13,829 research outputs found

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    Failure Mitigation in Linear, Sesquilinear and Bijective Operations On Integer Data Streams Via Numerical Entanglement

    Full text link
    A new roll-forward technique is proposed that recovers from any single fail-stop failure in MM integer data streams (M≥3M\geq3) when undergoing linear, sesquilinear or bijective (LSB) operations, such as: scaling, additions/subtractions, inner or outer vector products and permutations. In the proposed approach, the MM input integer data streams are linearly superimposed to form MM numerically entangled integer data streams that are stored in-place of the original inputs. A series of LSB operations can then be performed directly using these entangled data streams. The output results can be extracted from any M−1M-1 entangled output streams by additions and arithmetic shifts, thereby guaranteeing robustness to a fail-stop failure in any single stream computation. Importantly, unlike other methods, the number of operations required for the entanglement, extraction and recovery of the results is linearly related to the number of the inputs and does not depend on the complexity of the performed LSB operations. We have validated our proposal in an Intel processor (Haswell architecture with AVX2 support) via convolution operations. Our analysis and experiments reveal that the proposed approach incurs only 1.8%1.8\% to 2.8%2.8\% reduction in processing throughput in comparison to the failure-intolerant approach. This overhead is 9 to 14 times smaller than that of the equivalent checksum-based method. Thus, our proposal can be used in distributed systems and unreliable processor hardware, or safety-critical applications, where robustness against fail-stop failures becomes a necessity.Comment: Proc. 21st IEEE International On-Line Testing Symposium (IOLTS 2015), July 2015, Halkidiki, Greec

    Biologically inspired distributed machine cognition: a new formal approach to hyperparallel computation

    Get PDF
    The irresistable march toward multiple-core chip technology presents currently intractable pdrogramming challenges. High level mental processes in many animals, and their analogs for social structures, appear similarly massively parallel, and recent mathematical models addressing them may be adaptable to the multi-core programming problem

    Lurching Toward Chernobyl: Dysfunctions of Real-Time Computation

    Get PDF
    Cognitive biological structures, social organizations, and computing machines operating in real time are subject to Rate Distortion Theorem constraints driven by the homology between information source uncertainty and free energy density. This exposes the unitary structure/environment system to a relentless entropic torrent compounded by sudden large deviations causing increased distortion between intent and impact, particularly as demands escalate. The phase transitions characteristic of information phenomena suggest that, rather than graceful decay under increasing load, these structures will undergo punctuated degradation akin to spontaneous symmetry breaking in physical systems. Rate distortion problems, that also affect internal structural dynamics, can become synergistic with limitations equivalent to the inattentional blindness of natural cognitive process. These mechanisms, and their interactions, are unlikely to scale well, so that, depending on architecture, enlarging the structure or its duties may lead to a crossover point at which added resources must be almost entirely devoted to ensuring system stability -- a form of allometric scaling familiar from biological examples. This suggests a critical need to tune architecture to problem type and system demand. A real-time computational structure and its environment are a unitary phenomenon, and environments are usually idiosyncratic. Thus the resulting path dependence in the development of pathology could often require an individualized approach to remediation more akin to an arduous psychiatric intervention than to the traditional engineering or medical quick fix. Failure to recognize the depth of these problems seems likely to produce a relentless chain of the Chernobyl-like failures that are necessary, bot often insufficient, for remediation under our system

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    The hippocampus and cerebellum in adaptively timed learning, recognition, and movement

    Full text link
    The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-86-C-0037, 90-0128); Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-92-J-1904); National Institute of Mental Health (MH-42900

    Smart Nanostructures and Synthetic Quantum Systems

    Get PDF
    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is a semantic information theory of reality in which space and quantum phenomena are emergent.Comment: LaTex,14 pages 1 eps file. To be published in BioMEMS and Smart Nanostructures, Proceedings of SPIE Conference #4590, ed. L. B. Kis

    Reliable Linear, Sesquilinear and Bijective Operations On Integer Data Streams Via Numerical Entanglement

    Get PDF
    A new technique is proposed for fault-tolerant linear, sesquilinear and bijective (LSB) operations on MM integer data streams (M≥3M\geq3), such as: scaling, additions/subtractions, inner or outer vector products, permutations and convolutions. In the proposed method, the MM input integer data streams are linearly superimposed to form MM numerically-entangled integer data streams that are stored in-place of the original inputs. A series of LSB operations can then be performed directly using these entangled data streams. The results are extracted from the MM entangled output streams by additions and arithmetic shifts. Any soft errors affecting any single disentangled output stream are guaranteed to be detectable via a specific post-computation reliability check. In addition, when utilizing a separate processor core for each of the MM streams, the proposed approach can recover all outputs after any single fail-stop failure. Importantly, unlike algorithm-based fault tolerance (ABFT) methods, the number of operations required for the entanglement, extraction and validation of the results is linearly related to the number of the inputs and does not depend on the complexity of the performed LSB operations. We have validated our proposal in an Intel processor (Haswell architecture with AVX2 support) via fast Fourier transforms, circular convolutions, and matrix multiplication operations. Our analysis and experiments reveal that the proposed approach incurs between 0.03%0.03\% to 7%7\% reduction in processing throughput for a wide variety of LSB operations. This overhead is 5 to 1000 times smaller than that of the equivalent ABFT method that uses a checksum stream. Thus, our proposal can be used in fault-generating processor hardware or safety-critical applications, where high reliability is required without the cost of ABFT or modular redundancy.Comment: to appear in IEEE Trans. on Signal Processing, 201

    Cognition in Aristotle's Poetics

    No full text
    This paper examines Aristotle’s understanding of the contributions of perceptual and rational cognition to the composition and reception of poetry. An initial outline of Aristotle’s cognitive psychology shows that Aristotelian perception is sufficiently powerful to sustain very rich, complex patterns of behaviour in human as well as non-human animals, and examines the interaction between perception (cognition of the particular and the ‘that’) and the distinctive capacity for reason (which makes possible cognition of the universal and the ‘why’) in human behaviour. The rest of the paper applies this framework to a number of problems in the Poetics: (i) If Aristotelian tekhnê is defined as a productive disposition involving reason, how can poetic tekhnê be manifested in the work of poets who work by non-rational habit or talent? (ii) Why does Aristotle believe that the pleasure taken in imitation qua imitation involves rational inference? (iii) What does Aristotle mean when he contrasts history (concerned with the particular) and poetry (concerned with the universal)? (iv) How is Aristotle’s insistence on universality and rationality in the construction of poetic plots to be reconciled with his willingness to tolerate irrationalities and implausibilities
    • …
    corecore