharma, T., Singh, P., & Spinellis, D. (2020). An empirical investigation on the relationship
between design and architecture smells. Empirical Software Engineering, 25(5), 4020–
4068. https://doi.org/10.1007/s10664-020-09847-2

Soldani, J., Muntoni, G., Neri, D., & Brogi, A. (2021). The μTOSCA toolchain: Mining, analyzing,
and refactoring microservice-based architectures. Software - Practice and Experience,
51(7), 1591–1621. https://doi.org/10.1002/spe.2974

Söylemez, M., Tekinerdogan, B., & Tarhan, A. K. (2022). Challenges and Solution Directions of
Microservice Architectures: A Systematic Literature Review. Applied Sciences
(Switzerland), 12(11). https://doi.org/10.3390/app12115507

STRIMBEI, C., DOSPINESCU, O., STRAINU, R.-M., & NISTOR, A. (2015). Software Architectures –
Present and Visions. Informatica Economica, 19(4/2015), 13–27.
https://doi.org/10.12948/issn14531305/19.4.2015.02

Suryanarayana, G., Samarthyam, G., & Sharma, T. (2014). Refactoring for software design
smells : managing technical debt.

Taibi, D., & Lenarduzzi, V. (2018). On the Definition of Microservice Bad Smells. IEEE Software,

96

35(3), 56–62. https://doi.org/10.1109/MS.2018.2141031

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, Motivations, and Issues for Migrating to
Microservices Architectures: An Empirical Investigation. IEEE Cloud Computing, 4(5), 22–
32. https://doi.org/10.1109/MCC.2017.4250931

Taibi, D., Lenarduzzi, V., & Pahl, C. (2019). Microservices Anti-Patterns : A Taxonomy.

Tarjan, R. (1972). Depth-first search and linear graph algorithms Connected Compon... SIAM
Journal on Computing, 1(2), 146–160.
/citations?view_op=view_citation&continue=/scholar%3Fhl%3Den%26as_sdt%3D0,5%2
6scilib%3D1025&citilm=1&citation_for_view=pfCBJt8AAAAJ:0EnyYjriUFMC&hl=en&oi=p

Tighilt, R., Abdellatif, M., Moha, N., Mili, H., Boussaidi, G. El, Privat, J., & Guéhéneuc, Y. G.
(2020). On the Study of Microservices Antipatterns: A Catalog Proposal. ACM
International Conference Proceeding Series, 1.
https://doi.org/10.1145/3424771.3424812

Tighilt, R., Abdellatif, M., Trabelsi, I., Madern, L., Moha, N., & Guéhéneuc, Y. G. (2023). On the
maintenance support for microservice-based systems through the specification and the
detection of microservice antipatterns. Journal of Systems and Software, 204, 111755.
https://doi.org/10.1016/j.jss.2023.111755

Viggiato, M., Terra, R., Rocha, H., Valente, M. T., & Figueiredo, E. (2018). Microservices in
Practice: A Survey Study. http://arxiv.org/abs/1808.04836

Walker, A., Das, D., & Cerny, T. (2020). Automated code-smell detection in microservices
through static analysis: A case study. Applied Sciences (Switzerland), 10(21), 1–20.
https://doi.org/10.3390/app10217800

Waseem, M., Liang, P., Shahin, M., Ahmad, A., & Nassab, A. R. (2021). On the nature of issues
in five open source microservices systems: An empirical study. ACM International
Conference Proceeding Series, 201–210. https://doi.org/10.1145/3463274.3463337

Wu, M., Zhang, Y., Liu, J., Wang, S., Zhang, Z., Xia, X., & Mao, X. (2022). On the Way to
Microservices: Exploring Problems and Solutions from Online Q&A Community.
Proceedings - 2022 IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2022, 432–443. https://doi.org/10.1109/SANER53432.2022.00058

Zhong, C., Huang, H., Zhang, H., & Li, S. (2022). Impacts, causes, and solutions of architectural
smells in microservices: An industrial investigation. Software - Practice and Experience,
July, 2574–2597. https://doi.org/10.1002/spe.3138

Zhou, X., Li, S., Cao, L., Zhang, H., Jia, Z., Zhong, C., Shan, Z., & Babar, M. A. (2023). Revisiting
the practices and pains of microservice architecture in reality: An industrial inquiry.
Journal of Systems and Software, 195, 111521.
https://doi.org/10.1016/j.jss.2022.111521

97

Appendix A (Value Analysis)

Value analysis

This chapter describes the value analysis of the dissertation, which intends to give a

contextualization of the problem, the proposal emergence, and the value intended to be

provided to the end user.

“Value Analysis can be defined as a process of systematic review that is applied to existing

product designs in order to compare the function of the product required by a customer to

meet their requirements at the lowest cost consistent with the specified performance and

reliability needed” (Rich & Holweg, 2000). This analysis is therefore necessary so the end user

can be aware of the value of the proposed work.

To contextualize and support this value analysis this chapter will have an explanation of the

New Concept Development Model (NCD) which is defined as the innovation process where

new products or ideas are generated for the market.

New Concept Development Model

In the business world, innovation is a process that, beyond introducing a new idea or concept,

requires analysis and implementation to generate value a customer feels he can afford to pay

for. To guarantee that the product created/developed has the biggest value possible to the

end-user, a method represented in Figure 42 was created to characterize the innovation

process.

This innovation process may be divided into three areas: the fuzzy front end (FFE), the new

product development (NPD) process, and commercialization (Koen et al., 2002).

Figure 42 – The innovation process (Koen et al., 2002)

98

The first two steps are where an opportunity is found and where the product is created and

discussed. These steps are distinct from each other in terms of the Nature of Work,

Commercialization Date, Funding, Revenue Expectations, Activity, and Measures of Progress

(Koen et al., 2002). However, both aim to create a new product, whereas commercialization

aims to sell the created product.

However, the first part of the innovation process (FFE) had room for improvement due to a

lack of common terms and definitions between companies, and so, to address this

shortcoming the New Concept Development (NCD) Model was created (Koen et al., 2002).

This model, as shown in Figure 43, is composed of three parts:

• Five controllable activity elements (opportunity identification, opportunity analysis,

idea generation, enrichment, idea selection, and concept definition).

• The engine that drives the five key elements with leadership, culture, and business

strategy.

• Influencing factors that may affect the entire innovation process; consist of the

outside world and/or the enabling sciences that are uncontrollable by the corporation.

Figure 43 – Relationship diagram representing the NCD model (Koen et al., 2002).

99

Opportunity Identification

This element is where the organization identifies opportunities it might want to pursue and

the market or technology arena in the company may want to participate. The essence of this

element is the sources and methods used to identify opportunities to pursue. Typically this

element is driven by the business goals (Koen et al., 2002).

There are a few ways to be more efficient in identifying new opportunities. One of the

techniques is technology trend analysis, which is a technique that consists of “collecting,

analysing, and communicating the best available information on competitive trends” (Koen et

al., 2002) to better define opportunities and product improvement.

The popularity of microservice architecture and the impact of incorrect implementation

Microservice architecture is a software architecture that is still in consolidation. However, its

popularity has been increasing at a fast pace since 2015 (Di Francesco et al., 2019) due to its

characteristics and benefits.

To follow the practices that bring a plethora of advantages to software development,

companies like Amazon, Deutsche Telekom, LinkedIn, Netflix, SoundCloud, The Guardian,

Uber, and Verizon are quickly adopting microservice-based approaches (Larrucea et al., 2018).

This need to quickly implement microservice-based applications can lead practitioners to

experience challenges about microservice boundaries that will negatively impact quality

attributes (e.g., reusability, testability, and maintainability) of the developed

application/service. The major effect of these would be not having the many advantages that

the microservice architecture has to offer. Microservices affected by architecture smells are

more frequently to be changed than clean ones and the more architecture smells a

microservice is affected the more likely it is to be altered (Zhong et al., 2022).

Opportunity Analysis

An opportunity is analysed and assessed during the opportunity analysis to confirm that it is

worth pursuing. For that to be possible, additional information is needed for translating

opportunity identification into specific business and technology opportunities. The tools and

methods used in opportunity analysis to determine if an opportunity existed may be used

again in this element however more resources will be expended, providing more detail on the

appropriateness and attractiveness of the selected opportunity (Koen et al., 2002).

As shown in the opportunity identification, a survey was given to subscribers of a well-known

IT media company O’Reilly where they were asked to what extent, and how were they using

the microservice architecture. Of the 1502 respondents, most have an IT role in their company

(more than 75%) (Loukides & Swoyer, 2020). As shown in Figure 44, the number of users that

are using microservices in their organization for the first time in the past 3 years was almost

half of the respondent’s total.

100

Figure 44 - Duration of use of microservice from the survey respondents (Loukides & Swoyer,

2020)

Many authors refer to the microservice as the most used architecture model used by different

companies, being this approach used by leading software consultancy firms and product

design companies due to its appealing architecture that allows teams and software

organizations to be more productive in general, and build frequently more successful products

(Alshuqayran et al., 2016). The survey conducted by the Eclipse Foundation in 2021, Jakarta EE

concludes that the popularity of microservices had a nominal increase from 2020 to 2021,

from 39% to 43%, respectively, of usage of the microservice architecture for implementing

Java systems in the cloud (Foundation, 2020, 2021).

However, the adoption of the microservice architecture is not a simple process. As it has a

wide and in-discussion definition, with many points that need to be reached, this adoption

tends to be complex, because requires managing distributed architecture and its challenges,

which include network latency and unreliability, fault tolerance, complex services’

orchestration, data consistency and transaction management, and load balancing (Di

Francesco et al., 2019).

These new challenges imposed on the developer trigger architectural smells on the

application or, in other words, symptoms of bad code or design that can cause different

quality problems, such as faults, technical debt, or difficulties with maintenance and evolution

(Arcelli Fontana et al., 2019).

A study conducted by (Ernst et al., 2015) concluded that one of the main sources of technical

debt in an application is architectural smells, as seen in Figure 45, which is also the only

consensual source of it.

101

Figure 45 - Ranking sources of technical debt. Choice 1 is represented by hatches; Choice 2,

dashes; and Choice 3, dots (Ernst et al., 2015).

Any type of software smell will negatively affect the application; however, architectural smells

can have a bigger impact when present than code smells because they are at a bigger level of

software systems.

To be able to check how architectural smells affect applications, (Zhong et al., 2022)

conducted research with industrial collaboration that checked what impacts do the

architectural smells have on the maintenance (which is one of the quality attributes of

software) of the MSA-based system. To measure maintainability, (Zhong et al., 2022) adopted

five measures that could be extracted from the revision history. These measures include the

changes made to a system, that indicate the difficulty to modify the system, namely, Commit

Count per File (CCF) and Commit Line Count per File (CLCF). These also include the

independence committers have in changes, that is, the degree to which the system can be

changed independently by committers, namely Commit Overlap Ratio (COR), Commit Fileset

Overlap Ratio (CFOR), Pairwise Committer Overlap (PCO). The higher the values on these

measures, the lower the maintainability.

For this study to be successful, (Zhong et al., 2022) used 118 microservices that contained

44,334 files and 14,070 commits. Also, to correlate the maintainability of the microservice

with the existence of architecture smells, (Zhong et al., 2022) carefully chose a list of six

architecture smells, which can be identified precisely at different levels in a software system.

The chosen ones were Cyclic Dependency (CD) – a circular chain of dependencies among a set

of abstractions, Hub-like Dependency (HD) – an abstraction that has excessive ingoing and

outgoing dependencies with other abstractions, Unstable Dependency (UD) – which occurs

when an abstraction depends on another abstraction less stable than it, Concern Overload

102

(CO) – A component implements an excessive number of concerns, Scattered Functionality (SF)

– multiple components are responsible for realizing the same concern, and some of those

components are responsible for orthogonal concerns, Modularity Violation (MV) – Files of two

structurally independent components are shown to change together frequently in the revision

history (Zhong et al., 2022).

After the assessment was done, a table was created that compared architecture smells and

maintainability measures, as shown in Table 30.

 CCF CLCF COR CFOR PCO
Percent difference between smelly
and clean
microservices

pd 248.17% 52.13% 83.89% 44.57% 223.03%

p-value <0.001 0.615 <0.001 <0.001 <0.001

Correlation between AS number and
the measures

pc 0.238 -0.058 0.475 0.508 0.497

p-value 0.010 <0.001 <0.001 <0.001

Table 30 – Architecture Smells versus maintainability measures (Zhong et al., 2022).

The study used a 2-sample t-test to compare the maintainability measures of "smelly" and

"clean" microservices. The greatest difference in maintainability measures was found with CCF

and the smallest was with CFOR. Results showed that the p-value was less than 0.05 for four

of the maintainability measures, which verified the hypothesis that smelly microservices are

more difficult to maintain. However, there was no statistical significance for CLCF values. The

study also found positive correlations between the number of architectural smells a

microservice has and most of the maintainability measures using Pearson Correlation Analysis,

which suggests that microservices affected by architectural smells are generally more difficult

to maintain (Zhong et al., 2022).

Avoiding architectural issues in a software system requires early identification and mitigation

of potential problems. One way to achieve this is by using tools that can detect and report

code-level smells and other issues iteratively. Tools like SonarQube3 can analyse the codebase

and provide feedback on issues such as duplicate code, long methods, and large classes,

among others. However, when it comes to architectural issues, there is not yet an effective

tool to automatically detect and report on these issues.

Developing such a tool could be beneficial for software teams, as it could provide insights into

potential problems with the architecture of a system and help teams proactively address

these issues. This tool could analyse the dependencies between services and detect cases of

cyclic dependencies or feature envy, which could indicate architectural issues.

3 https://www.sonarsource.com/products/sonarqube/

103

Appendix B (Additional Pitfalls)

Table 31 – The main pitfalls proposed in non-peer-reviewed literature and practitioner

talks (Taibi & Lenarduzzi, 2018).

104

105

Appendix C (Survey)

106

107

108

109

110

111

112

113

114

115

116

117

118

