9,287 research outputs found

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Low Complexity Multi-User MIMO Detection for Uplink SCMA System Using Expectation Propagation Algorithm

    Get PDF
    Sparse code multiple access (SCMA), which combines the advantages of low density signature (LDS) and code-division multiple access (CDMA), is regarded as one of the promising modulation technique candidate for the next generation of wireless systems. Conventionally, the message passing algorithm (MPA) is used for data detector at the receiver side. However, the MPA-SCMA cannot be implemented in the next generation wireless systems, because of its unacceptable complexity cost. Specifically, the complexity of MPA-SCMA grows exponentially with the number of antennas. Considering the use of high dimensional systems in the next generation of wireless systems, such as massive multi-user MIMO systems, the conventional MPA-SCMA is prohibitive. In this paper, we propose a low complexity detector algorithm named the expectation propagation algorithm (EPA) for SCMA. Mainly, the EPA-SCMA solves the complexity problem of MPA-SCMA and enables the implementation of SCMA in massive MU-MIMO systems. For instance, the EPA-SCMA also enables the implemantation of SCMA in the next generation wireless systems. We further show that the EPA can achieve the optimal detection performance as the numbers of transmit and receive antennas grow. We also demonstrate that a rotation design in SCMA codebook is unnecessary, which is quite rather different from the general assumptio

    Doubly Massive mmWave MIMO Systems: Using Very Large Antenna Arrays at Both Transmitter and Receiver

    Get PDF
    One of the key features of next generation wireless communication systems will be the use of frequencies in the range 10-100GHz (aka mmWave band) in densely populated indoor and outdoor scenarios. Due to the reduced wavelength, antenna arrays with a large number of antennas can be packed in very small volumes, making thus it possible to consider, at least in principle, communication links wherein not only the base-station, but also the user device, are equipped with very large antenna arrays. We denote this configuration as a "doubly-massive" MIMO wireless link. This paper introduces the concept of doubly massive MIMO systems at mmWave, showing that at mmWave the fundamentals of the massive MIMO regime are completely different from what happens at conventional sub-6 GHz cellular frequencies. It is shown for instance that the multiplexing capabilities of the channel and its rank are no longer ruled by the number of transmit and receive antennas, but rather by the number of scattering clusters in the surrounding environment. The implications of the doubly massive MIMO regime on the transceiver processing, on the system energy efficiency and on the system throughput are also discussed.Comment: Accepted for presentation at 2016 IEEE GLOBECOM, Washington (DC), USA, December 201

    On the Impact of Hardware Impairments on Massive MIMO

    Get PDF
    Massive multi-user (MU) multiple-input multiple-output (MIMO) systems are one possible key technology for next generation wireless communication systems. Claims have been made that massive MU-MIMO will increase both the radiated energy efficiency as well as the sum-rate capacity by orders of magnitude, because of the high transmit directivity. However, due to the very large number of transceivers needed at each base-station (BS), a successful implementation of massive MU-MIMO will be contingent on of the availability of very cheap, compact and power-efficient radio and digital-processing hardware. This may in turn impair the quality of the modulated radio frequency (RF) signal due to an increased amount of power-amplifier distortion, phase-noise, and quantization noise. In this paper, we examine the effects of hardware impairments on a massive MU-MIMO single-cell system by means of theory and simulation. The simulations are performed using simplified, well-established statistical hardware impairment models as well as more sophisticated and realistic models based upon measurements and electromagnetic antenna array simulations.Comment: 7 pages, 9 figures, Accepted for presentation at Globe-Com workshop on Massive MIM

    Massive MIMO Channel Models: A Survey

    Get PDF
    The exponential traffic growth of wireless communication networks gives rise to both the insufficient network capacity and excessive carbon emissions. Massive multiple-input multiple-output (MIMO) can improve the spectrum efficiency (SE) together with the energy efficiency (EE) and has been regarded as a promising technique for the next generation wireless communication networks. Channel model reflects the propagation characteristics of signals in radio environments and is very essential for evaluating the performances of wireless communication systems. The purpose of this paper is to investigate the state of the art in channel models of massive MIMO. First, the antenna array configurations are presented and classified, which directly affect the channel models and system performance. Then, measurement results are given in order to reflect the main properties of massive MIMO channels. Based on these properties, the channel models of massive MIMO are studied with different antenna array configurations, which can be used for both theoretical analysis and practical evaluation
    • …
    corecore